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Heat Transfer in the Flow
of a Cold, Axisymmetric
Jet Over a Hot Sphere
The heat-transfer characteristics of thin film flow over a hot sphere resulting from a cold
vertical jet of liquid falling onto the surface have been investigated. The underlying phys-
ical features have been illustrated by numerical solutions of high accuracy based on the
modified Keller box method. The solutions for film thickness distribution are good agree-
ment with those obtained approximately by using the Pohlhausen integral momentum
technique and observed experimentally by using water as working fluid, thus providing a
basic confirmation of the validity of the results presented. [DOI: 10.1115/1.4007980]
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1 Introduction

Comprehensive literature reviews on theoretical and experi-
mental studies of the flow and heat-transfer characteristics for jet
impingement on surfaces were made by Thome [1] and Ribatski
and Jacobi [2] to reveal fully the past developments. Although
many different jet characteristics were discussed, a great majority
of such studies were dealt with jet impingement on a flat surface.
Jet impingement on curved surfaces is very common in engineer-
ing applications. Nevertheless, too few research works considered
the question.

After having examined the jet impingement on a flat plate [3],
it is natural to move on to a closer inspection of the jet impinge-
ment on a sphere. The flow of a thin liquid film under gravity over
a sphere occurs frequently in a variety of industrial heat-transfer
applications, such as, heat exchange in coating operations [4,5],
high precision wetted spheres [6], multiple sphere absorbers [7],
and hydrofluidization systems [8]. In order to understand the
operations and, in particular, the efficiency of these processes, it is
important to have a detailed study of such flows. The assessment
of heat-transfer characteristics in such settings is based on Nusselt
theory. Unfortunately the absence of inertia in the theory leads to
the prediction of zero heat transfer at the upper generator of an
inundated sphere. The work that follows in part addresses this
inconsistency. Any underlying methodology of solution may indi-
cate how best to incorporate inertia into a detailed assessment of
the heat-transfer characteristics of jet impingement on a sphere.
Analyses of such flows [9–12] fail to distinguish between the
effects of a thin, high speed jet as compared to a thick, low speed
jet when each give rise to a common flow rate. Mitrovic [13]
indicates that such a distinguishing capability is called for the
development of theoretical models. However previous studies
of thin film flow over a sphere were confined purely to the hydro-
dynamic problem. Gyure and Krantz [14] used a perturbation
analysis for low Reynolds numbers. Gribben [15] obtained an
approximation by using the Pohlhausen integral momentum tech-
nique [16], which assumed an approximate velocity profile across
the thickness of the film. Hunt [17] obtained a numerical solution
by using the modified Keller box method, which accommodated
the outer, free boundary. Heat-transfer characteristics of the flow
have not been considered.

In this paper, the heat transfer in the flow of a cold, axisym-
metric jet over a hot sphere is investigated. The accurate and

comprehensive numerical solutions for both velocity and tempera-
ture distributions are obtained by using the modified Keller box
method. The main idea of the Keller box method [18] is to replace
higher derivatives by first derivatives through the introduction of
additional variables, and to discretize the resultant differential sys-
tem by centered-difference derivatives with a second order trunca-
tion error at midpoints of net rectangles.

2 Modeling

The problem to be examined concerns the film cooling which
occurs when a cold vertically draining column strikes a hot
sphere. Although a column of fluid draining under gravity is
accelerated and thin at impact [19,20], it is reasonable to model
the associated volume flow as a jet of uniform velocity U0, uni-
form temperature T0, and radius H0 as is illustrated in Fig. 1. The
notation Q ¼ pH2

0U0 is introduced for the flow rate and a film
Reynolds number may be defined as Re ¼ U0a=� based on the
sphere radius a.

3 Governing Equations

The flow under investigation has been modelled as a steady,
axisymmetric flow of incompressible fluid. For the large Reynolds
number case in which the flow is confined to a thin film, quantities
vary much less in the streamwise direction than in the wall normal
direction. In the absence of viscous dissipation, the resultant gov-
erning equations expressing conservation of mass, momentum and
energy become very similar to the boundary layer equations and
are consequently
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where Vh;Vrð Þ are velocity components associated with spherical
coordinates h; rð Þ measured by the angular displacement from the
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top of the sphere and the radial distance from the center of the
sphere, respectively.

In the specified physical setting, the equations are to be solved
subject to the following conditions:

(i) The no slip boundary condition at the wall requires that

Vh ¼ Vr ¼ 0 on r ¼ a; 0 � h � p (4)

(ii) The temperature at the wall is assumed constant as Tw,
say

i:e:; T ¼ Tw on r ¼ a; 0 � h � p (5)

(iii) On the free surface of the film, prescribed by
r ¼ aþ H hð Þ, the shearing stress may be assumed
negligible and consequently
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(iv) Similarly, in a film cooling environment such as water
surrounded by air, it may be assumed that there is neg-
ligible heat flux on the free surface and hence that

@T

@r
¼ 0 at r ¼ aþ H hð Þ; 0 � h � p (7)

(v) Once an overall flow rate Q ¼ pH2
0U0 has been pre-

scribed, a conservation of volume flow constraint at
any given h station leads to the condition

2psinh
ðaþH hð Þ

a

rVh h; rð Þdr ¼ constant

¼ pH2
0U0 for 0 � h � p

(8)

Under the assumption that the film thickness remains thin rela-
tive to a characteristic horizontal dimension, a boundary layer
treatment of the equations leads to significant simplification.

The following nondimensional variables are introduced:

x ¼ h; �Y ¼ Re1=2 r � að Þ
a

; �H xð Þ ¼ Re1=2H hð Þ
a

�U ¼ Vh

U0

; �V ¼ Re1=2Vr

U0

; / ¼ T � Tw

T0 � Tw

; p ¼ P

qU2
0

(9)

The big O notation, O, is used to describe the limiting behavior
of a function for a very small argument. In the limit Re! þ1
with x remaining O 1ð Þ and after neglecting terms of

O
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compared with unity, the following

equations are obtained:
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where Pr ¼ �=j is the Prandtl number and Fr ¼ U2
0=ag is the

Froude number based on the jet velocity on its surface. In com-
mon with standard boundary layer theory, dp=dx implies that the
pressure across the film remains constant. In the absence of exter-
nal pressure gradients and with zero shear assumed on the free
surface, the pressure term in Eq. (11) is identically zero.

The boundary conditions now read

ðiÞ �U ¼ �V ¼ 0 on �Y ¼ 0; 0 � x � p (13)

ðiiÞ / ¼ 0 on �Y ¼ 0; 0 � x � p (14)

ðiiiÞ @ �U

@ �Y
¼ 0 at �Y ¼ �H xð Þ; 0 � x � p (15)
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for 0 � x � p (17)

4 Numerical Solutions

The continuity Eq. (10) can be eliminated by introducing a
stream function w defined by

�U ¼ 1

sin x

@w
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; �V ¼ � 1

sin x

@w
@x

(18)

Owing to the geometry, �H xð Þ is singular at x ¼ 0 and x ¼ p. To
remove this singularity, y and h xð Þ are introduced and given by

y ¼ sin x �Y; h xð Þ ¼ sin x �H xð Þ (19)

Fig. 1 The vertical jet and resultant film for the sphere
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Substituting Eqs. (18) and (19) into Eqs. (10)–(17) gives
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subject to boundary conditions

w ¼ 0;
@w
@y
¼ 0; / ¼ 0 on y ¼ 0; 0 � x � p (22)

w¼ Re1=2H2
0

2a2
;
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where the initial condition (24) appears due to the original initial
condition
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The main idea of the Keller box method [18] is to replace
higher derivatives by first derivatives through the introduction
of additional variables, and to discretize the resultant differential
system by centered-difference derivatives with a second order
truncation error at midpoints of net rectangles. Some progress
[21–25] has been made in investigating various problems of a
liquid jet impinging on a solid surface. In anticipation of the use
of a Keller box method and its attractive extrapolation features the
differential system (20)–(24) is recast as the following first order
system:

@w
@y
¼ u

@u

@y
¼ �v

@�v

@y
¼ � 1

Fr sin x
þ 1

sin2x

� �
u
@u

@x
� �v

@w
@x

� �
(26)

@/
@y
¼ �w

@ �w

@y
¼ Pr

sin2x

� �
u
@/
@x
� �w

@w
@x

� �

whose boundary conditions are

w ¼ 0; u ¼ 0; / ¼ 0 on y ¼ 0; 0 � x � p

w ¼ Re1=2H2
0

2a2
; �v ¼ 0; �w ¼ 0 on y ¼ h xð Þ; 0 � x � p

(27)
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If these equations were used as the basis of solution there
would be strong comparisons between the associated algorithm
and that developed in Ref. [26]. However the expectation of an
initial Blasius boundary layer within the film can be assimilated

into the solution scheme by further transformations. The under-
lying methodology of solution nevertheless remains the same.
In each case the discretisation is aimed at generating a simulta-
neous system of nonlinear equations which can be solved by
Newton iteration.

According to the nondimensional transformation, the boundary
layer thickness grows like x3=2 for small x in the y direction.

The following coordinate transformation, what simultaneously
maps the film thickness onto the unit interval and removes the
Blasius singularity at the origin, is introduced:

x ¼ n2=3; y ¼ ngh

nþ 1� g
(28)

The dependent variables are transformed as
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nþ 1� g

f ; �v ¼ nþ 1� g
n

v; �w ¼ nþ 1� g
n

w (29)

The equations to be solved now read
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subject to

f ¼ 0; u ¼ 0; / ¼ 0 on g ¼ 0; 0 � n � p3=2

f ¼ Re1=2H2
0
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; v¼ 0; w¼ 0 on g¼ 1; 0� n� p3=2 (31)

h¼R
1=2
e H2

0
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; f ¼ f0 gð Þ; /¼/0 gð Þ on n¼ 0; 0< g� 1

where the initial profiles f0 gð Þ and /0 gð Þ are found by putting

n ¼ 0 and h ¼ ðRe1=2H2
0Þ=ð2a2Þ into Eq. (30) and solving subject

to conditions f ¼ u ¼ / ¼ 0 at g ¼ 0 and u ¼ 1, / ¼ 1 at g ¼ 1.
The parabolic system of equations and boundary conditions

(30) and (31) has been solved by marching in the n-direction
based on a modification of the Keller box method. A nonuniform
grid is placed on the domain n � 0, 0 � g � 1 and the resultant
difference equations are solved by Newton iteration. Solutions are
obtained on different sized grids and Richardson’s extrapolation
used to produce results of high accuracy.

It is worth to mention to this end that the general equations
describing parabolic free boundary problems arising from thin
film flows [26] are
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subject to boundary conditions
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Accordingly, the variables are transformed from (x; y) to (n; g)
by using

x ¼ na; y ¼ ng�h
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(37)

The dependent variables are transformed as
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Here, for the sphere in this paper, the relevant physical parameters
in the parabolic system of general equations, boundary conditions
and coordinate transformation (32)–(38) describing free boundary
problems arising from thin film flows should be chosen as
the gravity-related parameter F xð Þ ¼ 1=Fr sin x, the geometry-
related parameter G xð Þ ¼ 1=sin x, the domain-related parameter

xs ¼ p, the curvature-related parameter c ¼ R
1=2
e H2

0=2a2, the

thickness-related parameter a ¼ 2
3
, and the similarity-related pa-

rameter b ¼ 0. A full account of the numerical method and the
details of implementation are beyond the scope of this paper and is
reported separately [26]. The detailed numerical method procedure
for this case is fully discussed in Ref. [27]. The solution scheme
was successfully tested against previously reported results [28–33].

5 Results

A typical run has a coarse grid of dimensions 60� 48 in the
(n, g) domain with each cell being divided into 1, 2, 3, and 4 sub-
cells respectively. Because of the coordinate singularity at n ¼ 0,

g ¼ 1, a nonuniform grid is employed and given by n ¼ �n1:75,

g ¼ 1� 1� �gð Þ1:5 where �n and �g are uniform. When D�n � 1
59

p6=7

and D�g � 1
47

, this gives Dn � 0:004 and Dg � 0:003 near the sin-

gularity, which is sufficiently small to give good accuracy. From
the convergence of the extrapolation process, the absolute error is

6� 10�7. A typical set of numerical data is presented in Table 1.
In Fig. 2, the numerical solution for the film thickness distribu-

tion over the sphere is compared with Gribben’s approximation
[15] for Fr ¼ 1 and c ¼ 0:5. The agreement is seen to be surpris-
ingly good. Figures 3–9 depict the flavour of the numerical results.
Figures 3 and 4, Figs. 5 and 6, and Figs. 7–9 show film thickness,
free surface velocity, and free surface temperature, respectively,
for various cases.

It is worth to mention that the author’s previous published
results on a flat plate [3] can be regarded as a limiting case of the
present new ones on a sphere, when the focus is only on the near
field around jet impingement point x! 0 with negligible gravity
effect Fr!1 and negligible curvature effect c! 0:5. This can
be evidenced by making the comparison between Figs. 3, 5, and 8
for the upper hemispherical surface 0 � x � p

2
at Fr � 5 and the

counterpart figures in Ref. [3] (collectively as shown in Fig. 10 for
the sake of easy reference), but for the lower hemispherical

Table 1 Film thickness, free surface velocity and temperature for the sphere with Fr 5 1,
c 5 0:5, and Pr 5 2

x Film thickness �h xð Þ Free surface velocity �u x; �h xð Þð Þ Free surface temperature �/ x; �h xð Þð Þ

0:000 0:500 1:000 1:000
0:218 0:585 1:023 1:000
0:396 0:678 1:063 1:000
0:587 0:775 0:997 0:964
0:786 0:891 0:864 0:831
0:994 1:007 0:756 0:654
1:208 1:086 0:695 0:484
1:427 1:128 0:667 0:343
1:595 1:141 0:658 0:260
1:823 1:138 0:659 0:180
1:996 1:122 0:667 0:139
2:290 1:072 0:695 9:760� 10�2

2:590 0:994 0:744 7:779� 10�2

3:018 0:861 0:823 7:022� 10�2

p 0:836 0:831 7:013� 10�2

Fig. 2 Film thickness for the numerical solution and Gribben’s
approximation at Fr 5 1 and c 5 0:5
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surface p
2
� x � p at Fr < 5, the characteristics are totally differ-

ent between two cases.
For the sphere case, the velocity of the flow is controlled by

two opposing forces, viscosity trying to slow it down (less heat
transfer) and gravity trying to speed it up (more heat transfer).
The viscous component of force affecting the flow is greatest near

x ¼ p
2

and least near x ¼ 0 and x ¼ p. Figure 5 show that at
Fr ¼ 1, free surface velocity initially has a slight increase, fol-
lowed by a sharp decrease as viscosity starts to dominate, and
finally a gradual increase is observed as the bottom of the sphere
is approached. This corresponds to the up-down situation for the
film thickness in Figs. 2–4, and the decline at the different rates
for the free surface temperature in Figs. 7–9. This phenomenon
was observed experimentally [34] by using water as working fluid
for jet impingement Reynolds number ranging from the order of
104 to 106. As Fr decreases, the effect of gravity increases and
hence the thin film thickness, high velocity and low temperature

Fig. 6 Free surface velocity for various values of the parameter
c at Fr 5 1

Fig. 7 Free surface temperature for various Prandtl numbers
at Fr 5 1 and c 5 0:5

Fig. 8 Free surface temperature for various Froude numbers at
c 5 0:5 and Pr 5 2

Fig. 4 Film thickness for various values of the parameter c at
Fr 5 1

Fig. 5 Free surface velocity for various Froude numbers at
c 5 0:5

Fig. 3 Film thickness for various Froude numbers at c 5 0:5
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appear corresponding to the small Fr values. As c decreases, the
amount of fluid in the impinging jet decreases and the ensuing
film becomes thinner. The effect of viscosity increases and hence
the low velocity and low temperature appear corresponding to the
small c values. Where c is greater than a certain value, e.g., c ¼ 2
for Fr ¼ 1, Fig. 6 shows no decrease for the velocity over the
sphere. As Pr increases, the temperature decrease becomes more
gradual.

It is worth to mention to this end that the most significant film
cooling design factor is the heat transfer across the film. This can
be presented most conveniently by introduction of the Nusselt
number defined as

Nu ¼ @/
@y

����
y¼0

¼ x3=2 þ 1

x3=2
wjg¼0 (39)

A typical result of the Nusselt number, Nu, for the sphere with
Fr ¼ 1, c ¼ 0:5, and Pr ¼ 2 is illustrated in Fig. 11. It is shown
that the Nusselt number, Nu, increases monotonically as the rate
of x3=2 as approaching to the top of the sphere. This is in contrast
to models based solely on a balance of viscous and gravitational
terms, which necessarily predict zero Nusselt number at the top of
the sphere. In contrast to the classical Nusselt theory, the film
inertia may generate significant heat transfer (high Nusselt
number) at the top of the sphere.

6 Concluding Remarks

A detailed examination of a jet over a sphere has been per-
formed. The accurate and comprehensive numerical solutions for
establishing the flow and heat-transfer characteristics of a cold
axisymmetric jet over a hot sphere have been presented by modi-
fying the Keller box method to accommodate the outer, free
boundary. The gross features of such flows have been illustrated
over a range of representative parameter values. These indicate
the underlying features of the developing film thickness, velocity
and temperature distributions. The comparison with the experi-
mental observation [34] by using water as working fluid for jet
impingement Reynolds number ranging from the order of 104 to
106 is to indicate that the current numerical solution may be car-
ried over with confidence to the sphere inundation problem, thus
providing a basis of comparison with Mitrovic’s experimental
results [13]. The work also provides the basis for reassessing
condensation drainage and inundation flows; recognizing that in
contrast to Nusselt theory, the inertia of inundating film may
generate significant heat transfer at the top of a flooded sphere. In
particular such an implementation of the present method is likely
to yield significant heat transfer at the top of an inundated sphere.
This is in contrast to models based solely on a balance of viscous
and gravitational terms, which necessarily predict zero heat trans-
fer at the upper generator. In a practical setting, appropriate
parameter values may be evaluated and the design characteristics
readily identified from the numerical solutions. In practice, it is
not obvious that uniform wetting of the sphere would occur. Insta-
bilities may distort or even disrupt such a uniform distribution,
that is, U0 may be not considered as average velocity rather than
uniform velocity. A full account of nonlinear flow instability
analysis based on perturbation method is very tedious and beyond
the scope of this paper. Nevertheless for a given overall flow rate,
the model may represent a valuable first approximation to the
aggregate properties of the flow.

Nomenclature

a ¼ sphere radius mð Þ
F ¼ gravity-related parameter

Fr ¼ Froude number
f ; u; v;/;wð Þ ¼ dimensionless variables

G ¼ geometry-related parameter
g ¼ acceleration ðm=s

2Þ
H ¼ film thickness mð Þ
h ¼ dimensionless film thickness

Nu ¼ Nusselt number
P ¼ pressure kg=ms2ð Þ

Pr ¼ Prandtl number
p ¼ dimensionless pressure
Q ¼ flow rate m3=sð Þ

Re ¼ Reynolds number
h; rð Þ; x;Yð Þ; x; yð Þ ¼ spherical coordinates measured by angular

displacement and radial distance
respectively

T ¼ temperature Kð Þ

Fig. 9 Free surface temperature for various values of the
parameter c at Fr 5 1 and Pr 5 2

Fig. 10 Film thickness, free surface temperature and free
surface velocity for the flat plate case [3]

Fig. 11 Nusselt number for the sphere with Fr 5 1, c 5 0:5, and
Pr 5 2
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Tw ¼ wall temperature Kð Þ
U;Vð Þ ¼ velocity components m=sð Þ

xs ¼ domain-related parameter

Greek Symbols

a ¼ thickness-related parameter
b ¼ similarity-related parameter
c ¼ curvature-related parameter
j ¼ thermal diffusivity m2=sð Þ
� ¼ kinematic viscosity m2=sð Þ

n; gð Þ ¼ dimensionless coordinates
q ¼ density ðkg=m

3Þ
w ¼ stream function

Subscript

0 ¼ jet

Superscript

�¼ dimensional analysis
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