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ABSTRACT
Hydraulic jump taking place in Bingham fluid over a horizontal plate has been studied. The formulas for conjugate depths, bottom shear stress and
critical depth are established. Since no exact analytical solution in closed form can be obtained for conjugate depths, an approximate formula is
developed. This formula can provide good results with an error less than 4%. The analytical results reveal that the critical depth and the ratio of
conjugate depths increase until the bottom shear stress exceeds a certain value and then decrease afterwards. The bottom shear stress downstream of
hydraulic jump is smaller than that upstream. The results are verified by experimental data and observations available in the literature.

RÉSUMÉ
Un ressaut hydraulique ayant lieu dans un fluide de Bingham au-dessus d’une plaque horizontal a été étudié. On établit les formules pour les profondeurs
conjuguées, le cisaillement au fond et la profondeur critique. Vu qu’aucune solution analytique exacte ne peut être obtenue sous forme fermée pour
les profondeurs conjuguées, une formule approchée est développée. Cette formule peut fournir de bons résultats avec une erreur inférieure à 4%. Les
résultats analytiques indiquent que la profondeur critique et le rapport des profondeurs conjuguées augmentent jusqu’à ce que l’effort de cisaillement
au fond excède une certaine valeur puis diminuent ensuite. L’effort de cisaillement au fond en aval du ressaut hydraulique est plus petit que celui en
amont. Les résultats sont vérifiés par des données expérimentales et des observations disponibles dans la littérature.

Keywords: Bingham fluid, hydraulic jump, non-Newtonian fluid.

1 Introduction

Muddy debris flow (Coussot, 1994a,b), a mixture of water and
cohesive clay particles, behaves like an inelastic non-Newtonian
fluid and is often encountered in industry and nature, e.g. sewage
sludge, submarine landslides, mountain mudflows, coal slurries,
drilling mud. Bingham fluid is widely used as an ideal and sim-
ple model in the study of non-Newtonian fluid. In this model, the
process of cross-link formation and destruction is instantaneous.
The thixotropic tendency has been ignored and the excess devi-
atoric stress τ over the yield stress τ0 is assumed to be a linear
function of the strain rate ∂U/∂y (Bingham, 1922),

µ0
∂U

∂y
=




0 if |τ| < τ0

(τ − τ0)sgn

(
∂U

∂y

)
if |τ| ≥ τ0

(1)

where µ0 is the fluid viscosity.
An experimental study conducted by Ogihara and Miyazawa

(1994) showed that the characteristics of hydraulic jump in
Bingham fluid were not able to be fully described by the classical
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(Newtonian) hydraulic jump formulation. Hydraulic jump in non-
Newtonian fluid was theoretically studied by Ng and Mei (1994)
and Liu and Mei (1994), who provided an analysis of jump condi-
tion. Unfortunately, the analysis of conjugate depths and bottom
shear stress, which are often of most interest in practical engi-
neering, has not fully been exploited. In this paper, an adequate
model for hydraulic jump in Bingham fluid has been developed.
Hence, the formulas for conjugate depths, bottom shear stress
and critical depth are derived. The results are compared with
available experimental data.

2 Hydraulic jump

From the engineering viewpoint, the conjugate depths, bot-
tom shear stress and critical depth are of primary importance
in hydraulic jump. The basic equations for these characteristic
quantities can be established based on the integral continuity and
momentum equations, combined with the properties of Bingham
fluid.
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Applying the integral continuity equation, we have

q =
∫ h1

0
U1(y)dy =

∫ h2

0
U2(y)dy (2)

where q is the discharge per unit width and subscripts 1 and
2 denote the upstream and downstream of hydraulic jump,
respectively, for all quantities (see Figs 1 and 2).

The upstream and downstream flows of hydraulic jump taking
place in Bingham fluid over a horizontal plate can be treated as
two-dimensional, fully-developed, half-Poiseuille flows. U(y) in
Eq. (2) can be expressed as (Liu and Mei, 1989)

U(ξ) =




U0 1 − λ ≤ ξ ≤ 1

U0

[
1 −

(
1 − λ − ξ

1 − λ

)2
]

0 ≤ ξ < 1 − λ
(3)

where ξ = y/h, λ = τ0/τw; τw is the shear stress at the bottom;
p = ρg(h − y) is the hydrostatic pressure and other symbols are
shown in Fig. 1. Substitution of Eq. (3) into Eq. (2) leads to

1

3
U01h1(2 + λ1) = 1

3
U02h2(2 + λ2). (4)

Similarly, according to the integral momentum equation, we
obtain

∫ h1

0
ρ( �V1 · �n1)U1 dy +

∫ h2

0
ρ( �V2 · �n2)U2 dy

=
∫ h1

0
p1 dy −

∫ h2

0
p2 dy. (5)

Integrating Eq. (5) with Eq. (3) results in

8 + 7λ2

15
U2

02h2 − 8 + 7λ1

15
U2

01h1 = g

2

(
h2

1 − h2
2

)
. (6)

Generally, the flow conditions upstream of hydraulic jump are
known, i.e. U01; h1 and λ1. There are two equations, Eqs (4)
and (6), which obviously are not sufficient to determine the
three unknowns U02; h2 and λ2. An additional equation must
be provided. This comes from the shear stress in Bingham fluid.

U(y)

0 x

y

y=h

y=h(1-
wτ

τ 0 )
UoPlug region

Shear region

Figure 1 Velocity profile for Bingham fluid over a horizontal plate.

If Eq. (1) is applied to the upstream of hydraulic jump, we have

µ0
∂U1

∂y

∣∣∣∣
y=0

= (τ1 − τ0)|y=0. (7)

Substitution of Eq. (3) into the above equation results in

2µ0U01

h1(1 − λ1)
= (τw1 − τ0). (8)

Similarly, we have

2µ0U02

h2(1 − λ2)
= (τw2 − τ0). (9)

Combining Eqs (8) and (9) gives

U01h2

U02h1
= λ2

λ1

(
1 − λ1

1 − λ2

)2

. (10)

Equations (4), (6) and (10) are the basic equations for the three
unknowns U02; h2 and λ2 for hydraulic jump in Bingham fluid.

It should be noted that there are only two unknowns, U02, h2,
for hydraulic jump in Newtonian fluid, whereas there are three,
U02, h2 and λ2, for hydraulic jump in Bingham or non-Newtonian
fluid.

A further mathematical consideration indicates that there are
no analytical solutions to the basic equations, but an asymptotic
solution can be developed.

Substitution of Eq. (4) into Eqs (6) and (10), respectively,
gives

8 + 7λ2

η

(
2 + λ1

2 + λ2

)2

− (8 + 7λ1) = 5(2 + λ1)
2

6F 2
r1

(1 − η2)

(11)

η2 2 + λ2

2 + λ1
= λ2

λ1

(
1 − λ1

1 − λ2

)2

(12)

where η = h2/h1 and Fr1 = V01/
√

gh1 is the Froude number,
in which V01 is the depth-averaged velocity defined by

V0 = 1

h

∫ h

0
U(y) dy = 1

3
U0(2 + λ). (13)

In the present context, the hydraulic jump is a discontinuous
transition from the supercritical (upstream) flow (Fr1 > 1) to the
subcritical (downstream) flow (Fr2 < 1).

Combining Eq. (11) with Eq. (12) leads to a fifth-order poly-
nomial in term of either η or λ2. According to the algebraic
field theory, there are no analytic solutions for any fifth-order
polynomial. Numerical solutions will be given in Section 4.

The form of Eq. (11) suggests that an asymptotic solution can
be derived in the case of η → 1 as follows:

Defining

f(λ2) = 8 + 7λ2

(2 + λ2)2
, (14)

Eq. (11) becomes

f(λ2)

η
(2 + λ1)

2 − (8 + 7λ1) = 5(2 + λ1)
2

6F 2
r1

(1 − η2) (15)
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With reference to Eq. (12), λ2 is a function of η. Thus f(λ2) can
be expanded in terms of (η − 1) by using the Taylor series

f(λ2) = f(λ2)|η→1 + df(λ2)

dη

∣∣∣∣
η→1

(η − 1) + O(η − 1)2.

(16)

Obviously λ2 → λ1 as η → 1, hence

f(λ2)|η→1 = f(λ1). (17)

According to the chain rule,

df(λ2)

dη
= df(λ2)

dλ2

dλ2

dη
, (18)

we have

df(λ2)

dη

∣∣∣∣
η→1

= − (2 + 7λ1)(1 − λ1)λ1

(2 + λ1)2
(
1 + λ1 + λ2

1

) . (19)

Substituting of Eqs (17) and (19) into Eq. (16) yields

f(λ2) = 8 + 7λ1

(2 + λ1)2
− (2 + 7λ1)(1 − λ1)λ1

(2 + λ1)2
(
1 + λ1 + λ2

1

) (η − 1)

+ O(η − 1)2. (20)

By substituting Eq. (20) into Eq. (15) and rearrangement, we
obtain

η(1 + η) = 6

5
F 2

r1
8 + 17λ1 + 20λ2

1(
1 + λ1 + λ2

1

)
(2 + λ1)2

[1 + O(η − 1)].

(21)

By ignoring terms of order (η− 1) and higher, Eq. (21) becomes

η2 + η − 2C0F
2
r1 = 0 (22)

with

C0 = 3

5

8 + 17λ1 + 20λ2
1(

1 + λ1 + λ2
1

)
(2 + λ1)2

. (23)

The analytical solution to Eq. (22) is

η = 1

2

[√
1 + 8C0F

2
r1 − 1

]
. (24)

The energy dissipation due to hydraulic jump is referred to as
the head loss �H . Solving the Bernoulli (energy) equation along
points on the fluid surface

U01

2g
+ h1 = U02

2g
+ h2 + �H (25)

and eliminating U01 and U02 yield:

�H = (h2 − h1)

[
(h2 − h1)

2

4C1h2h1
+ 1 − C1

C1

]
× [1 + O(h2 − h1)] (26)

where

C1 = 8 + 7λ1

15
. (27)

Equation (24) is the approximate formula for the conjugate
depths. Theoretically, only under the condition that η is close to
unity, can it be valid. However, the analysis and discussion in
Section 4.3 will indicate that it can be used with a good accuracy
in situations where η is larger than unity. After η is obtained

y

0
x

h1

h2

1

1

2

2

Figure 2 Sketch for a hydraulic jump.

through Eq. (24), U02 and λ2 can be calculated by Eqs (4) and
(12), respectively.

It is found that C0 reaches the maximum, i.e. C0 max = 1.22
when λ1 = 0.213 or τ0/τw1 = 0.213. Since Bingham fluid con-
sists of two distinct regions, plug and shear regions (Fig. 1),
the existence of such maximum suggests that hydraulic jump is
hereby coupled between the effects of the two regions. When
0 ≤ λ1 ≤ 0.213, the shear region dominates hydraulic jump and
the relative jump height h2/h1 is an increasing function of λ1;
when 0.213 ≤ λ1 ≤ 1, the plug region dominates hydraulic jump
and h2/h1 is a decreasing function of λ1 (Fig. 2).

Two points are worthy mentioning. Firstly, analytical solution
(24) for hydraulic jump in Bingham fluid can be extended to
two extreme cases—the solution for hydraulic jump in a fully-
developed Newtonian viscous flow when λ1 = 0 or C0 = 6/5
and that in an inviscid flow when λ1 = 1 or C0 = 1. Secondly, the
bottom shear stress τw2 downstream is always smaller than τw1

upstream of hydraulic jump in Bingham fluid, which becomes
very clear from Eq. (12).

3 Critical depth

When the conjugate depths upstream and downstream of
hydraulic jump are the same, such flow is referred to as a critical
flow. Since approximate formula (24) becomes an exact solution
when η = 1, the formula for critical depth is then obtained as

hc = 3

√
C0

q2

g
(28)

by setting η = 1 and h2 = h1 = hc with Fr1 = q/
√

gh3
c in (24).

For a critical flow, λ1 = λ2 = λ in Eq. (23).
Equation (28) is the formula for the critical depth in Bingham

fluid. Clearly, it is the solution for a fully viscous flow if λ = 0
or C0 = 6/5 and that for a fully inviscid flow if λ = 1 or C0 = 1.
hc changes with λ in the interval 0 < λ < 1. The feature of the
function C0 shows that hc increases with λ for 0 ≤ λ1 ≤ 0.213
and decreases for 0.213 < λ ≤ 1. hc reaches the maximum value
of 1.068 3

√
q2/g at λ = 0.213, where the critical flow is coupled

between the effects of plug and shear regions. The shear region
dominates the critical flow in the interval 0 ≤ λ1 ≤ 0.213 and
the plug region dominates the flow in the interval 0.213 < λ ≤ 1.
The features are also shown in Fig. 3 in terms of hc/hq versus
τ0/τw or λ, where hq = 3

√
q2/g. Obviously, the critical depth
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424 Shu and Zhou

Figure 3 Critical depth versus dimensionless yield stress τ0/τw.

is always greater than that in a fully inviscid flow, and it is also
higher than that in a fully viscous flow for 0 ≤ λ ≤ 0.41, but
lower for 0.41 < λ ≤ 1.

4 Numerical solutions of jump equations

As pointed out in Section 2, Eqs (11) and (12) cannot be solved
analytically. Hence a numerical method is used to solve them.
In the present study, Newton’s method is applied to obtain the
numerical solutions.

4.1 Conjugate depths

The numerical results for the conjugate depths are plotted in
Figs 4 and 5. It is clearly seen that η or h2/h1 is almost a lin-
ear function of Fr1 but is not a linear function of τ0/τw1 or λ1.
η always increases with Fr1 but it may increase or decrease
depending on the value of λ1, which can be seen from the fig-
ures. As expected, there is one peak or maximum value of η as
λ1 changes from 0 to 1.

4.2 Bottom shear stress

Since λ = τ0/τw, λ represents the bottom shear stress τw. The
numerical result of λ2 versus λ1 is shown in Fig. 6. As expected,
λ2 is always greater than λ1 and is an increasing function of λ1.
The difference between the bottom shear stresses upstream and
downstream of hydraulic jump increases with Fr1 and vanishes
at λ = 0 or 1 in which λ2 = 0 or 1, i.e. τw2 = τw1.

4.3 Comparison of exact and approximate results

In Section 2, an approximate formula for conjugate depths is
derived for η close to unity. In order to examine the accuracy, a
comparison between the numerical results of Eqs (11) and (12)

Figure 4 Conjugate depths versus Froude number Fr1.

Figure 5 Conjugate depths versus dimensionless yield stress τ0/τw1.

Figure 6 τ0/τw2 versus τ0/τw1.
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Characteristics of a hydraulic jump in Bingham fluid 425

Figure 7 Relative error in percentage versus dimensionless yield
stress τ0/τw1.

and the approximate ones of Eq. (24) is carried out. The relative
errors defined by (η|app −η|num)/η|num, where η|num is calculated
from Eqs (11) and (12) by numerical method and η|app from
Eq. (24), are plotted in Fig. 7. It clearly shows that the relative
errors notably increase with Fr1 for Fr1 < 10. For most values
of τ0/τw1, the approximate results are greater than the numerical
ones. In addition, the relative error increases with λ1 until it is
over a certain value which is a function of Fr1, and then decrease
to zero. The computation has shown that the relative error is
smaller than 4% in the range of Fr1 ≤ 25. Therefore, Eq. (24) is
a reasonable approximate formula for conjugate depths. If |λ1 −
0.5| > 0.1, even in the situation where η is much greater than
unity, accuracy can still be retained.

5 Verification of the formulas

An experimental investigation of hydraulic jump in Bingham fluid
was conducted by Ogihara and Miyazawa (1994), who studied
the flow in a rectangular open channel by using the mixtures
of water and bentonite, which were regarded as Bingham fluid
and observed that the characteristics of hydraulic jump in the
Bingham fluid were not able to be fully described by the classi-
cal (Newtonian) hydraulic jump formulation. Their experimental
results are adopted to verify the theoretical results in the present
study.

A comparison between the theoretical results and the exper-
imental data for conjugate depths is plotted in Fig. 8. It can be
seen that the experimental data are scattered. This may be due to
the difficulty to measure the conjugate depths in hydraulic jump.
The agreement between them is reasonably good.

For critical depths, the results between the theoretical ones and
the experimental data are also compared and plotted in Fig. 9.
The figure has clearly shown that there is a good agreement
between them.

Figure 8 Comparison of the conjugate depth.

Figure 9 Comparison of the critical depth.

In addition, the critical depth increased dramatically was
reported by Ogihara and Miyazawa (1994), when the dimension-
less yield stress λ exceeded 0.1 in the experiment. This supports
the theoretical result from the present study because hc increases
with λ in the range of 0 ≤ λ ≤ 0.213. As indicated in Section 3,
the critical depth continues to increase up to λ = 0.213. After
that, it decreases with λ. Unfortunately, in the experiments, there
is no further result available for this comparison.

6 Conclusions

The formulas for conjugate depths, bottom shear stress and crit-
ical depth have been derived. The critical depth reaches the
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426 Shu and Zhou

maximum at λ = 0.213 where the critical flow is coupled
between the effects of plug and shear regions. The bottom shear
stress τw2 is always smaller than τw1. Also, the approximate for-
mula for conjugate depths with good accuracy is developed. The
results are consistent with fully viscous or fully inviscid flows
when λ = 0 or 1, respectively. The verification of the formulas
is carried out by a comparison between the theoretical results
and the experimental data. It has shown that the agreement is
reasonably good. The formula also indicates that there is an
apparent increase of critical depth for τ0/τw ≤ 0.213, which
has been supported by the experimental observation that critical
depth increased greatly for τ0/τw ≥ 0.1.

Notation

Fr = Froude number
g = Acceleration due to gravity
h = Conjugate depth

hc = Critical depth
hq = Critical depth in fully inviscid flow
p = Pressure
q = Discharge per width

U, U0, �V = Velocity
V0 = Depth-averaged velocity

x, y = Cartesian coordinates
�H = Head loss

η = Ratio of conjugate depths
λ = Dimensionless yield stress

µ0 = Viscosity coefficient
ξ = Dimensionless coordinate
ρ = Density

τ = Stress
τ0 = Yield stress
τw = Bottom shear stress

Subscript

1, 2 = Upstream, downstream
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