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Mixed-convection laminar film condensation on 
a semi-infinite vertical plate 

By JIAN-JUN SHUT AND GRAHAM W I L K S  
Department of Mathematics, University of Keele, Keele, Staffordshire ST5 5BG, UK 

(Received 19 July 1994 and in revised form 16 May 1995) 

The flow of a uniform stream of pure saturated vapour past a cold, semi-infinite 
vertical plate is examined. The formulation incorporates the limits of both pure forced- 
convection and pure body-force-convection laminar film condensation. Detailed 
asymptotic and exact numerical solutions are obtained and comparisons drawn with 
approximate methods and experimental results reported in the literature. 

1. Introduction 
Since the pioneering work of Nusselt (1916) on laminar film condensation in qui- 

escent ambient surroundings the original model has been progressively refined to 
incorporate thermal convection (Rohsenow 1956), inertial effects (Sparrow & Gregg 
1959) and vapour shear (Koh, Sparrow & Hartnett 1961). The work of Sparrow 
& Gregg was especially noteworthy as it introduced the mathematical techniques 
of boundary layer theory into the subject and identified similarity solutions of the 
governing equations when convective inertia terms were included. The theme of 
similarity solution has been central to a number of further developments particu- 
larly in examinations of forced-convection laminar film condensation resulting from 
the flow of saturated vapour over sub-cooled surfaces. These include Cess (1960), 
Koh (1962) and Chung (1961). The most comprehensive analytic investigation of 
such forced convection condensation is that of Beckett & Poots (1972). Exploiting 
boundary layer perturbation techniques they examine non-similar flow configurations 
which include non-uniform velocity distributions of the saturated vapour. In par- 
ticular they investigate the results of adverse pressure gradients in the main stream 
of flowing vapour and indicate the lubricating effect of the condensate film. The 
delayed separation of the boundary layer system is demonstrated by pursuing an 
exact numerical solution of the coupled equations governing the simultaneous flow 
of vapour and condensate using methods based on Hartree & Womersley (1937) and 
Terrill (1960). In an attempt to obviate the difficulties of a full numerical solution 
for strongly non-similar configurations Beckett & Poots present useful approximate 
solutions based on ‘thin’ and ‘thick‘ film asymptotic analysis of the governing equa- 
tions. Their work is central to the work that follows. Here we examine the alternative 
non-similar configuration of combined or mixed forced and body-force convection 
laminar film condensation flow along a semi-infinite plate. However, although the 
underlying flow is non-similar overall, in the limits of pure forced convection or pure 
body-force convection similarity solutions do apply. Thus, as opposed to the flows 
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to breakdown of Beckett & Poots the mixed-convection condensation problem is a 
progression between known similarity states. As a consequence perturbation schemes 
can be examined in detail about each limiting similarity state. The 'thin' and 'thick' 
film scalings of Beckett & Poots are found to be especially instructive. In conjunction 
with the perturbation analyses, for the first time, a comprehensive numerical solution 
has also been obtained. An adaptation of the Keller box method has been developed 
which takes advantage of the known similarity extremes. For single-phase flows Hunt 
& Wilks (1981) have described an appropriate methodology which has subsequently 
been used successfully in a wide variety of boundary layer settings both in that form 
and in a variant presented by Raju, Liu & Law (1984). The adaptation, whilst accom- 
modating the overall non-similarity, must necessarily be adjusted to incorporate the 
new features of finite film thickness and multiphase. The scheme is both accurate and 
robust. The exact solutions may not only be compared with the present perturbation 
schemes but also with earlier integral treatments of the problem by Jacobs (1966) 
and Fujii & Uehara (1972). Specific comparison is also made with the experimental 
results reported by Jacobs (1965). 

2. The problem and governing equations 
The problem under examination is illustrated in figure 1. A uniform stream of pure 

saturated vapour flows downwards past the leading edge of a semi-infinite vertical 
plate. The constant free-stream velocity is aligned parallel to the local gravity field 
and is designated U ,  and the temperature of the vapour is denoted T'. As a result of 
maintaining the temperature of the plate at T, c T* a condensate film will develop 
at the plate surface. The accumulating condensate will respond to the local gravity 
field and a downward film flow will be generated. At the film surface an adjustment 
between the local velocity of the free surface and that of the uniform stream of 
vapour induces an accompanying vapour boundary layer. The aim is to establish full 
details of velocity and temperature distributions within the condensate film and the 
vapour shear layer at all stations along the plate from the leading edge. The flow and 
heat transfer characteristics of skin friction coefficient, heat transfer coefficient and 
condensate film thickness can then be evaluated. 

The flow is assumed to be steady and two-dimensional and the condensate and 
vapour are taken as incompressible fluids. The coordinate system is Cartesian ( x , y )  
where the plate coincides with the x-axis and y measures distances normal to the 
plate. (u, v )  are the velocity components of the condensate associated with increasing 
x and y respectively. The temperature of the condensate is denoted by T and the 
interface separating the condensate and vapour phases is designated y = 6(x), i.e. the 
condensate film thickness. 

A set of intrinsic coordinates attached to the interface describe the vapour phase: 
X* measures distance along the interface and y' the distance normal to it. Velocity 
components in the directions of increasing x*, y' are u*, U *  respectively. The starred 
notation will be used throughout to identify quantities associated with the vapour 
flow. 

It is further assumed that the thickness of the condensate is small compared 
with a typical dimension of the surface and thus x = x*. The boundary layer 
approximation is also invoked which assumes that all changes in physical quantities 
normal to the condensate/vapour interface are large compared with changes in the x- 
direction. Finally the model assumes that the condensate free surface is constantly in 
contact with pure, saturated vapour at temperature T'. The governing equations will 
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FIGURE 1. Physical model and coordinate system. 

accordingly represent conservation of mass, momentum and energy for the condensate 
film and conservation of mass and momentum in the vapour phase. These are: 

condensate x 2 0,O < y < 6 ( x )  

au av 
ax ay  - + - = o ,  

au au a2u 
PU- + PO- = g(p - p' )  + p--, 

ax a y  aY2  

aT aT a 2  T 
&(UP +u-) = k-a 

ax a y  a y 2  

vapour X *  3 0,y' = y - 6(x) 2 0 

au* av* 
a x  ay* -+-=o, 

(Temperature = T' throughout.) 

The boundary conditions under which equations (2.1)-(2.5) are to be solved are: 
(a )  the no slip, impermeability and temperature conditions at the plate 

u = u = 0, T = T ,  x 2 0 , ~  = O ;  (2.6) 
(b )  the temperature and continuity conditions at the interface x 3 0, y' = y - 6 ( x )  = 0 

(i) temperature : 

T = T' ,  (2.7) 
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(ii) mass flow: 

(iii) tangential velocity : 

(iv) shear stress: 

t u = u ,  

*au*  au 
ay* ay '  p - = p -  (2.10) 

(and neglecting curvature p* = p ) ;  

(c) the velocity condition away from the plate 

u* -+ u,, x 0,y' -+ co; (2.11) 

( d )  the overall energy balance, including sub-cooling within the condensate layer as 
well as the release of latent heat at the interface, given by 

w 
- L X k  (%),,dx+ liX) puhf,dy + 1 puC,( T' - T)dy = 0. (2.12) 

Here p ,  p, C,, k ,  hfg, p and v = p / p  denote density, dynamic viscosity, specific heat, 
thermal conductivity, latent heat, pressure and kinematic viscosity respectively. An 
asterisk signifies a vapour quantity. The temperature differential AT = T' - T, is 
considered such as to allow all physical properties to be approximated as constant. 
Hence (2.1) and (2.4) appear as incompressible continuity equations. 

The significant non-dimensional parameters in the problem are the Reynolds num- 
ber, Froude number and Prandtl number defined respectively by 

(2.13) 

Although the semi-infinite geometry lacks a characteristic length scale the local 
relative importance of inertia and gravity defines a characteristic length scale 

(2.14) 

This non-dimensional coordinate provides a unified framework within which the 
features of dominant forced convection condensation and dominant body force con- 
vection condensation may be associated with small and large < respectively. It 
underpins the numerical algorithm which establishes comprehensive solutions for the 
flow at all stations along the plate 0 < 4 < co. 

3. The solutions near the leading edge 
Near the leading edge of the plate the flow will predominantly be forced-convection 

laminar film condensation with similarity features as identified by Cess (1960). The 
influence of gravity will appear as a perturbation about the associated similarity 
solution. The appropriate transformations which exploit this appraisal of the flow and 
allow examination of the gravitational perturbation effects and which simultaneously 
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normalise the condensate film thickness are 

T - T' = (T ,  - T*)O( t ,  +), (3.3) 
where R = ( (p  - p * ) / ~ ) ' / ~  and ,a([) is the value of v at y = 6(x). 

transform, respectively, to the following system of equations : 
The boundary layer equations (2.1H2.5) and the boundary conditions (2.6)-(2.11) 

with boundary conditions 

= 0, O(5,O) = 1, O ( t , l )  = 0, (3.7) 

(3.10) 

where o = (pp/(p*p*))1'2 and HO = CpAT/(Prhfg) .  The form of the equations suggests 
a regular perturbation scheme in powers of 5 as 

co 00 00 

~ ( t ,  4) = C t n F n ( + ) ,  @(<, +I = C Yon(+), f*(t,,*) = C tnji(,*) (3.11) 
n=O n=O n=O 

and 

where qa( t )  is expressed in the form of a Taylor series expansion. The leading 
terms are governed by similarity equations for the problem of pure forced-convection 
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1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 

0.66484 
0.66444 
0.66404 
0.66364 
0.66325 
0.66285 
0.66246 
0.66206 
0.66167 
0.66 129 

0.02460 
0.02456 
0.02453 
0.02449 
0.02446 
0.02442 
0.02439 
0.02435 
0.02432 
0.02429 

- 1.00068 
-1.00136 
- 1.00204 
- 1.0027 1 
- 1.00338 
- 1.00404 
- 1.0047 1 
-1.00537 
- 1.00603 
-1.00668 

1.06430 
1.06566 
1.06702 
1.06838 
1.06973 
1.07108 
1.07243 
1.07377 
1.07511 
1.07644 

0.07870 
0.07868 
0.07866 
0.07864 
0.07863 
0.07861 
0.07859 
0.07858 
0.07856 
0.07854 

0.94022 
0.93966 
0.93910 
0.93853 
0.93797 
0.93741 
0.93686 
0.93630 
0.93575 
0.93520 

TABLE 1. Exact numerical characteristics for various Prandtl numbers for 4 = 0, 
HO = 0.008191,1= 1 and w = 10 

0.00002 
0.00019 
0.00066 
0.001 60 
0.00325 
0.00589 
0.00998 
0.01614 
0.02545 
0.03975 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.00047 
0.0019 1 
0.00437 
0.00796 
0.01288 
0.0 19 37 
0.02783 
0.03883 
0.05329 
0.07265 

- 1.00002 
- 1.00016 
-1.00055 
- 1.001 33 
-1.00268 
-1.00484 
-1.0081 1 
- 1.01292 
- 1.0 1992 
- 1.03013 

7.07121 
3.53610 
2.35831 
1.77011 
1.41 801 
1.18421 
1.01834 
0.89530 
0.80133 
0.72841 

0.06658 
0.0 6 7 3 6 
0.06859 
0.07040 
0.07285 
0.07609 
0.08031 
0.08581 
0.09305 
0.10275 

0.14142 
0.28284 
0.42426 
0.56569 
0.7071 1 
0.84853 
0.98995 
1.13137 
1.27279 
1.41421 

TABLE 2. Exact numerical characteristics for various HO for 5 = 0, P, = 10, I = 1 and w = 10 

w q6(0) F i ( 0 )  Oh(0) Nu,Re;'12 CfRefj2 6Re:l2/x 

10 0.66128 0.02429 -1.00668 1.07644 0.07854 0.93519 
100 1.16768 0.01375 -1.00668 0.60962 0.01427 1.65134 
150 1.24507 0.01290 -1.00668 0.57172 0.01177 1.76080 
500 1.38315 0.01161 -1.00668 0.51465 0.00858 1.95607 
600 1.39237 0.01153 -1.00668 0.51124 0.00841 1.96911 

TABLE 3. Exact numerical characteristics for various w for 5 = 0, P, = 10, HO = 0.008191 and I = 1 

laminar film condensation on a horizontal semi-infinite plate in a uniform stream of 
saturated vapour. These were first examined by Cess (1960) who assumed that the 
condensate flow occurs in a region of constant shear and constant heat flux. The 
equations were examined more fully by Beckett & Poots. On developing a thin-film 
approximation Cess's results were recovered. However the full similarity solutions are 
necessary for the detailed numerical solution which follows and the severe restrictions 
of the Cess analysis are not invoked. 

The solutions for the leading terms at < = 0 have been obtained as special 
cases of the full numerical algorithm which is outlined later. Detailed results are 
presented in tables 1-3 for representative values of the physical parameters. The 
choice of Ho = 0.008191 coincides with the value quoted in Koh et al. (1961) in their 
work on pure body-force-convection condensation. It is a useful comparison value 
in examining the successful progression of the numerical solution between known 
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similarity solutions. Table 1 indicates that the physical characteristics are almost 
independent of the Prandtl number, a common feature of condensation studies. In 
table 2 film thickness values q ~ ( 0 )  = O.l(O.1)l.O have been specified and the associated 
value of Ho identified. There is clearly a monotone relationship between increasing 
q ~ ( 0 )  and increasing Ho. Table 3 presents the results associated with variations in the 
shear stress parameter o. Again the condensate film thickness increases monotonically 
with increasing w but there is evidence of a large-o asymptote. All tables indicate 
only slight variation in the temperature gradient Oh(0). The thermal capacity effects 
of the condensate film are almost negligible and there is a clear justification for the 
common assumption of a linear temperature profile. 

4. The thin film approximation near the leading edge 
In the event of AT/T’  << 1 or HO << 1 there is limited condensation from the 

vapour and only a thin condensate film occurs. Beckett & Poots confirm Cess’s earlier 
suggestion that the important scale parameter is E = H i / 3 .  Series solutions in powers 
of .F can thus be developed based on the expansions 

n=2 
W 

n=l 

n=O } (4.1) 
n=O 

These expansions are consistent with a very small overall condensate flow rate and 
small free surface velocity and film thickness. Beckett & Poots have examined the 
first terms of these expansions and conclude that at leading order the free surface 
velocity is zero. Accordingly f&,(q*) is simply the Blasius function which possesses 
the well documented property 

fk”(0) = A0 = 0.4696. (4.2) 

The various leading terms may be readily established as 

In contrast to the condensate velocity distribution and film thickness the vapour 
velocity is essentially independent of o. 

At first order in E it transpires that f&(q*) = (Z/(A~w~))~/~f&,’(q’) and hence 

f&”(O) = 0. (4.4) 

(4.5) 
and there is no first-order contribution to the condensate flow, i.e. although there has 
been a non-zero tangential velocity adjustment in the first-order vapour flow it has 
induced no modification of the condensate flow. Only at O(e2) do adjustments for 
inflow of vapour at the interface modify the condensate flow. 

As a result 
F 0 3 ( 4 )  = @ O l ( 4 )  = qJ2(0) = 0 

Additionally, new higher-order energy terms may be obtained as 
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It is also possible to pursue further the modifications associated with the presence of 
gravity in the model. 

The consistent forms of expansion for F1(4),  @l(4),f;(q*) and &(O) are 

(4.7) 

W 00 W 

Fl(4) = c eflF1il(4), @l(4) = c ef l@1n(4) ,  f;(s') = c t."f;,(q*), 
n=3 n=4 n=2 
03 

n=2 J 
After some manipulation it can be shown that 

and flow characteristics are given by 

I 
(4.8) 

x ( w a Y ) Y = o  Re,1/2 

AT 
Nu,  Re;'/' = 

These expressions are only applicable when the inflow velocity at the interface is small. 
For example, the deduction that f&(O) = 0 becomes invalid if A0e2FO2(1) = O(1). 
This implies the inequality WHO << ( ~ / A o ) ' / ~  w 2.0637. 

As a first comparison of the above results with the exact results < = 0 is considered. 
The heat transfer coefficient estimate from (4.9) is shown in figure 2(a) compared to 
the results of table 2. The relative error for q ~ ( 0 )  up to 0.6 is less than 6%. Bearing in 
mind that (4.9) is a thin film estimate this is a good range of accurate correlation. The 
same is not true of the fixed estimate of skin friction coefficient 0.0664 from (4.10) 
which is 14% in error when q ~ ( 0 )  = 0.6. In figure 3(b) estimates from (4.11) show 
only a 6% departure from exact results for the non-dimensional film thickness up to 
q~ = 0.6. The close agreement of estimates progressively deteriorates however as Ho 
and o increase. In fact the significant quantity is WHO and the estimates (4.9)-(4.11) 
are found to be reliable for COHO < 0.1. 

A second comparison will subsequently be drawn away from < = 0 between 
(4.9)-(4.11) and the exact numerical solution over all <. 
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FIGURE 2. Variation of ( a )  heat transfer NuxRe;’’’, and (b) condensate thickness 6Rei’’x-l with 
physical parameter Ho for 5 = 0, P, = 10, 1 = 1 and o = 10. 

5. The solutions for an asymptotic expansion at large 5 
Well downstream of the leading edge, gravitational acceleration of the condensate 

inevitably implies that the free surface velocity will overtake that of the external 
stream. Indeed ultimately the velocity of the free stream will be small relative to 
the free surface velocity. At this extreme the flow is predominantly pure body- 
force-convection laminar film condensation. The appropriate transformations which 
incorporate this progression at large to an established similarity state are non- 
similar modifications of those of Koh et al. (1961). The modified transformations 
which again normalise the condensate thickness and, in the vapour phase, include 
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T - T' = (T ,  - T' )O([ ,  6). (5.3) 
The transformations are also consistent with the leading-order condensate flow char- 
acteristics being independent of m, a feature of pure body-force condensation. The 
boundary layer equations (2.1)-(2.5) and the boundary conditions (2.6)-(2.11) trans- 
form, respectively, to the following system of equations: 

aF* a2F* a2F* a F * )  $* > 0, (5.6) 
a 3 ~ *  - , a 2 ~ *  
- + 3 F - T - - 2  
a @ 3  a p  

with boundary conditions 

- 0, O(5,O) = 1, O(t ,  1) = 0, F ( t , O )  = 0, ____ - a m o )  
a6 (5.7) 

(5.10) 

It is the form of the boundary condition (5.9) which suggests in the first instance 
the appropriate perturbation scheme as 

(5.11) 
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1 .o 
2.0 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9.0 
10.0 

0.30164 
0.30147 
0.30 130 
0.30113 
0.30096 
0.30079 
0.30063 
0.30046 
0.30029 
0.30013 

0.02721 
0.02716 
0.02712 
0.02707 
0.02703 
0.02698 
0.02694 
0.02689 
0.02685 
0.02680 

-1.00082 
- 1.001 63 
- 1.00245 
- 1.00325 
- 1.00406 
- 1.00486 
-1.00565 
- 1.00645 
- 1.00724 
-1.00802 

2.34615 
2.34938 
2.35261 
2.35582 
2.35903 
2.36222 
2.36541 
2.36858 
2.37175 
2.37489 

0.42289 
0.42266 
0.42243 
0.42219 
0.42197 
0.42173 
0.421 51 
0.42128 
0.42106 
0.42083 

0.42658 
0.42634 
0.426 10 
0.42586 
0.42562 
0.42539 
0.42515 
0.42492 
0.42468 
0.42445 

TABLE 4. Exact numerical characteristics for various Prandtl numbers at 5 = 00, 
Ho = 0.008191,I = 1 and w = 10 

0.008 18 
0.02660 
0.06920 
0.16089 
0.35828 
0.80248 
1.87632 
4.7 1390 

0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

0.02677 
0.0 6 2 7 0 
0.11983 
0.20022 
0.303 8 8 
0.42969 
0.57642 
0.74337 

- 1.00801 
-1.02489 
-1.05893 
-1.1 1632 
- 1.20092 
- 1.3 1327 
-1.45054 
-1.60749 

2.37590 
1.81177 
1.49756 
1.31559 
1.21311 
1.16078 
1.13965 
1.13666 

0.42065 
0.55418 
0.67786 
0.78653 
0.87705 
0.94948 
1.00640 
1.05128 

0.42426 
0.56569 
0.7071 1 
0.84853 
0.98995 
1.13137 
1.27279 
1.4 142 1 

TABLE 5. Exact numerical characteristics for various Ho at 5 = 00, P, = 10, 1 = 1 and o = 10 

10 0.3001 3 0.02680 -1.00802 2.37489 0.42083 0.42445 
100 0.29977 0.02679 -1.00802 2.37772 0.42167 0.42394 
150 0.29977 0.02679 -1.00802 2.37774 0.42167 0.42394 
500 0.29977 0.02679 -1.00802 2.37777 0.42168 0.42393 
600 0.29977 0.02679 -1.00802 2.37777 0.42168 0.42393 

TABLE 6. Exact numerical characteristics for various w at 5 = co, P, = 10, Ho = 0.008191 and I = 1 

Again the leading-order terms recover the similarity solutions for body-force laminar 
film condensation at a vertical semi-infinite plate in surrounding quiescent vapour. 
In the overall numerical solution computations extended to 5 = The extracted 
details assuming that similarity had been achieved at this station are presented in 
tables 4-6. Once again table 4 illustrates a large degree of direct independence of 
P,. Of course the Prandtl number is a significant element in the definition of Ho and 
herein resides its greatest influence as indicated in table 4. HO variations associated 
with f l s ( c 0 )  = 0.3(0.1)1.0 have been established. In fact the values of HO required 
to generate film thicknesses approaching unity are not realistic although they can 
be processed by the numerical scheme. The larger temperature gradients at these 
film thicknesses are therefore somewhat artificial. At realistic values of HO a linear 
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temperature profile appears to remain a useful approximation. Table 6 confirms the 
independence of o of condensate characteristics. 

6. Further analysis at large { 
A feature of body-force condensation is the insensitivity, over a wide range of 

practical values, of the leading-order solution to w irrespective of Ho. This feature 
motivates a large-parameter expansion based on o >> 1, i.e. 

Fo($)  = Foo(fj) + O(o-2 ) ,  Go($) = a,($) + O(o-2 ) ,  

P;($*) = ~h($*)  + @ - ~ F ; , ( F )  + 0(@-4), qa(.o) = qso(W) + o(0-2). 
} (6.1) 

Omitting details it can be shown that the required solution in the vapour phase is 
simply 

(6.2) 
which represents the leading contribution to the induced suction at the conden- 
sate/vapour interface. As a result 

F&,($*) = SO = const 

F i i ( $ * ) =  BO exp(-3~~$*) (6.3) 

where BO is a further constant. In the independent limit as HO -+ 0 coefficient 
functions may be expanded further in terms of the small parameter H i / 4  as 

(6.4) 

(6.5) 

These are in fact the original Nusselt solutions based simply on a balance between 
viscous and gravitational forces on the condensate layer and a linear temperature 
profile. 

1 F ~ ( $ )  = H,'/'F~&) + o(H,,), &($) = Goo($) + 
f j s o ( a )  = H0'/49si(m) + O(H0I2). 

The solutions are 

Po&) = - i$($ - 3), em($) = 1 - $, jj61(co) = 1. 

The estimates for the vapour layer constants are then 

SO = Bo = 7 122H0/2 (6.6) 

We can similarly examine the first correction terms which characterize the progres- 
sion towards similarity at large 5 and consider 

(6.7) 1 F1($) = FlO(4)  + O ( 0 r 2 ) ,  &($> = @lo($) + O(cX2) ,  

F ; ( @ )  = F;,($*) + o-*~;l($*) + 0 ( ~ - 4 ) ,  

qi(00) = ij;,(oo) + O(o-2 ) .  

The solution for Fi;O($*) is a constant S1, the first correction to the induced suction, 
from which it can be established that in the vapour phase 

F;i ($*)  = + s ~ ( B I  - ~ 0 6 ' )  exp(-~o$*). (6.8) 

Here B1 is a further constant. This term particularly accounts for the presence of the 
constant velocity free stream of vapour. Again in the limit as Ho + 0 it is appropriate 
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to write 

The required solutions are 

(6.10) 1 1 - -  R&) = j@4*(4 + 11, 

&($> = m 4 ( 3 4 4  - 5$3 + 21, 

6 3 ( @ 3 >  = -812 

P, - - 

1 

and S1 = (l/8A)H,'/4, B1 = -(A/HiI4)(4-3Ho). At this stage an entirely self-consistent 
asymptotic structure has been identified within the space of small parameters (w- l ,  

Htj4, <-ll2) for the approach of mixed-convection laminar film condensation to the 
pure body-force convection limit at large r. Essentially this has again been arrived at 
in the thin-film limit Ho + 0. The contributions of the downstream perturbation have 
been obtained in closed form for this limit but they are extremely weak adjustments 
to the leading-order estimates. 

The associated flow characteristics are given by 

(6.11) 

For HO << 1 the initial estimates of N U , R ~ L ' / ~ / < ~ / ~ ,  CfRe:/2/2<3/4 and 6Rei /2<1/4 /x  
at infinite r from (6.11)-(6.13) are extremely good. For example for HO = 0.008191, 
i.e. H:I4 - 0.3 the agreement between asymptotic estimates and exact results are 
within 1%, 1%,0.4% respectively for all w .  As HO increases the agreement rapidly 
deteriorates as illustrated in figures 3(a)-3(c). However, as the full numerical solution 
demonstrates, the validity of estimates (6.11)-(6.13) for HO << 1 extends well down 
into the O(1) range of r. 

7. Numerical solution 
Precise details in the transition range between small and large < can only be 

obtained by a full numerical solution of the governing equations (2.1)-(2.5) under 
boundary conditions (2.6)-(2.12). Furthermore the range of validity of asymptotic 
estimates can only be assessed in comparison to exact numerical solutions. In pursuing 
such complete numerical solutions advantage can however be taken of the clearly 
established limiting similarity states at small and large <. A continuous transformation 
algorithm (see Hunt & Wilks 1981) can be introduced which extracts growth rates 
at both extremes of < and ensures that integration variables remain O( 1 )  throughout 
the computation domain. 
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FIGURE 3. Variation of (a)  heat transfer Nu,Re;‘/*, (b )  skin friction CfRe;” and (c) condensate 
thickness 6Rer/2x-’ with physical parameter Ho at < = co, P, = 10, 3, = 1 and w = 10. 
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(-dependent coefficients are introduced into transformations appropriate to the 
leading edge as follows: 

T - T' = (Tw - T')s(4;)8(t,ij). (7.3) 
The objective is to establish functions r ( t ) ,  t(t), r * ( t ) ,  t ' ( t )  and s(t) which effect a 

smooth transition from the leading-edge similarity regime to the downstream similarity 
state. Without loss of generality one can prescribe 

r(0) = s(0) = t(0) = r'(0) = t'(0) = 1. 

Examining the correlations between leading-edge and downstream transformations 
leads to 

r ( 5 )  = (1 + 16t)1/4, s( t )  = 1, 
(7.4) 1 t (5)  = (1 + 5)'14, 

r ' (5)  = (1 + 165)'14, t ' (5) = (1 + t)1/4. 
The resulting unified basis of computation is now the system of equations 

1 + 245 a 2 f *  t(17 + 325) ($) 2 

+ (1 + t )1 /4(1  + 161)3/4f'aifZ - 2(1 + t)5/4(1 + 165)3/4 
a3f* 
aq.3 

where in the (<,V)-plane the thickness of the condensate layer is Fj~(t). The boundary 
conditions read 
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I 
Accordingly the formulas for the flow characteristics are 

A A 
Nu,Re;1/2 = - - ~ ( 5 ) t ( t ) 8 ~ ( t , O )  = --(1 + t)'/48q(<,0), Jz Jz 

CfRe;/' = $A3r(t)t2(t)fqq(t,0) = f i A 3 ( l  + 16<)1'4(1 + t)1'2fqq(tyO). 
Finally the condensate thickness yields 

(7.10) 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

Numerical solutions of the limiting similarity states have previously been achieved 
by separate integration of the condensate and vapour phase equations coupled only 
by an iterative guessing strategy designed to accommodate conditions at the interface. 
The non-similarity of the present problem and the inherent t-dependence along the 
plate motivate against this strategy. Moreover it has been common to specify the 
condensate thickness and subsequently identify the associated value of Ho. Here f j a ( t )  
is an evolving element of the solution and it is necessary to prescribe the HO common 
to the whole flow field as evaluated in a given physical configuration of temperature 
differential and associated fluid properties. 

With these points in mind a new method of solution has been developed which 
is appropriate to quite general systems of differentio-integral equations describing 
multilayer, multiphase and interface situations. The method is comprehensively 
reported in a companion paper by Shu & Wilks (1995). The method incorporates 
a combination of merging and reduction procedures. Unitary functions common 
to both phases are defined over an extension of the normalized condensate layer 
0 < $ = ij/&(t) < 00 and by utilizing the Heaviside step function a single momentum 
and a single energy equation can be obtained. Variables at the interface are regarded as 
multi-valued with left- and right-hand limiting values accommodating the interfacial 
conditions. Simultaneously the integral balance of mass condensation flow is reduced 
to a discrete model representation involving the unitary functions. 

The parabolic system is then solved using a marching technique which obtains a 
solution at (,,+I on the basis of a valid known solution at tn. The method used is 
an adaptation of the Keller box method (Keller & Cebeci 1971) which is adjusted to 
deal with the finite condensate film thickness and the mass flow driven by the phase 
change. The equations are written as a set of first-order equations and an arbitrary 
rectangular net of points is placed over 5 < 0,O < + < $m with the only restriction 
that the point = 1 must be included as a mesh point. As a consequence i j~(t) 
appears directly as one of the unknowns. Outline details of the solution algorithm 
are given in the Appendix. 

Since central differences are used the exact numerical solution of the difference 
equations is a second-order-accurate approximation with respect to the chosen rect- 
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angular net of points 

(0 = 0, 

(Po = 0, 

4, = <,-I + k,, 

4, = 4,-1 + hi, 
n = 1,2,. . . ; 
j = 1,2, * .  . , JI, . . ., 5 2 ;  

where 4 ~ ,  = 1 and 4~~ = 4m. 
The local truncation errors of the difference scheme can thus be written as a Taylor 

series in powers of h2 and k2 where k = max,k, and h = max,hl. It is therefore 
possible, by solving the problem on different sized grids and using Richardson’s 
extrapolation, to produce results of high accuracy provided the truncation errors are 
larger than the iteration errors. Here each cell of the net has been divided into m 
subintervals both in the (-direction and in the &direction, where m is an integer. The 
problem has then been solved numerically for m = 1,2,3 and 4 to produce results of 
O(ks + h8) accuracy. 

8. Results and comparisons 
It has already been demonstrated that the numerical solution reproduces with high 

accuracy the flow characteristics of the limiting similarity states. The solutions at 
these extremes have indicated the limitations of the thin-film asymptotes associated 
with Hi’3 and Hi’4 as o H o  increases. To illustrate the solution over all 4 a particular 
set of parameters has been specified which is known to generate a moderate-to-thin 
film thickness throughout the flow field. The choice of parameters coincides with a 
particular case examined in Koh et al. (1961) for which a pure body-force solution 
was obtained based upon a film thickness of 9 6  = 0.3. Together with values 1 = 
1,P, = 10 and o = 10 the coupled solution obtained unknown interfacial boundary 
conditions which led to an estimate HO = 0.008191. In contrast a detailed numerical 
solution was obtained here for the overall problem with HO = 0.008191 specified 
and the film thickness allowed to progress within the solution to its downstream 
asymptote. The results are presented in table 7. In view of the extrapolation 
procedures the downstream film thickness 96(00) = 0.30013 is thought to be a more 
accurate estimate for this Ho. Nevertheless the results of this numerical computation 
are taken as confirmation of the viability of the numerical scheme and its successful 
implementation. This set of parameters has also been used as the basis for comparison 
between upstream and downstream thin-film asymptotes although the initial film 
thickness q 6  = 0.66219 may be thought of as moderate. Indeed this is apparent in 
figure 4(a) where the non-dimensional condensate thickness is plotted over all 5 and 
is compared with the thin film asymptotes. At 5 = 0 the thin film estimate is in error 
by 6.5%. The thin-film gravity correction term provides a reasonable estimate up to 
( - 2 x lop2. In contrast at large ( there is less than 1% discrepancy between exact 
and approximate results. The asymptotic estimate remains in error by less than 2% 
as far as 4 = 0. Further comparisons are drawn in figures 4(b) and 4(c) between 
exact results and asymptotic estimates for both the heat transfer coefficient and the 
skin friction coefficient. Again discrepancies at 5 = 0 reflect the evaluation of a thin 
film estimate in a moderate-film context. Nevertheless the gravity correction term 
improves the range of valid estimates and the downstream asymptotes have a range 
of utility as far as 5 of O(1). Notice that WHO - 0.1 for these computations, which is 
approaching the limit of validity of the thin-film approximations. 

Earlier the possible existence of a large-o asymptote for characteristics at the plate 
was hinted at. In figure 5 there is evidence that such an asymptote prevails throughout 



224 J.4. Shu and G. Wilks 

(1 + 5)’”S Re.p 
X 

1 . 1  

0.9 

0.7 

0.5 

Approximate 
formula (4 11) 

0.3 1 

3.0 
0 0.2 0.4 0.6 0.8 1 .o 

Approximate formula (6.1 1) 1 
0.5 1 

0 0.2 0.4 0.6 0.8 1 .o 

Approximate formula (4.10) 
Numerica 

solutior 

Cf Re:” 

(1 + 1613”~ (1 + 5)”’ 

I 
0 0.2 0.4 0.6 0.8 1 .o 

FIGURE 4. Variation of (a) condensate thickness (1  + ~ ) ‘ / 4 6 R e ~ / 2 x - ’ ,  (b) heat transfer 
Nu,( 1 +5)-1/4Re;1’2 and ( c )  skin friction C,Re;’*( 1 + 166)-’/4( 1 + <)-‘I2 for P ,  = 10, HO = 0.008191, 
1 = 1 and w = 10. 
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FIGURE 5. Variation of heat transfer Nu,(l + 5)-'/4Re;'/2 with pp ratio w for P, = 1, 
HO = 0.008191 and i = 1. 

0.0 0.66129 0.02422 1.07644 0.07854 0.93520 
0.2 0.44109 0.00730 1.61486 0.20417 0.62379 
1.0 0.35121 0.00268 2.02617 0.31715 0.49668 
2.0 0.32859 0.00164 2.16741 0.35995 0.46470 
5.0 0.31239 0.00084 2.21979 0.39428 0.44 179 
10.0 0.30635 0.00048 2.32471 0.40772 0.43325 
30.0 0.30239 0.00016 2.35226 0.41480 0.42765 
60.0 0.301 18 0.00004 2.36458 0.41859 0.42593 
100 0.30094 -0.00001 2.36353 0.41747 0.42560 
lo4 0.30045 -0.00017 2.37021 0.41901 0.42490 
loz4 0.30013 -0.00019 2.37489 0.42083 0.42445 

TABLE 7. Exact numerical characteristics over 5 for P, = 10, HO = 0.008191, i = 1 and w = 10 

the whole flow field. Heat transfer coefficients have been plotted for w = 10,100,150. 
The numerical results appear sensitive only to low values of w .  Fuji & Uehara (1972) 
quote typical values of w for water and a variety of organic substances as O( lo2) and 
above. For practical purposes estimates of heat transfer coefficients based on a single 
large value of w may suffice. 

A particularly useful comparison can be made with the approximate solution of 
Fuji & Uehara (1972) which is essentially a thin-film approximation obtained by 
momentum integral techniques. These authors quote the following estimate for the 
heat transfer coefficient : 
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r Nu, Re;'/2 

Shu & Wilks Fujii & Uehara 
Exact Equation (8.1) 

0.0 1.07644 1.06907 
0.2 1.69017 1.64992 
1 .o 2.40954 2.37520 
2.0 2.85247 2.81001 
5.0 3.56806 3.52224 
10.0 4.23367 4.18422 
30.0 5.55042 5.50283 
60.0 6.60825 6.54284 
100 7.49275 7.43357 
lo4 2.37027 x 10' 2.35045 x lo1 

2.35045 x lo6 

TABLE 8. Heat transfer coefficient comparison between exact results and approximate 
correlation (8.1) for P, = 10, HO = 0.008191, 1 = 1 and w = 10 

2.37489 x lo6 

WHO Nu, Re;'" 

Shu & Wilks Fujii & Uehara 
r = o  5=104 r = o  5=104 

0.5 0.698 0.159 x lo2 0.663 0.150 x lo2 
1.0 0.630 0.141 x lo2 0.585 0.126 x 10' 
2.0 0.596 0.128 x 10' 0.537 0.106 x lo2 
5.0 0.586 0.119 x lo2 0.503 0.084 x lo2 

TABLE 9. Comparison of Nu,Re;'I2 from exact results and the correlation of 
Fujii & Uehara (8.1) for P, = 10, 1 = 1 and w = 10 

where K = 0.450( 1.20 + l /wH~) ' /~ .  
In the first instance in table 8 we compare this estimate with the exact numerical 

solution table 7. The agreement is remarkably good over all 5 .  This may be 
ascribed to the value oH0 = 0.08191 being within the range of validity of the thin- 
film approximation. A more stringent test can be made by drawing comparisons 
with increasing oH0. The results are presented in table 9. There is a noticeable 
deterioration as compared with the full numerical solution. 

Finally in figure 6 comparisons are made between Jacobs' experimental results 
using Freon 113 and exact numerical solutions. Notwithstanding the experimental 
difficulties and the scatter associated with air in the vapour flow there is a high 
degree of correlation between the overall features and the exact solutions. Here 
oH0 = 0.617'2.468 and 4.319 with o = 100 have been used for comparison as 
the nearest estimates to the parameters quoted by Jacobs in a slightly different 
form. 
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FIGURE 6. Comparison of numerical and experimental results of heat transfer Nu,. 1 + 5)-1/4Re;'/2 
for various physical parameter Ho at P, = 1, I = 1 and co = 100 for Freon 113. 

9. Conclusions 
Detailed asymptotic analyses of the perturbed limiting similarity states associated 

with mixed-convection laminar film condensation flow over a semi-infinite vertical 
plate have been developed. Additionally a formulation of the problem incorporating 
the intrinsic physical features at the respective limits of pure forced and pure body- 
force condensation has been presented. The formulation has been shown to provide a 
convenient framework for a comprehensive numerical solution. Numerical solutions 
have been established using a new technique based upon modification of the Keller- 
box scheme. An entirely satisfactory synthesis between thin-film asymptotic and 
numerical results has been demonstrated although over a significant transitional 
range of c flow characteristics can only be precisely estimated by the numerical 
solution. Comparisons with experiment in this transitional range have provided 
valuable mutual corroboration of the model and solution scheme. In particular we 
have been able to examine the value of a previously reported thin-film approximation 
to the heat transfer coefficient as OHO increases and the thin-film hypothesis is no 
longer strictly valid. 

The work presented provides the basis for further examination of a wider range of 
configurations which include multilayer, interfacial and multiphase features. 

Appendix. The numerical algorithm 
With respect to the net of points 
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over 2 0, 0 d (f, d &, where ( f , J ,  = 1 and ( b ~ ~  = (f,m, the discretized system of 
equations reduces to 5J2 + 11 nonlinear equations for 5J2 + 11 unknown dependents 
including specifically q b ( t ) .  Newton's method is used to obtain linear equations for 
the increments between the i and i+ 1 iterates. The resulting linear system of algebraic 
equations is supplemented by four additional dummy variables to yield a 5J2 + 15 
system of equations 

(A 1)  

is the column vector of Newton increments and q(i) is a known column 

A(i)A(i) = q(i) i = 0, . . . . . 

- ( i )  where A 
vector. The algorithm is characterized by a block arrow-like coefficient matrix 

. .  

BN-1 AN-1 CN-1 DN-1 
BN AN DN 

€0 €1 € 2  * * ' EN-1 EN AN+1 

where individual matrices are of order 5 and N = J2 + 1. Using an appropriate 
factorization A(') = LU the system (A 1) can be reduced to the equivalent system 

The intermediate vectors zy)  are 5-component column vectors which are instrumental 
in establishing the final algorithm for solving the matrix equation as 

k=O 

where - denotes replacement. Algorithmically this is a modification of the usual 
solution of a block tridiagonal system to include the D j  and E j .  The algorithm can 
be made efficient by taking account of the zeros appearing in matrices. 
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