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Abstract A theoretical study is presented in this paper to
investigate the conjugate heat transfer across a vertical
®nite wall separating two forced and free convection ¯ows
at different temperatures. It is assumed that the heat
conduction in the wall is only in the transversal direction.
We also assume that countercurrent boundary layers are
formed on the both sides of the wall. The governing
equations of this problem and their corresponding boun-
dary conditions are all cast into a dimensionless form by
using a non-similarity transformation. These resulting
equations, which are singular at the points nc � 0 and 1,
are solved numerically using a very ef®cient singular
perturbation method. The effects of the resistance
parameters and of the Prandtl numbers on heat transfer
characteristics are investigated and presented in a table
and ten ®gures.

List of symbols
A constant
b thickness of the plate
C constant
f reduced stream function
g acceleration due to gravity
hx local heat transfer coef®cient
k thermal conductivity
L length of the plate
Nux local Nusselt number
Nu average Nusselt number

Pr Prandtl number
qx local heat ¯ux
Q overall heat ¯ux
Re Reynolds number
Rt forced convection thermal resistance parameter
R�t free to forced convection parameter
t ambient temperature
Dt characteristic ambient temperature
T ¯uid temperature
u; v velocity components
U1 free stream velocity
x; y Cartesian coordinates

Greek letters
a thermal diffusivity
b coef®cient of thermal expansion
h dimensionless temperature
k dummy variable
m kinematic viscosity
n; g reduced coordinates
w stream function

Subscripts
c cold ¯uid system
h hot ¯uid system
s solid wall
w condition at the wall

1
Introduction
The study of thermal interaction between two semi-in®nite
¯uid reservoirs at different temperatures through a vertical
conductive wall is a very important topic in heat transfer
because of its numerous engineering applications. This
heat transfer process applies to reactor cooling, heat ex-
changers, thermal insulation, nuclear reactor safety, etc.
Additionally, such interaction mechanisms is, for the most
part, inherent in the design of heat transfer apparatus.
On the other hand, it is worth mentioning that recent
demands in heat transfer engineering have requested
researchers to develop new types of equipments with
superior performances, especially compact and light-
weight ones. The need for small-size units, requires
detailed studies on the effects of interaction between
the thermal ®eld in both ¯uids and of the wall conduc-
tion, which usually degradates the heat exchanger perfor-
mance.
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The problem of heat exchange between two free con-
vection systems separated by a ®nite vertical conductive
wall has not been studied extensively because of dif®culties
in solving the developments of ¯ow and thermal boundary
layers simultaneously. Lock and Ko [1] applied the local
similarity method to investigate theoretically the effect of
thermal coupling produced by conduction through a ®nite
vertical wall separating two free convection systems. The
study was done under the assumption that the wall con-
duction is only in the transversal direction. The governing
boundary layer equations were transformed by introduc-
ing semi-similar variables and then solved numerically
using a ®nite-differences method. This problem was also
treated by Viskanta and Lankford [2] following a more
simple analysis based on a super-position method. The
authors have also conducted interferometric experiments
which con®rm the validity of their approximated theo-
retical results. Next, Anderson and Bejan [3] have em-
ployed the modi®ed Oseen linearized method to solve such
a conjugate problem when the Prandtl number is very
large. It was shown that the overall heat transfer rate is
relatively independent by the Prandtl number. Sakakibara
et al. [4] have recently extended the problem of coupled
heat transfer between two free convection systems sepa-
rated by a ®nite vertical conducting wall assuming the two-
dimensional conduction equation in the wall. In other
words, the wall conduction takes place in both axial and
transversal directions. Numerical solutions for both free
convection systems and the analytical solution for the wall
conduction were combined to obtain ®nal solutions for the
¯ow and heat transfer characteristics which ®t the conju-
gate boundary conditions at both sides of the wall. Ex-
periments were also conducted for air-air systems with the
conducting wall made of aluminum or glass. It was found
that theoretical results describe well the experimental
temperature distributions. More recently, in a very inter-
esting paper, TrevinÄo et al. [5] reported numerical and
asymptotic solutions of the free convection boundary
layers on both sides of a vertical conducting wall for all
possible values of two main parameters.

We notice to this end that there were also published
several papers by Poulikakos [6], MeÂndez and TrevinÄo [7],
and Chen and Chang [8, 9] on the problem of thermal
interaction between laminar ®lm condensation of a
saturated vapor and a forced or free convection system
separated by a vertical conducting wall.

In this paper we intend to propose a new theoretical
(mathematical) method to predict the heat transfer be-
tween free convection on one side of a ®nite vertical
conducting wall and forced convection ¯ow on the other
side of the wall with the consideration of the wall
thermal resistance. It is assumed that the conduction in
the wall is in the transversal direction only. Since both
the plate temperature and the heat ¯ux through the plate
are unknown a priori in this problem, the boundary
layer equations on both sides of the wall and the one-
dimensional heat conduction equation for the wall are
solved simultaneously. The numerical method used is a
new comprehensive and non-iterative scheme based on
the singular perturbation method described in a recent
paper by Shu and Pop [10]. We notice that this method

differs by the iterative guessing technique proposed by
Chen and Chang [8, 9]. Heat transfer characteristics have
been derived for some main parameters entering this
problem.

2
Basic equations
The physical model under consideration along with the
coordinate systems is shown in Fig. 1, where the vertical
plate with length L and thickness b separates two semi-
in®nite ¯uid reservoirs at different temperatures. The
warmer reservoir contains a stagnant ¯uid with tempera-
ture th, while the ambient temperature on the cold side of
the plate is tc. Obviously, th is higher than tc. The upper
left corner of the plate coincides with the origin of a
Cartesian coordinate system whose y axis points in the
direction normal to the plate, while the x axis points
downward in the plate's longitudinal direction. Due to
gravity, a free convection laminar boundary layer appears
on the hot side of the plate and ¯ows downward along the
plate. A forced convection ¯ow of the cooling ¯uid with
velocity U1 is imposed on the right lateral surface of the
plate thus generating a forced convection boundary layer
on this surface, which develops with increasing thickness
downstream. Accordingly, two ¯uid streams move in
opposite directions. Due to this assumption, the present
problem can be formulated in terms of the boundary layer
equations for two different heat transfer systems. These
governing differential equations need to be considered
separately and they are:
Hot ¯uid

ouh

ox
� ovh

oy
� 0 �1�

uh
ouh

ox
� vh

ouh

oy
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o2uh
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where uh and vh denote the velocity components of the hot
¯uid in the x and y directions, respectively, Th is the
temperature of the hot ¯uid, g is the gravitational accel-
eration, b is the thermal expansion coef®cient of the hot
¯uid, and mh and ah are the kinematic viscosity and thermal
diffusivity of the heat ¯uid, respectively.

Fig. 1. Schematic diagram of the studied physical model
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The boundary conditions for the free convection system
are

uh � vh � 0; Th � Twh�x� on y � 0

uh ! 0; Th ! th as y!1 �4�

where Twh�x� denotes the wall temperature facing the hot
side of the plate.
Cold ¯uid
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oyc
� 0 �5�
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c

�6�

uc
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� vc

oTc
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� ac
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c
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where xc and yc are Cartesian coordinates on the forced
convection side, uc and vc denote the velocity components
of the cold ¯uid in the xc and yc directions, and Tc; mc and
ac are the temperature, kinematic viscosity and thermal
diffusivity of the cold ¯uid, respectively.

The boundary conditions for the forced convection
system are

uc � vc � 0; Tc � Twc�xc� on yc � 0

uc ! U1; Tc ! tc as yc !1
�8�

where xc � Lÿ x and Twc�xc� denotes the wall tempera-
ture facing the forced convection side.

It is assumed that heat conduction along the plate is
neglected in comparison with transverse heat conduction.
Under this condition, the heat ¯ux entering the left face of
the plate will be equal to that leaving the right face at any
given vertical position x, i.e.

ks
Twh ÿ Twc

b
� ÿkc

oTc

oyc

����
yc�0

� kh
oTh

oy

����
y�0

� qxc �9�

where ks; kh and kc denote the thermal conductivities of
the solid plate, hot ¯uid and cold ¯uid, respectively, and
qxc is the local heat ¯ux through the plate. A correlation
between Twh and Twc can be obtained from Eq. (9) as

Twc � Twh ÿ bkh

ks

oTh

oy

�����
y�0

: �10�

3
Solution
To solve Eqs. (1)±(3) and (5)±(7), we introduce the fol-
lowing dimensionless variables

n � x=L; g � �Chy�=�Ln1=4�
wh � 4mhChn

3=4fh�n; g�; hh�n; g� � �Th ÿ �th � tc�=2�=Dt

nc � xc=L � 1ÿ n; gc � �ycRe1=2�=�Ln1=2
c �

wc � �U1mcLnc�1=2fc�nc; gc�; hc�nc; gc�
� �Tc ÿ �th � tc�=2�=Dt �11�

where Ch � �gbDtL3=�4m2
h��1=4, Dt � th ÿ tc; Re � U1L=mc

is the Reynolds number for the forced convection ¯ow,
and wh and wc are the stream functions of the hot and cold
¯uids, respectively, which are de®ned as

uh � owh

oy
; vh � ÿ owh

ox

uc � owc

oyc
; vc � ÿ owc

oxc

�12�

Due to the de®nition of (11) and (12), Eqs. (1)±(3) and
(5)±(7) can be transformed into the following form
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where Prh � mh=ah and Prc � mc=ac are the Prandtl num-
bers of hot and cold ¯uids, respectively.

The boundary conditions (4) and (8) become

fh � ofh

og
� 0; hh � hwh�n� at g � 0

ofh

og
! 0; hh ! 1

2
as g!1

�17�

fc � ofc
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� 0; hc � hwh�n� ÿ RtR
�
t n
ÿ1=4 ohh
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�����
g�0

at gc � 0

ofc
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! 1; hc ! ÿ 1

2
as gc !1 �18�

where Rt � bkcRe1=2=�ksL� denotes the thermal resistance
ratio of the forced convection ¯ow to the wall,
R�t � �khCh�=�kcRe1=2� can be regarded as the thermal
resistance of the hot ¯uid to the cold ¯uid,
hwh � �Twh ÿ �th � tc�=2�=Dt and
hwc � �Twc ÿ �th � tc�=2�=Dt. Substituting variables (11)
into Eq. (9), we get

R�t n1=2
c =n1=4

� � ohh

og

�����
g�0

� ohc

ogc

�����
gc�0

� 0 at any given position xc : �19�

Based on Eq. (9), the local heat transfer coef®cient hxc

for the forced convection system can be expressed as
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hxc � ÿkc
oTc

oyc

�����
yc�0

24 35,�Tc�xc; 0� ÿ tc�

� qxc=�Tc�xc; 0� ÿ tc� : �20�
The local Nusselt number for the forced convection system
can be expressed as

Nuxc � xchxc

kc
� ÿRe1=2n1=2

c

ohc

ogc

�����
gc�0

�
hwc�nc� � 1

2

� �
:

�21�
The total heat ¯ux Q through the surface facing the cold
¯uid is obtained by integrating the local heat ¯ux over the
entire height of the plate and can be expressed as

Q � kc

Z L

0

ÿ oTc

oyc

�����
yc�0

24 35 dxc : �22�

Substituting (11) into (22) yields the average Nusselt
number for the forced convection system as

Nuc � Q

kcDt
� Re1=2

Z 1

0

�
ÿ ohc
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����
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�
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c

�
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� ARe1=2 �23�
where
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Z 1

0

�
ÿ ohc
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����
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�
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c

�
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To solve Eq. (13) to (16), a comprehensive and non-iter-
ative numerical scheme is proposed, which is in contrast
with the iterative process purposed by Chen and Chang
[8, 9] using a guessing strategy. Based on Eq. (19), the
boundary conditions can be rewritten as

fh � ofh

og
� 0;

ohh

og
� n1=4k��n� at g � 0

ofh

og
! 0; hh ! 1

2
as g!1

�25�

fc � ofc

ogc

� 0;
ohc

ogc

� ÿR�t n
1=2
c k��n� at gc � 0

ofc

ogc

! 1; hc ! ÿ 1

2
as gc !1 �26�

and

k � 0 at g � 0; gc � 0 �27�
where the dummy variable k is de®ned as

k�n; g� � RtR
�
t k
��n� ÿ hh � hc : �28�

The systems (13)±(16) and (28), together with the boun-
dary conditions (25), (26) and (27), are then solved using
the singular perturbation method and the dif®culties as-
sociated with the guessed interfacial conditions have been

obviated. Since this procedure was described in a recent
paper by Shu and Pop [10], we will not repeat it here. Note
that the points nc � 0 and 1 are singular which make the
problem more dif®cult.

4
Results and discussion
In this section we discuss the effects of the Prandtl
numbers Prh and Prc, and resistance parameters Rt and
R�t on the interface temperatures, heat transfer rates and
Nusselt numbers. Figures 2 and 3 show variation of
hwc�nc� with nc for some values of Rt and R�t when the
two working ¯uids have Prh � Prc � 1. The results of
these ®gures show that for increasing values of Rt the
temperature of the cold side of the wall decreases. It
happens because when Rt is increased the wall becomes
more effective insulation between the two forced and free
convection ¯ows. In contrast, hwc�nc� increases as the free

Fig. 2. Effect of Rt on hwc�nc� for R�t � Prh � Prc � 1

Fig. 3. Effect of R�t on hwc�nc� for Rt � Prh � Prc � 1
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convection becomes dominant, i.e. when the parameter
R�t increases. It turns out that an increase of Rt leads to a
reduction of the heat transfer rates at the cold side of the
wall and to an increase of these rates with increasing
R�t , as can be seen from Fig. 4 and 5. It is evident from
Fig. 6 and 7 that the effects of Rt and R�t on the local
Nusselt number are insigni®cant. Further, Fig. 8 to 11
illustrate the variation of hwc�nc� and Nuxc�nc� with the
distance nc along the wall. As can be seen from Fig. 9 and
11 the temperature and local Nusselt number of the cold
side of the wall are less affected by Prh. To this end it
should be mentioned that the same trends persist for the
heat transfer characteristics of the free convection system.
But, they are not presented here for the sake of space
conservation.

Finally, values of the average Nusselt number are given
in Table 1 for Rt � R�t � 1 and some values of Prh and Prc.
We notice from this table that Nuc=Re1=2 increases with
decreasing Prh or increasing Prc.

Fig. 4. Effect of Rt on ÿ ohc

ogc
�nc; 0� for R�t � Prh � Prc � 1

Fig. 5. Effect of R�t on ÿ ohc

ogc
�nc; 0� for Rt � Prh � Prc � 1

Fig. 6. Effect of Rt on Nuxc�nc�=Re1=2 for R�t � Prh � Prc � 1

Fig. 7. Effect of R�t on Nuxc�nc�=Re1=2 for Rt � Prh � Prc � 1

Fig. 8. Effect of Prc on hwc�nc� for Rt � R�t � Prh � 1
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5
Conclusions
A conjugate problem of heat transfer between a laminar
forced convection ¯ow and a laminar free convection
separated by a vertical ®nite wall was studied theoretically.
The axial thermal conduction in the wall was neglected.
The governing boundary layer equations subject to con-
jugate boundary conditions were solved numerically using
a very ef®cient method which differs from the one used by
other authors. As a result the temperature distributions
and heat transfer rates at both sides of the wall have been
determined. The results show that the resistance parame-
ters in¯uence substantially the interactive heat transfer
characteristics. We have given particular attention to the
case when the resistance parameters Rt � R�t � 1 which
include the situation in which the ¯uids at both sides of
the wall are the same.

It is worth mentioning that the results reported in this
paper are in general in agreement with those from the
open literature. However, the accuracy of these results can
be further evidenced through experiments.
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Fig. 9. Effect of Prh on hwc�nc� for Rt � R�t � Prc � 1

Fig. 10. Effect of Prc on Nuxc�nc�=Re1=2 for Rt � R�t � Prh � 1

Fig. 11. Effect of Prh on Nuxc�nc�=Re1=2 for Rt � R�t � Prc � 1

Table 1. Values of Nuc=Re1=2 for Rt � R�t � 1

Prh � 0:1 Prh � 1 Prh � 10

Prc � 0:1 0.4945 0.4941 0.4899
Prc � 1 0.4974 0.4970 0.4927
Prc � 10 0.5168 0.5164 0.5116
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