
ELSEVIER Fluid Dynamics Research 21 (1997) 303 317 

FLUID DYNAMICS 
RESEARCH 

Inclined wall plumes in porous media 

J.-J. Shu a'*, I. P o p  b 

a Department of  Applied Mathematical Studies, University of  Leeds, Leeds LS2 9JT, UK 
b Faculty of Mathematics, University of Cluj, CP 253, R-3400 Cluj, Romania 

Received 7 November 1996; revised 20 January 1997; accepted 22 January 1997 

Abstract 

We present a numerical solution of the natural convection from inclined wall plumes which arise from a line thermal 
source imbedded at the leading edge of an adiabatic plate with arbitrary tilt angle between 0 and n/2, and embedded in 
a fluid-saturated porous medium. An appropriate transformation of the governing boundary-layer equations is proposed 
and a very efficient novel numerical solution is proposed to obtain rigorous numerical solutions of the transformed 
nonsimilar equations over a wide range of tilt angle from the vertical to the horizontal. Graphs are presented showing the 
effect of the tilt angle on the velocity and temperature profiles, as well as on the wall velocity and wall temperature. As far 
as we know, this problem has not yet been studied in the available literature. 

Nomenclature 

G 
f 
g 
K 
L 
Q 
R. 
T 
T* 
bt~ /) 

X, y 

fl 

specific heat of fluid 
dimensionless stream function 
acceleration due to gravity 
permeability of the porous medium 
length of line source 
energy released from the line source 
Rayleigh number 
temperature 
equivalent temperature of the line source 
velocity components in the x, y directions 
coordinates along and normal to the plate, respectively 
effective thermal diffusivity of the porous medium 
coefficient of thermal expansion 
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q 
0 
2 

P 
4) 

0 

plate inclination parameter 
pseudo-similarity variable 
dimensionless temperature 
constraint variable 
characteristic dimensionless coordinate 
fluid density 
tilt angle measured from the vertical 
stream function 

Subscripts 
w condition at the wall 
~¢ condition far from the wall 

Superscript 
' differentiation with respect to q 

1. Introduction 

During the past two decades considerable research efforts have been devoted to the study of heat 
transfer induced by buoyancy effects in a porous medium saturated with fluids as evidenced by the 
literature published in the recent monograph by Nield and Bejan (1992). Interest in this convective 
heat transfer phenomena has been motivated by such diverse applications of the subject in 
contemporary technologies as thermal insulation of buildings, nuclear engineering systems, 
geothermal engineering, energy storage and recovery systems, storage of grain, fruits and veg- 
etables, petroleum reservoirs, pollutant dispersion in aquifers, and catalytic reactors. There is no 
doubt that this area of convective heat transfer keeps attracting engineers and scientists from 
diversified disciplines such as mechanical engineering, chemical engineering, civil engineering, 
nuclear engineering, bio-engineering, food science and geothermal physics. 

The steady buoyancy-induced flow arising from thermal energy sources is commonly referred 
to as a natural or mixed convection plume. Among such plumes, two general types may be 
identified - the free plume and the wall plume. The free plume is typified by the buoyant flow 
resulting from a point or a line source of heat. A typical wall plume is the flow resulting from a line 
source of heat imbedded at the leading edge of an adiabatic surface. Free and wall plames arise in 
power plant steam lines, buried electrical cables, oil and gas distribution lines, volcanic eruption, 
disposal of nuclear wastes, hot-wire anemometry, industrial and agricultural water distribution 
lines, etc. 

Natural convection resulting from a line or point source in an infinite Darcian porous medium 
(free plume) was first considered by Wooding (1963) and his analysis has been very much refined 
and generalized since then. On the basis of the boundary layer approximation similarity solutions 
were obtained by this author, assuming the Rayleigh number to be sufficiently high; it neglects the 
conduction in the axial direction, normal pressure gradient and the entrainment in the plume from 
the outer region. Similarity solutions for this problem were also obtained by Lai (1990a), while 
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Bejan (1978), Masuoka et al. (1986) have obtained similarity solutions for the problem of axisym- 
metric plume from a point heat source in a porous medium on the basis of the boundary-layer 
approximation. The point heat sources at low Rayleigh numbers in an unbounded Darcian porous 
medium were investigated by Hickox and Watts (1980) and Hickox (1981). Afzal and Salam (1990) 
have considered the case when the point heat source is bounded by an adiabatic conical surface. 
Bejan (1978), Nield and White (1982), Ganapathy and Purushothaman (1990), and Purushothaman 
et al. (1990) used a perturbation analysis for small Rayleigh number to study the transient and 
steady natural convection produced in an infinite fluid-saturated porous medium when a point or 
a horizontal line heat source starts to liberate heat. The higher-order boundary layers for natural 
convection from a horizontal line source of heat (free plume) in a Darcian porous medium were 
determined by Afzal (1985), and Shaw and Dawe (1985) using the method of matched asymptotic 
expansions. The Darcian mixed convection from a line thermal source imbedded at the leading 
edge of an adiabatic vertical surface (wall plume) in a saturated porous medium was numerically 
investigated by Kumari  et al. (1988). 

Coupled heat and mass transfer by natural convection at low Rayleigh number in an infinite 
Darcian porous medium has been considered by Poulikakos (1985) and Ganapathy (1994) for 
a point source, by Larson and Poulikakos (1986) for a line source and by Lai and Kulacki (1990) for 
a sphere. For a large Rayleigh number, Lai (1990b) obtained a similarity solution for a line source, 
and the closed-form solutions are presented for the special case of Lewis number equal to 1. 

Natural or mixed convection flow from free or wall plumes in non-Darcian porous media were 
investigated by Cheng and Zheng (1986), Ingham (1988), Lai (1991a, b), Leu and Jang (1994, 1995), 
and Degan and Vasseur (1995). It was shown that the non-Darcian flow produces a much more 
peaked temperature profile than that predicted by the Darcian flow. This behaviour is qualitatively 
in agreement with the experiments reported by Cheng (1985) on the plume rising from a horizontal 
line source of heat. Nakayama (1993, 1994) has studied natural convection from a point heat source 
and from a line heat source in a porous medium saturated with a power-law fluid. Finally, we 
mention the more recent paper by Facas (1995), who was presented numerical solutions for the 
Darcian natural convection heat transfer from an elliptic heat source buried beneath a semi-infinite 
porous medium. 

In this paper, we investigate the Darcian boundary-layer natural convection from inclined wall 
plumes which arise from a line thermal source imbedded at the leading edge of an adiabatic plate 
with arbitrary inclination from the vertical to the horizontal and immersed in a fluid-saturated 
porous medium. The problem is formulated based on the corresponding configuration for inclined 
wall plumes in a viscous (non-porous) fluid considered by Lin et al. (1996). To facilitate the analysis, 
a dimensionless stretched streamwise coordinate ~ (or ~) has been proposed. In addition, 
dimensionless stream function and dimensionless temperature with proper scales based on ~ are 
defined to obtain a set of non-similar equations. Also, a new dependent constraint variable 2 has 
been introduced to avoid numerical integration. The variable ~ (or if) also serves as an index of the 
inclination of the plate. For the limiting case of a vertical wall plume, ~ = 0, while for the limiting 
case of a horizontal wall plume, ~ = 1, respectively. In these limiting cases, the nonsimilar 
equations are readily reducible to the self-similar equations of the vertical and horizontal wall 
plumes. The new set of equations derived for arbitrary plate inclination from the vertical to the 
horizontal subject to an integral constraint equation of flux-conservation condition was solved by 
a very efficient numerical method. A considerable effort has been directed in this paper to develop 
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a new method to solve the governing nonsimilar equations, which can be also applied to the 
analyses of other plume configurations. 

2. Governing equations 

We consider here natural convection from a line heat source of strength Q imbedded 
at the leading edge of an adiabatic flat plate which is embedded in a fluid-saturated porous 
medium of ambient temperature T~. The flat plate is inclined with an arbitrary angle 71 to 
the vertical from 0 to rt/2, including the vertical and horizontal orientations. The physical 
model and coordinate system are shown in Fig. 1. Cartesian coordinates (x, y) with associated 
velocity components (u, v) are used in the subsequent analysis. The thermophysical properties of 
the fluid are assumed constant except for the density in the buoyancy term in the momentum 
equation. 

The governing equations for the steady, two-dimensional natural convection with the boundary- 
layer, Boussinesq, Darcy flow and negligible inertia approximations are as follows, see Ingham et 
al. (1985): 

Ou Ov 
+ ~ = O, (1) 

o)1 

) - cos ~b - sin 4~ (2) 
8x  v -~x  ' 

8T 8T 82T  
(3) 

V, u 

y\ Adiabatic plate 

~ '~  Line source 

Fig. 1. The physical model and coordinate system. 
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subject to the boundary conditions 

3T 
- -  z z v = 0 ,  ~3y 0 aty  0, (4) 

u ~O,  T ~ T~ a s y - - * ~ ,  (5) 

where g is the acceleration due to gravity, T is the fluid temperature, K is the permeability, and a, 
fl and v are the effective thermal diffusivity, coefficient of thermal expansion and kinematic 
viscosity, respectively. In addition to these boundary conditions, the governing equations (1)-(3) 
are also subject to a constraint of energy conservation condition. That is, the total energy 
convected by the boundary-layer flow through the perpendicular plane at any x > 0 must be equal 
to the energy Q released from the line thermal source 

pCp L u(T - T~) dy = Q. (6) 

Here p, L and C v denote density, length of line thermal source and specific heat of fluid. 
A significant step in formulating the problem for comprehensive solutions is the introduction of 

the characteristic dimensionless coordinate 

[ (R°sin -' 
= 1 -- 1 + (R, cos@)I/3j , (7) 

where the local Rayleigh number R, is defined as 

g K f l T * x  
i a -  

o~v 

with the equivalent temperature T* given by 

T * -  Q pop,L 

This coordinate provides the basis for a unified framework within which the features of the relative 
strength of the longitudinal to the transverse components of buoyant force acting on the boundary- 
layer flow adjacent to the inclined plate. 

In addition, a pseudo-similarity variable is defined as 

Y r / = -  ~, 
X 

where 

= (R, c o s  (j~j)l/3 -t- (Ra sin qs) 1/4 . 



308 J.-J. Shu, 1. Pop/Fluid Dynamics Research 21 (1997) 303-317 

Furthermore, a dimensionless stream function and a dimensionless temperature are defined, 
respectively, as follows: 

g,(x, y) 
f(G r/) - - - ,  (8) 

T(x, y) - T~ 
0(4, r/) = T* ~ (9) 

and 

i f  8f 
)~(~, 1/) = 0 ~ dr/. (10) 

The differential equations and all boundary conditions transform to the following systems of 
equations: 

a2f ao(4) aO aO aO 
0r/2 - ~ + bo(~)~-~ -{- Co(4)r/~qq + do(~)O, (11) 

920 [ f s0  
8r/~ + po(4) E 8r/+ 0 

a,~ 0 of 
8r/ Or/' 

with boundary conditions 

80(¢, O) 
f ( ~ , 0 ) = 0 ,  - - - 0 ,  8r/ 

Here 

~.s(1 - 4 )  
ao(~) = (1 - 4) 3, bo(~) - 

12 

~ 4 ( 4  - ~ )  4 - 

do(~)- 12 , po(~)- 12 ' 

8~ a , ~  ' (12) 

(13) 

0f(G o0) 
2(~ ,0 )=0 ,  - 0 ,  2(4, c~)= 1. (14) 

8r/ 

¢4(8 + ¢) 
, C o ( ~ )  - 1 2  

4(1  - ¢)  

q o ( ~ )  - 12  

The constraint condition 2(~, oo) implies lim,_.~O(Of/Or/)= 0, that is, either 0(~, ~ ) =  0 or 
8f(4, c~)/Oq = 0. We simply drop the boundary condition 0(4, oc)= 0 to avoid computational 
overdetermination. 

For the limiting case of a vertical wall plume, 4 = 0, Eqs. (11)-(13) are readily reduced to the 
following self-similar equations: 

f "  = 0', (15) 
1 0" + ~(fO) = 0, (16) 

2' = Of', (17) 
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where primes denote differentiation with respect to ~/. The analytical solution of these equations is 
given by 

f(r/) = ~/-9 tank ( ~ ) ,  
\W24]  

0(.)  = 
2 cosh2 ( t / / , ~ )  ' 1 t~424) I tanh2 ( ~  ~]" 2(~/) = 5 tanh 3 - \ ~ / 2 4 ] J  

(18) 

For the other limiting case of a horizontal wall plume, ~ = 1, Eqs. (11)-(13) become: 

f. 3 t = at/0 + ¼0, (19) 

0" + ¼(fO)' = 0, (20) 

2' = OiL (21) 

It is worth mentioning that these equations are so far the first time reported in the literature. 
However, they do not possess a closed-form analytical solution. 

3. Numerical method 

The solution to the nonsimilar equations (11)-(13) of the inclined wall plume in a porous medium 
with boundary conditions (14) is obtained numerically using finite differences. At Lin et al. (1996) 
noticed, it is very difficult to integrate the set of equations constrained by an integral equation (10), 
especially when this system of equations is nonsimilar. A considerable effort in this study has been 
directed toward developing a numerical method for the problem under consideration, which is 
different of that proposed by Lin et al. (1996). Thus, a new dependent variable, 2(4, q), in Eq. (13), has 
been introduced to avoid numerical integration. The condition 0(4, rt) = 0 has thus been dropped to oc avoid computational overdetermination, because the constraint integral to O(Of/Otl)drl = 1 or 
2(~, oo) = 1 implies either (Of/Oq)(~, oc) = 0 or 0 (4, oo) = 0. 

Now, we write the equations as a first order system by introducing the new dependent variables 
q(~, ~/) and w(~, 17) as follows: 

0f  
0q q' (22) 

0q 00 
O~ = ao(¢)w + bo(~) ~ + Co(~)tlw + do(~)0, (23) 

00 
0~/-  w, (24) 

Ow _ I Of O0 ] 
Oq po(~)[fw + Oq] + qo(~) w ~ - q -~ , (25) 

02 
Otl Oq. (26) 
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The boundary conditions now become 

f ( ~ , 0 ) = 0 ,  w(~ ,0 )=0 ,  2 (4 ,0 )=0 ,  q(~,Go)=0,  2(~, o c ) = l .  

We place an arbitrary rectangular net of points (~,, t/j) on 0 ~< ~ ~< 1, 17 >~ 0 and use the notation: 

4 0 = 0 ,  ~ , = ~ , - l + k , ,  n = l ,  2 , . . . , K ,  ~ K = I ;  

t / o=0 ,  t / j=~ j_  l + h j , j = l , 2 , . . . , J ;  (27) 

approximate (f, q, 0, w) at ({,, t/j), the difference approximations are If ( f ; ,  q~, 0~, w~) are to 
defined, for 1 ~ j ~< J, by 

f.. _ f . .  J J--1 
hj  - -  q~ :/2,  

q~- : / z  _ qy_l /2  

hj  

1 
0~_ 1/2 - 0~21/2 . n -  1/2 

= a n - 1 / 2 w j - 1 / 2  + b n - 1 / 2  k ,  

oy - o~_1 tl 
hj  = W j  1/2, 

n-  1/2 , , ,n- 1/2 
W j  - -  v v j -  1 

hs 

1/2 n -  1/2 
Jr- C n - 1 / z t / j - 1 / 2 W J - - 1 / 2  -~ d n - 1 / z O j  - 1 / 2  , 

(28) 

(29) 

(3O) 

gl , , n -  1/2 
= - -  P n -  1/2(f w + ~'q / j -  1/2 -}- q n -  1/2 

n n-1  1 v[-.. ,/2f;-:/2-f?--?,2 .-,2 0j-:/~-oj-112 
" L~Vj - 1/2 kn - q j -  1/2 k .  ' 

(31) 

),'~ - ) t ] _  1 = ( O q ) ' ~ _  i / 2 ,  (32) 
h j  

where 4. 1/2 = ({. + { . -  :)/2, a._ 1/2, b._ 1/2, c._ 1/2, d._ 1/2, P n -  1/2 and q._ 1/2 are the values of ao(4), 
bo(~), co(4), do({), Po({) and qo(~) at {.-1/2, respectively, and for any function z(~,t/) we have 
introduced a notation for averages and intermediate values as 

. . . - , / 2  z , ) - 1 ) / 2 ,  . - : / 2  . . - i  . - 1  Z j - i / 2  = (Zy -{- Z j - 1 ) / 2  , Zj = (Z~ -l- Z j -  1/2 = (zj + z j -  1 + zj + z j -1 ) /4 .  (33) 

Note that Eqs. (28), (30) and (32) are centered at (~n, t/j-1/2), while Eqs. (29) and (31) are centered at 
(~,-1/2, t/j-i/2), i.e, when a ~ derivative is absent, equations can be differenced about the point 
(~,, t/j 1/2). It was found in practice that this damps high-frequency Fourier error components better 
than differencing about (~,_ ~/2, t/s- 1/z). 

The boundary conditions become simply: 

f ~ = 0 ,  w ~ = 0 ,  2 ~ = 0 ,  q~,=-0, 2[}= 1. (34) 

The nonlinear difference equations may now be solved recursively starting with n - - 0  (on 
= ~o = 0). In the case of n = 0 we retain (28), (30), (32) and (34) with n = 0 and simply alter (29) and 
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1 (31) by setting ~,_ 1/2 : 0 and using superscripts n = 0 rather than n - 5 in the remaining terms. The 
resulting difference equations are then solved by Newton iteration. The details of implementation of 
Newton iteration is beyond the scope of this paper. Solutions are obtained on different sized grids 
and Richardson's extrapolation used to produce results of high accuracy. 

4. Extrapolating the results 

Since central difference are used the exact numerical solution of our difference equations (28)-(34) 
is a second-order accurate approximation. The local truncation errors of this difference scheme can 
be written as a Taylor series in powers of h 2 and k 2 where k = max, k, and h = maxj h r. It is therefore 
possible, as pointed out by Keller and Cebeci (1971), by solving the problem on different sized grids 
and using Richardson's extrapolation, to produce results of high accuracy provided the truncation 
errors are larger than the iteration errors. For example, each cell of the net (27) is divided into 
m subintervals both in the ~ direction and in the q direction where m is an integer. The problem is 
solved numerically for m = 1, 2, 3 and 4. If Zm denotes the results of any actual variable function 
z(~, t/) at a common grid point then the z,, has accuracy O ( k  2 -]- h2). Since the truncation error is 
proportional to the square of k and h then 

1(923 4z2), = ~(16z4 9Z3) z 1 2 = ½ ( 4 z 2 - z l ) ,  z 2 3 = ~  - z34 - 

have errors O(k 4 + h 4) and 

z~23=~(9z23--z~2), Zz34=~2(16z34--4zz3) (35) 

will be in error by O(k 6 + h 6) and, finally, 

Z 1 2 3 4 = l ( 1 6 Z 2 3 4 - - Z 1 2 3 ) .  

The results quoted are z1234 and error is estimated by maximum of the difference [-71234 - -  Z234 [  , 

which being a global error estimate measures the actual error in z. 
In order to assess the accuracy of our numerical results, they were compared for a vertical wall 

(~ = 0, i.e. ~ = 0) with the analytical results given by Eq. (18). Thus, the value of 0(0) both from Eqs. 
(1l)-(14) and from Eq. (18) when ~ = 0 is 0(0) = 0.72112478, which shows that the agreement is 
excellent. We are, therefore, strongly confident that the present numerical scheme works very 
efficient. 

5. Results and discussion 

The application of the results obtained in this paper lies in the determination of the velocity and 
temperature profiles in the boundary layer as well as the wall velocity and wall temperature profiles. 
The dimensionless velocity u/(~/x) and temperature (T - T~) /T*  profiles over the dimensionless 
transverse coordinate y/x are depicted in Figs. 2 and 3 for different values of the tilt angle q~ and 
Ra = 103. It can be seen that these profiles look similar and they should be symmetric with the x-axis. 
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Fig. 2. Representative velocity profiles for R. = 10 3. 
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Fig. 4. Variations of wall velocity with O. 
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Fig. 5. Variations of wall temperature with O. 

Also, these profiles are found to be quite similar in form to those of Leu and Jang (1994) for a line 
source of heat along the base of an adiabatic vertical plate. Further, one can see that the maximum of 
the velocity and temperature profiles occurs at the wall y = 0. In addition, the longitudinal velocity 
profiles decrease near the wall as • increases, while the temperature profiles increase monotonically 
with increasing values of O; the fluid adjacent to the line source becomes hotter, and it begins to rise 
until it reaches a maximum. This is due to the decrease of the component of buoyancy force with 
increasing the tilt angle O. Thus, for a fixed angle O, the temperature increases near the wall and 
decreases more rapidly towards the outer edge of the plume and the width of the plume becomes less 
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(a) 
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Fig. 6. (a) Streamlines and (b) isotherms for 4~ = 0 and R.  = 10 3. 

extensive. Therefore, the boundary and convective effects are more important for a wall plume than 
for a free plume (see, Leu and Jang, 1994, 1995). 

The maximum dimensionless velocity and temperature profiles (i.e. wall velocity and wall temper- 
ature) are shown in Figs. 4 and 5 versus the tilt angle q~, i.e. over the range of 0 ~< ~ ~< 1 and some 
values of R,. As expected, the wall velocity increases, while the wall temperature decreases with 
increasing the parameter ~. This is because a more vigorous flow when the plate is tilted away from 
the horizontal. It is also noticed from Fig. 4 that the wall velocity increases, with the increase of 
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Fig. 7. (a) S t reaml ines  and  (b) i so the rms  for q~ = r~/4 and  R.  = 103. 

the Rayleigh number Ra. This causes a reduction of the wall temperature when R, is increased 
(see, Fig. 5). Therefore, at larger values of R,, the plume becomes thicker, resulting in increased 
entrainment of fluid in the boundary layer from the outer region. The entrainments depends on the 
extent of outer region, i.e. whether the fluid can entrain from entire or limited space. Furthermore, 
Figs. 4 and 5 show that the longitudinal velocity and temperature profiles at the wall do not change 
monotonically with the tilt angle ~b. Highest wall velocity and lowest wall temperature can be found 
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Fig. 8. (a) Streamlines and (b) isotherms for ~b = n/2 and R. = 10 3. 

at 45 ~ n/6. This may be due to the combined effects between transverse buoyancy and longitudinal 
buoyancy. This observation could be useful for engineering applications. 

Finally, Figs. 6-8 illustrate the streamlines and isotherms of the inclined wall plume in a porous 
medium for the tilt angles 4~ = O, n/4 and n/2 when Ra = 10 3. These figures clearly show that there 
are stable boundary-layer flows along the plate. The separation and wake formation have not been 
found. Moreover, the streamline plots show that the fluid is accelerating from a low-velocity point 
below the line plume to a high-velocity region above the line plume. 
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We conclude by  not ing that  this flow conf igura t ion  is of  considerable  i m p o r t a n c e  in t echnology  
and  the present  work  considers the result ing b o u n d a r y - l a y e r  flow in order  to de te rmine  the velocity 
and  t empe ra tu r e  profiles, as well as o ther  physical  aspects  of  interest. The  results of  the present  s tudy 
are i m p o r t a n t  in technology,  for example ,  in the posi t ioning of c o m p o n e n t s  dissipat ing energy on 

vertical circuit boa rds  placed in a p o r o u s  m e d i u m  and  in the pos i t ioning of the boa rds  themselves.  
H e a t  t ransfer  and  na tura l  convec t ion  flow considera t ions  are very i m p o r t a n t  in this a rea  and  also in 
several f requently encounte red  manufac tu r ing  processes. The  in teract ion of the flows arising f rom 

several elements,  which const i tute  s teady the rma l  sources,  on a vertical insulat ing surface is an 
i m p o r t a n t  p r o b l e m  and  fur ther  w o r k  needs to be done  on it in order  to de termine  the na ture  of  the 
resulting flow and  heat  transfer.  
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