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Prediction and Analysis of Tides and Tidal Currents

by Jian-Jun SHU, School of Mechanical & Production Engineering, Nanyang Technological
University

An efficient algorithm of tidal harmonic
analysis and prediction is presented in
this paper. The analysis is strengthened
by utilising known relationships between
tidal constituents found at a neighbour-
ing reference site. The system of linear
equations of the least-squares solution
is enhanced with included constraint

equations. In the case of inadequate
data, ill-conditioning in the system of
equations that has appeared in other
algorithms is conveniently avoided. In
solving the resultant normal equations,
Goertzel's recurrence formula  is adopt-
ed so  that the whole computation time
is dramatically reduced. 
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Tides and tidal currents offer clean and inex-
haustible energy sources. Better prediction and
analysis of tides and tidal currents are crucial to
utilise hydro-dams more efficiently as energy gen-
erators. Tides are cyclic variations in the level of
seas and oceans, while tidal currents are cyclic
variations in the motion of seas and oceans. The
present understanding of tides and tidal currents
as natural phenomena due to the gravitational
forces of the sun and moon acting on a rotating
earth came from the development of Newton's
gravitation theory [1]. Harmonic techniques were
first used to analyse and predict tides and tidal cur-
rents by Thomson [2] and expanded by Darwin [3],
Harris [4] and Doodson [5]. Tides and tidal cur-
rents may be considered as the sum of tidal con-
stituents according to harmonic analysis. With the
development of digital computers the least-
squares technique is used to evaluate the tidal
constituents from observed data and this is a prin-
cipal method used today. The harmonic method of
tidal analysis has been further refined for improve-
ment in accuracy of tidal prediction. A method for
superfine resolution of tidal harmonic constituents
has been developed by Amin [6-8] adding a correc-
tive step into the harmonic method. The species
concordance method has been developed by
George & Simon [9] and Simon [10] using relation-
ships between species of the tide at the studied
station and at a reference station where the tide is
well known or easily predicted. Here we re-examine
the harmonic method from a practical point of view
and propose an efficient algorithm of tidal harmon-
ic analysis and prediction.

Harmonic Method for Regular
Observations

Let us consider real-time regular observed data of
tidal height (n= -N, -N +1, ...,N), where
to is the mid-point time, 2N +1 is the number of the
real-time observed data, and      is the sampling
time interval. The tidal height can be expressed as
a sum of cosine functions plus random errors
denoted by

(1)

Where

and      are the node factor, mean ampli-

tude, angular velocity, epoch, and astronomical argu-
ment of the mth tidal constituent respectively. 
M is the number of tidal constituents resolved. Eq.
(1) can be rewritten as

(2)
where

Letting        and using matrix notation, Eq. (2) can
be expressed as the data equations (observation
equations) in matrix-vector form

(3)
The residuals are                               , the obser-
vations are                         ,and the 2M + 1
unknowns are                where 

The column vectors of the measurement matrix (or
also termed the \design matrix") A, which is 2N +1
rows for the observations    and 2M + 1 columns
for the unknowns   , are

where

We make the sum of squares of residuals as the
mathematical symbol form

where ||  ||2 is an Euclidean norm (2-norm) of  . 
By taking partial derivatives and setting these to zero,

to minimise the ‘per formance function ||  ||2’, also
called the objective function, penalty function, or
minimand. The derivation yields a set of normal
equations

(4)

We arrive at

where

(5)

(6)
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There are analytical expressions, for faster arith-
metic,

rather than the usual numerical accumulation of
column-vector dot products for F and G, parts of
the measurement matrix of the normal equation of
the least-squares solution. Please note that by tak-
ing limits the answer here for the special case
when l = m, the first terms appear to come to 2N in
the analytical expressions for Flm and Glm. Here the
formations of the submatrices F and G of the nor-
mal equations are derived in the Appendix for clar-
ity. The normal equation Eq. (4) for unknowns xm

parts and unknowns ym parts is separable and thus
can be decomposed into two separate linear equa-
tions 

(7)

The accuracy of tidal prediction can be improved as
longer data time series are analysed and more
tidal constituents are selected in Eq. (7). 
The assessment of the solution quality can be
done by computing     , the sum of squared resid-
uals, as minimised. Then the variance factor is
found by (    ) /(number of observations - number
of unknowns), an estimate of measurement error.
In order to examine the solution quality, the covari-
ance matrix of the solution vector of unknowns 

can be computed based on the inverse of AT A.
The main diagonal values give the standard devia-
tion squared of resolved values of the solution vector  
, i.e. the accuracy of the resolved constituents, xm

and ym. From the off-diagonal values, the correla-
tion between resolved constituents can be found.
Large values of correlation indicate a weakness in
resolving the distinction between tidal constituents.

Goertzel's Recurrence Algorithm for
Computing    and 

In terms of complex form
(8)

Using Goertzel's recurrence formula [11],

(9)

under initial conditions

After 2N time recurrences, whence
(10)

In this method, only 2N multiplications are needed.
The above take advantage of the equally-spaced data
samples of the observed time-series, to yield algo-
rithms with faster arithmetic. Usually these steps are
performed by directly number-crunching the matrices. 

‘Summation of Normals’ Method For
Segments of Irregular Observations

For K segments of observed data (overlapping is
allowed, but not preferred). wn

(k) (n=-Nk, -Nk + 1, …,
Nk, k= 1,2,…, K) are observations with the different
length Nk and different sampling time interval 
For kth segment we have

where Ak
TAk is the information matrix, sometimes

called the ‘Gram matrix’. We add the matrices, for
each of the data segments k = 1 to K:

and the right-hand side vectors:

The information content of each is combined by sum-
ming the information into a total information matrix.
Although the number of constituents for the kth seg-
ment may have a different number Mk, we can set 

for a maximal number of constituents to
be chosen for our harmonic analysis. Then the final
vector of unknowns    can be found by solving the com-
bined total set of normal equations:

As shown in Eqs. (4) to (7), the normal equations for
each data segment are separable. The part for
unknowns xm is independent of the part for ym. Thus the
normal equations can be decomposed into two sepa-
rate linear equations. This is also true for the combined
total set of normal equations found by summation.

Constraints Applied to Strengthen the
Solution
In the circumstances of analysed data with insuffi-
cient-length (mainly tidal currents), the tidal con-
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stituents can not be separated effectively due to ill-
conditioning appeared in Eq. (7). Some constraints
must be provided. For a pair of tidal constituents,
the constraint expressions are as formulated in
Dronkers' proposal [12]

(11)

where J is the number of tidal constituent pairs,
each linked by a constraint relationship to be cho-
sen among the M tidal constituents. As two func-
tions of        is an amplitude ratio and        repre-
sents the rotation of a phase shift, which together
characterise the relationship between the pair con-
stituents 2j - 1 and 2j. In matrix notation, the con-
straint equations (11) are most often stated as

(12)

where

In the full panel of B, the purpose of the zero-fill
elements is to accommodate the tidal constituents
not to be chosen in Dronkers' proposal. If taking

and by taking partial derivatives with respect to xm,
ym and λj and setting these to zero. The derivation
yields a set of normal equations

(13)

where the vector of LaGrange multipliers λj is

In order to eliminate unknown    in Eq (13), we take

Where

The analytic expressions for     and     indicate 
Then for the composite matrix

of constraints B (and B̄), we have B̄BT=0, i.e., B̄ is
orthogonal to B. By a simple premultiplication step,
the constraints are absorbed into a modified set of
normal equations to be solved for the tidal con-
stituents only, and the unwanted vector of
LaGrange multipliers is eliminated to reduce the
size of the solution.

where I is unit matrix. Now the rank of matrix equa-
tion (13) is reduced by an equivalent form

(14)

A novel special method of absorbing the constraints
into the normal equations                 , and

eliminating the unwanted vector of LaGrange multipli-
ers from the solution. The problem of ‘ill-conditioning’
(‘under-determination’), has been pointed here partic-
ularly in case of finding harmonic constituents for noisy
current observations of short duration. The remedy
proposed here for the ‘near-singular’ solution, is to
import a model of the constituents, and bring in their
fine structure from a stronger determination at a near-
by reference station, and use these in form of con-
straint equations to strengthen the solution.
Mathematically this is done by formulating a ‘con-
strained least squares solution’, by applying observa-
tions. Constraints are incorporated by the well-known
method of LaGrange multipliers. LaGrange multipliers
called ‘correlates’ in the least-squares literature.

Concluding Remarks

The least-squares method has been widely adopt-
ed in tidal harmonic analysis. For a concrete prob-
lem using a computer, a better algorithm not only
requests less computing time but is also able to
resolve more effectively the tidal constituents from
observed data. An efficient algorithm of tidal har-
monic analysis and prediction is presented here. It
is the algorithm that can calculate coefficients of
normal equations very simply and efficiently. To
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compute the right-hand terms of the normal equa-
tions, Goertzel’s recurrence formula [11] is adopted
to accomplish the whole calculation processes
quickly and accurately. In order to handle the seg-
ments of the observed date (mainly adapted to
analyse tidal currents), a general algorithm for K
sets of real-time irregularly observed date in various
observing length can be derived from above results.
The ‘Summation of Normals’ method in which a
number K of observed data series are combined in
a composite solution. This provides greater exibility
in data acquisition and processing. If the above algo-
rithm is used to analyse the tidal constituents, the
total analysed data must have sufficient length.
Otherwise ill-conditioning in the system of equations
appears so that conventional algorithm can not sep-
arate tidal constituents effectively. Consequently in
the circumstances of inadequate data (mainly for
tidal currents), some constraints can be established
based on known approximate relationships among
the harmonic constants of the tidal constituents.
Then the least-squares solutions can be obtained
with these constraints applied. To various circum-
stances, the resultant linear equations can be
deduced from this algorithm in order to avoid appro-
priately the emergence of ill-conditioning. Because
the constraints are quite well-defined, the solution
usually does not need repeated iterations to con-
verge to sufficient accuracy.
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Appendix

The derivation for F and G can be outlined as follows.

Three are two terms in the above equation.
The first term 

By using the same mathematical manipulation for
other terms, the formation of F and G can be
expressed analytically.

References

[1] Newton, I (1687). Philosophia Naturalis
Principia Mathematica

[2] Thomson, W (1868-1876). ‘Reports of com-
mittee for harmonic analysis’, British
Association for the Advancement of Science

[3] Darwin, GH (1883-1886). ‘Reports of a com-
mittee for the harmonic analysis of tides’,
British Association for the Advancement of
Science

[4] Harris, RA (1897-1907). ‘Manual of tides’,
Appendices to Reports of the U.S. Coast and
Geodetic Survey

[5] Doodson, AT (1921). ‘The harmonic develop-
ment of the tide-generating potential’,
Proceedings of the Royal Society of London
Series A. Mathematical and Physical
Sciences, Vol. 100, pp.305-329

[6] Amin, M (1976). ‘The fine resolution of tidal har-
monics’, Geophysical Journal of the Royal
Astronomical Society, Vol. 44, No. 2, pp. 293-310

[7] Amin, M (1987). ‘A method for approximating
the nodal modulations of the real tide’,
International Hydrographic Review, Vol. 64,
No.2, pp. 103-113

[8] Amin, M (1991). ‘Superfine resolution of tidal
harmonic constants’, in: Tidal Hydrodynam-
ics, BB Parker, ed, John Wiley & Sons, Inc.,
pp. 711-724

[9] George, KJ & Simon, B (1984). ‘The species
concordance method of tide prediction in
estuaries’, International Hydrographic Review,
Vol. 65, No.1 pp.121-146

[10] Simon, B (1991). ‘The species concordance
method of tide prediction’, in: Tidal
Hydrodynamics, BB Parker, ed, John Wiley &
Sons, Inc., pp. 725-735



INTERNATIONAL HYDROGRAPHIC REVIEW

29

[11] Goertzel, G (1958). ‘An algorithm for the eval-
uation of finite trigonometric series’, The
American Mathematical Monthly, Vol. 65,
No.1, pp. 34-35

[12] Dronkers, JJ (1964). Tidal computations in
rivers and coastal waters, Amsterdam: North-
Holland Publishing Co

Biography

Dr. Jian-Jun SHU is a recipient of the British
Institution of Mechanical Engineers 1992 BFPA Prize
for Young Engineers. He has published over 60
technical papers and presented over 20 invited lec-
tures/seminars. He is with Nanyang Technological
University, Singapore as an Associate Professor.

E-mail: MJJShu@ntu.edu.sg


