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1 Introduction

Convective heat transfer in fluid-saturated porous media has
received a great amount of attention during the last few decades.
This has been driven by its importance in many aspects of natural
and industrial problems, such as the utilization of geothermal
energy, chemical engineering, food processing and storage,
nuclear waste management, thermal insulation system, contami-
nant transport in ground water, migration of moisture through air
contained in fibrous insulation, and many others. Several reviews
of the subject of convective flow in porous media were done by
various researchers [1–6].

Mixed convection from a vertical cylinder embedded in a
porous medium is the principal mode of heat transfer in numerous
applications such as in connection with oil/gas lines, insulation of
vertical porous pipes, cryogenics as well as in the context of water
distribution lines, underground electrical power transmission
lines, and disposal of radioactive waste, to name just a few
applications. The case of free and mixed convection flow from a
vertical cylinder placed in a porous medium has been studied
extensively both analytically and numerically. A numerical
solution of the problem of free convective boundary layer flow
induced by a heated vertical cylinder embedded in a fluid-
saturated porous medium was presented by Minkowycz and
Cheng [7] when the surface temperature of cylinder was taken to
be proportional to xn where x was the distance from the leading
edge of cylinder and n was a constant. The results were obtained
for various values of n lying between 0 and 1, by using similarity
and local nonsimilarity methods [8–14]. The problem was later
extended by various researchers [15–22]. Bassom and Rees [19]
studied the free convection boundary layer flow induced by a
heated vertical cylinder which was embedded in a fluid-saturated
porous medium, with the surface temperature of the cylinder vary-
ing as xn. Both numerical and asymptotic analyses were presented
for the governing nonsimilar boundary layer equations. When
n < 1, the asymptotic flow field far from the leading edge of cyl-
inder was taken on a multiple-layer structure. On the other hand,
for n > 1, only a simple single layer was present far downstream,
but a multiple layer structure existed close to the leading edge of
the cylinder.

In this paper, we consider the problem of mixed convection
boundary layer flow along a cooled vertical permeable circular
cylinder embedded in a fluid-saturated porous medium, shown in
Fig. 1. It is assumed that the mainstream velocity UðxÞ and surface
temperature TwðxÞ of the cylinder vary linearly with the distance x
along the cylinder. It is also assumed that the axially symmetric
surface mass flux x is constant. The similarity equation involves
three parameters, namely, the buoyancy convection parameter k,
curvature parameter c, and suction or blowing parameter r. It
should be stated at this end that mixed convection flows, or the
combination of both free and forced convection, occur in many
transport processes in natural and industrial applications, includ-
ing electronic device cooled by a fan, nuclear reactor during emer-
gency shutdown, heat exchange in low-velocity environment, and
solar receiver exposed to wind current. The effect of buoyancy
induced flow in forced convection or forced flow in free convec-
tion becomes significant for such transport processes. When the
flow velocity is relatively low and the temperature difference

Fig. 1 Physical model and coordinate system
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between the surface and the free stream is relatively large, thermal
buoyancy forces play a significant role in forced convection heat
transfer as well as in the onset of flow instabilities, because of
being responsible for delaying or speeding up the transition from
laminar to turbulent flow (see Ref. [23]). These authors have
shown that the mixed convection regime is a � Gr=Rn

e � b, where
Gr is the Grashof number, Re is the Reynolds number, n is a con-
stant, which depends on flow configuration and surface heating
condition, and a and b are the lower and upper bounds of regime,
respectively. The buoyancy parameter Gr=Rn

e represents a mea-
sure of the effect of free convection in comparison to that of
forced convection on the flow. Outside the mixed convection
regime, the analysis of a pure either free or forced convection can
be adopted to describe the flow and temperature field accurately.

2 Governing Equations

For the Darcy steady mixed convection flow of a viscous incom-
pressible fluid along the vertical permeable circular cylinder of
radius r0 embedded in a fluid-saturated porous medium with pre-
scribed axially symmetric velocity vw, wall temperature TwðxÞ and
mainstream velocity UðxÞ in fluid at constant ambient temperature
T1, the governing equations for continuity, Darcy with Boussinesq
approximation, and energy can be written by using the usual
boundary layer approximation as (see Refs. [5] and [17] or [19])

@
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ruð Þ þ @

@r
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subject to the boundary conditions

v ¼ vw; T ¼ TwðxÞ at r ¼ r0 (4)

u! UðxÞ; T ! T1 as r !1 (5)

Here, the coordinates x and r measure distance along the surface
and normal to it, respectively; u and v are the velocity components
along x and r axes; T is the fluid temperature; g is the acceleration
due to gravity; K is the permeability of the porous medium; � is
the kinematic viscosity; am is the effective thermal diffusivity;
and vw is the velocity of suction (vw < 0) or blowing (vw > 0),
respectively. Following Mahmood and Merkin [18], we assume in
this paper that

U xð Þ ¼ U1x

L
and Tw xð Þ ¼ T1 þ

x DT

L
(6)

where DT and L are the temperature and length characteristics.
With this choice of mainstream and cylinder temperature,
Eqs. (1)–(3) can be reduced to similarity form by introducing the
variables

w ¼ 2amx

c
f gð Þ; T ¼ T1 þ

xDT

L
h gð Þ; g ¼ r2 � r2

0

r2
0c

(7)

where c ¼ ð2=r0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am L=U1

p
is the curvature parameter and w is

the stream function defined in the usual way

u ¼ 1

r

@w
@ r

and v ¼ � 1

r

@w
@ x

(8)

Equations (1)–(3) then become

f 0 ¼ 1þ k h (9)

ð1þ c gÞ h00 þ c h0 þ f h0 � f 0 h ¼ 0 (10)

together with the boundary conditions

f ð0Þ ¼ r; hð0Þ ¼ 1; hð1Þ ¼ 0 (11)

Here, k ¼ Ra=Pe is the buoyancy parameter (ratio of free to
forced convection velocity scales), Ra ¼ gbKLDT=am� is the
Rayleigh number, Pe ¼ U1L=am is the P�eclet number, and r ¼
�vwr0c=2am is the suction (r > 0) or blowing (r < 0) parameter.
Primes denote differentiation with respect to g. Combining
Eqs. (9) and (10), we finally have the equation

ð1þ c gÞ f 000 þ f f 00 þ c f 00 þ f 0 � f 0
2 ¼ 0 (12)

along with the boundary condition

f ð0Þ ¼ r; f 0ð0Þ ¼ 1þ k; f 0ð1Þ ¼ 1 (13)

The physical quantity of interest is the skin friction coefficient
Cf , which is defined as

Cf ¼
sw

1

2
qU1U

(14)

where the skin friction sw is given by

sw ¼ l
@ u

@ r

� �
r¼r0

(15)

Using the similarity variables (7), we have the reduced skin
friction

f 00 0ð Þ ¼ Cf am

ffiffiffiffiffi
Pe
p

2 �
(16)

3 Results and Discussion

Equation (12) with the boundary conditions (13) has been
solved numerically for the selected values of the governing
parameters by using the standard numerical method [24]. Our
principal objectives being to assess the effects that mixed convec-
tion, curvature, and suction parameters have on the flow and heat
transfer characteristics. It is worth pointing out that some special
cases have been considered for c½cð2þ kÞ þ r� ¼ 1 [25],
c ¼ 0; r ¼ 0 [26], and r ¼ 0 [27]. All values of three parameters,
the buoyancy convection parameter k, curvature parameter c, and
suction or blowing parameter r, are presented as follows.

In Figs. 2–4, the reduced skin friction f 00 ð0Þ is plotted against
the mixed convection parameter k for various values of the

Fig. 2 Velocity profile f
0 ðgÞ for various r at k 5 21 and c 5 5
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curvature parameter c and mass flux parameter r for the case of
opposing flow (k < 0). All these figures show that dual solutions
(upper and lower branch solutions) exist for Eq. (12) with the
boundary conditions (13) for all values of kc � k < 0, where
kc < 0 is the critical value of k < 0, and all values of c and r con-
sidered. The two branches (upper and lower branch solutions)
merge with one another at a critical point kc < 0, where the
boundary layer solutions beyond this point are impossible to be
obtained due to boundary layer separation from the surface. The
full Darcy and energy equations should be solved for kc � k < 0.
Both solution branches are passing through the forced convection
solution f ¼ rþ g at k ¼ 0 without a singularity appearing, as
seen, for example, in Ref. [25]. Even though a solution to
Eqs. (12) and (13) exists on the lower branch when k ¼ 0, it can-
not be a physically acceptable (realizable) solution to our original
problem. Figures 2–4 also show that when the curvature is
increased from c ¼ 0 (flat plate) to c ¼ 10, it increases the range
of existence of solutions and the reduced skin friction f 00 ð0Þ. In
addition, Fig. 4 illustrates that when the mass flux parameter r is
decreased from r ¼ 0 (impermeable cylinder) to r ¼ �8:49
(injection), it increases the range of existence of solutions and the
reduced skin friction f 00 ð0Þ. A stability analysis by adopting the
techniques of Merkin [16] and Wilks and Bramley [28] reveals
that the upper branch solutions are stable and physically realiz-
able, while the lower branch solutions are unstable and, therefore,
not physically realizable. It is to be noticed that the problem (12)
and (13) admits an exact solution for the special case c½cð2þ kÞ þ
r� ¼ 1 (see Ref. [25])

f gð Þ ¼ rþ gþ kc 1� e�
g
c

� �
(17)

It should be stated that the results obtained by Magyari et al. [25]
are, in fact, identical with the numerical results obtained from
Eq. (12) subject to Eq. (13) in this paper. We found, however, that
our numerical results are quantitatively consistent with the analyt-
ical results reported by Magyari et al. [25]. Thus, it gives us confi-
dence that the present numerical results are correct for all values
of k, c, and r considered.

Finally, we also include the plots of the velocity profile f 0 ðgÞ in
Fig. 5, which show the existence of dual solutions of the problem
(12) and (13). It is clearly seen from these figures that boundary
layer thickness becomes thinner for the upper branch solution as
compared to the lower branch solution and the far-field boundary
conditions (13) are satisfied asymptotically. Therefore, it confirms
the validity of the numerical results and the existence of the dual
solutions illustrated in Figs. 2 and 4.

4 Conclusion

In summary, the problem of steady mixed convection boundary
layer flow on a cooled vertical permeable circular cylinder embed-
ded in a fluid-saturated porous medium is studied. We take partic-
ular forms for the outer flow and wall temperature variation that
enable the system of the partial differential equations to be
reduced to a similarity form, Eqs. (12) and (13). For an opposing
flow (k < 0), we find that there is a critical value kc < 0 of the
mixed convection parameter k < 0, with solutions existing only
for kc � k � 0. However, for k � kc < 0, the solutions of the
problem (12) and (13) do not exist. We then examined the effects
of the curvature c and mass flux r parameters on the reduced skin
friction f 00ð0Þ and velocity profile f 0ðgÞ. Graphical qualitativeFig. 4 Reduced skin friction f

00
(0) with r for various c at k 5 21

Fig. 5 Reduced skin friction f
00
(0) with k for various c: (a)

r 5 21 and (b) r 5 1

Fig. 3 Reduced skin friction f
00
(0) with c for various r at k 5 21
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comparison has been made with the existing results in literature
and it is found to be in good agreement. It is worth mentioning at
this end that Wilks and Bramley [28] presented dual similarity
solutions in the context of mixed convection flow. They showed
that for this flow, dual solution existed and they displayed reverse
flow. In contrast to the Falkner–Skan solutions, the bifurcation
point was to be distinct from the point of vanishing skin friction.
A significant feature of the new solutions discovered by Wilks
and Bramley [28] was the location of the bifurcation point, sepa-
rating two branches of solution, away from the point of vanishing
skin friction.
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Nomenclature

f ¼ dimensionless stream function
g ¼ gravitational acceleration
K ¼ permeability of a porous medium
L ¼ length characteristic

Pe ¼ P�eclet number for a porous medium
r ¼ radial coordinate

r0 ¼ radius of cylinder
Ra ¼ Rayleigh number for a porous medium
T ¼ fluid temperature

u, v ¼ velocity components in x- and r-directions
UðxÞ ¼ mainstream velocity in axial direction

x ¼ axial coordinate

Greek Symbols

am ¼ equivalent thermal diffusivity
b ¼ coefficient of thermal expansion
c ¼ curvature parameter

DT ¼ characteristic temperature
g ¼ pseudo-similarity variable
h ¼ dimensionless temperature
k ¼ mixed convection parameter
� ¼ kinematic viscosity
r ¼ suction or injection parameter
w ¼ stream function

Subscripts

w ¼ condition at wall
1¼ condition in ambient fluid

Superscript
0 ¼ differentiation with respect to g
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