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The intention of this paper is to study impact force of an oblique-angled slamming wave acting on
a rigid wall. In the present study the analytical approach is pursued based on a technique proposed
by Shu ~Proceedings of the International Conference on Applied Mathematics & Mathematical
Physics, Sylhet, Bangladesh, 2000!. A nonlinear theory in the context of potential flow is presented
for determining accurately the free-surface profiles immediately after an oblique breaking wave
impingement on the rigid vertical wall that suddenly starts from rest. The small-time expansion is
taken as far as necessary to include the accelerating effect. The analytical solutions for the
free-surface elevation are derived up to the third order. The results derived in this paper are of
particular interest to the marine and offshore engineering industries, which will find the information
useful for the design of ships, coastal and offshore. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1644145#

I. INTRODUCTION

One of the most devastating forces of nature is that of
breaking waves. The destructive force of breaking waves is
economically and physically detrimental and fatal. Hence, a
considerable amount of research has been devoted to the
study of the impact forces of breaking waves, particularly
that of breaking waves impacting on a rigid wall, which is
suddenly started from rest and made to move towards a fluid
jet. Such studies can yield useful results that would benefit
designers of dams, ships, oil rigs, and other coastal and off-
shore structures, which are directly subjected to the impact
forces of breaking waves.

When a breaking wave strikes a wall, the impact pro-
duced is of short duration but considerable intensity. This
direct collision generates an impulsive pressure on the wall,
which is similar to the problem of initial-stage water impact.
However, existing wave theories based on small and finite
amplitude assumptions cannot accurately model the breaking
wave force on a wall due to the highly nonlinear and tran-
sient nature of the problem.

In reviewing the previous studies, one of the most im-
portant and unresolved questions is how the initial stage of
the breaking wave impingement on the wall can be properly
characterized and simulated. Cumberbatch1 considered the
case of symmetric normal impact of a water wedge on a wall,
and Zhanget al.2 took it further by studying an oblique im-
pact. These two works assumed prescribed functions of the
free-surface profiles close to the wall: in Cumberbatch,1 a
linear function was assumed while in Zhanget al.,2 an expo-
nential function was assumed. These two works were
stemmed from anad hocassumption on the free-surface pro-
files close to the wall.

In Shu,3 an analytical approach was taken to solve the
breaking wave problem for a normal wave without pre-
scribed functions. It has been found that the free-surface pro-
file close to wall is neither linear in Cumberbatch’s

assumption1 nor exponential in Zhanget al.’s assumption.2

This paper aims to take the same analytical approach, but
instead of a normal wave, we shall derive and solve the
impact problem due to an oblique angled wave.

In the present study, we do not assume any prescribed
functions for the free-surface profiles. Effects of gravity, vis-
cosity, and surface tension can be neglected since inertia
forces are dominant during the small-time impact process.
The essential mechanism involved in the impact process can
be described by the theoretical treatment of potential flow. A
small portion of the breaker tip is initially cut off to produce
a finite wetted area on the wall and a high spike in the con-
sequent impact results from an acceleration of water towards
the wall. We are interested in the short time successive trig-
gering of the nonlinear effects using a small-time expansion
of the full, nonlinear initial/boundary value problem.

II. GOVERNING EQUATIONS

We consider a rigid horizontal wall, being suddenly
started from rest and made to move vertically with constant
accelerationa0 ~vertical componentay5a0 cosb) towards a
two-dimensional fluid truncated wedge with semiangleap
~0,a,1

2!. A definition sketch of the flow is shown in Fig. 1.
The axis of the fluid truncated wedge is at an anglebp
~0,b,1

22a! to the vertical. Let me nondimensionalize time
t by (L2 /ay)

1/2, distance (x,y) by L2 , velocity (u,v) by
(ayL2)1/2, pressurep by rayL2 , whereL1 and L2 are the
right-side and left-side wetted wall semilengths, respectively,
when the breaking wave just touches the wall at timet50
andr is the density of the fluid. A mathematical statement of
the above problem can now be written as

]u

]x
1

]v
]y

50, ~1!
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. ~3!

For negative timet,0 everything is at rest,

u5v50, h150, h250 for t,0, ~4!

whereh1 and h2 are the free-surface ‘‘elevations’’ in thex
direction beyond the undisturbed surfaces. On the surfaces,
the kinematic and dynamic boundary conditions require

u5
]h1

]t
1v

]h1

]y
,

p50 on x5l1y tan@~a2b!p#1h1~y,t !, ~5!

u52
]h2

]t
2v

]h2

]y
,

p50 on x5212y tan@~a1b!p#2h2~y,t !, ~6!

where the dimensionless numberl can be expressed in the
terms of anglesap andbp as follows:

l5
L1

L2
5

cos@~a1b!p#

cos@~a2b!p#
. ~7!

On the wall surfaces, the normal velocity of fluid particles
must be the same as that of the wall at all the time

v5ayt on y5 1
2ayt

2. ~8!

The pressure vanishes at infinity,

p→0 as y→`. ~9!

The solution domain for this set of Eqs.~1!–~3! with condi-
tions ~4!–~9! is unknown at this stage of the analysis but is
conveniently described as

H ~x,y,t !:212y tan@~a1b!p#2h2~y,t !

<x<l1y tan@~a2b!p#1h1~y,t !,

1

2
ayt

2<y,`, 0<t,`J .

III. MATHEMATICAL ANALYSIS

The full nonlinear initial/boundary value problem con-
sists of Eqs.~1!–~3! with conditions ~4!–~9!. These equa-
tions are solved analytically by employing a small-time
expansion.4–7 We assume that

u~x,y,t !5u1~x,y!t1O~ t2!,
~10!

v~x,y,t !5v1~x,y!t1O~ t2!,

p~x,y,t !5p0~x,y!1O~ t !, ~11!

h1~y,t !5h12~y!t21O~ t3!,
~12!

h2~y,t !5h22~y!t21O~ t3!.

The leading-order equations are

]u1

]x
1

]v1

]y
50, u152

]p0

]x
,

~13!

v152
]p0

]y

subject to the conditions

u152h12, p050 on x5l1y tan@~a2b!p#,
~14!

u1522h22,

p050 on x5212y tan@~a1b!p#, ~15!

v15ay on y50, ~16!

p0→0 as y→`. ~17!

It is clear that pressurep0 satisfies the Laplace equation

]2p0

]x2
1

]2p0

]y2
50. ~18!

Introducing a complex-conjugate functionq0 with respect to
p0 , we can construct an analytic function

f 0~z![p01 iq0 , z5x1 iy . ~19!

As shown in Fig. 2, the conformal mapping

z5211
~11l!G~112a!

G~11g1!G~11g2!
E

0

w

tg2~12t!g1dt ~20!

given by the Schwarz–Christoffel transformation, maps the
upper half of thew plane (w5j1 i z) onto the region occu-
pied by the fluid. HereG is the Gamma function defined by

G~w!5E
0

`

tw21e2tdt.

FIG. 1. A sketch of fluid body in physicalz plane showing the free-surface
‘‘elevations’’ h1 andh2 at the instant of shortly after impact.
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and

g15a2b2 1
2, g25a1b2 1

2.

Functionf 0 is also analytic in the transformed variablew. On
the free surfaces, which correspond toj,0 andj.1 on the
real axis, p0 vanishes. On the wall surface, which corre-
sponds to the line segment 0,j,1, we take ]p0 /]n
52ay . Therefore, along the real axis in thew plane, we
have

Re~ f 0!50 on 2`,j,0, ~21!

ReS ] f 0

]n D52ay on 0,j,1, ~22!

Re~ f 0!50 on 1,j,`. ~23!

If s(j) measures the distance from pointC in Fig. 2 to any
point on the wall surface, the Cauchy–Riemann equations
give

Re~ f 0!50 on 2`,j,0, ~24!

Im~ f 0!52ays~j! on 0,j,1, ~25!

Re~ f 0!50 on 1,j,`, ~26!

where the distances(j) is given by~20! as

s~j!5
~11l!G~112a!

G~11g1!G~11g2!
E

j

1

tg2~12t!g1dt

on 0,j,1. ~27!

If we introduce a new analytic functiong0(w) by

g0~w!5w21/2~12w!21/2f 0~w!, ~28!

the boundary conditions forg0(w) are unmixed

Im~g0!50 on 2`,j,0, ~29!

Im~g0!52ayj
21/2~12j!21/2s~j! on 0,j,1,

~30!

Im~g0!50 on 1,j,`. ~31!

The analytic functiong0(w) which is regular in the upper
half w plane and vanishes at infinity can be obtained from the
Schwarz integral formula

g0~w!5
1

p E
2`

` Im~g0!

t2w
dt. ~32!

Substituting~28!–~31! into ~32!, we have

f 0~w!52
ayw

1/2~12w!1/2

p E
0

1 s~t!

t1/2~12t!1/2~t2w!
dt.

~33!

From boundary conditions~13!–~15!, we have

h12~j!52
1

2
cos@~a2b!p#ImS ] f 0

]wU
z50

D on j.1,

~34!

h22~j!52
1

2
cos@~a1b!p#ImS ] f 0

]wU
z50

D on j,0.

~35!

After some mathematical manipulation, we obtain

h12~j!5
ay cos@~a2b!p#

4p F 2j21

j1/2~j21!1/2

3E
0

1 s~t!

t1/2~12t!1/2~j2t!
dt22j1/2~j21!1/2

3E
0

1 s~t!

t1/2~12t!1/2~j2t!2
dtG on j.1,

~36!

FIG. 2. Physicalz plane is confor-
mally mapped onto the upper half of
the w plane.

FIG. 3. Impact free-surface profileh22(y)/ay and h12(y)/ay ~solid lines!
relative to the profile in absence of the wall~dotted lines! for a5

1
5 and

b5
1
8.
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h22~j!52
ay cos@~a1b!p#

4p F 112uju

uju1/2~11uju!1/2

3E
0

1 s~t!

t1/2~12t!1/2~t1uju!
dt22uju1/2~1

1uju!1/2E
0

1 s~t!

t1/2~12t!1/2~t1uju!2
dtG on j,0.

~37!

Using ~27! and integrating by parts, we have

h12~j!5
ay cos~ap!cos~bp!G~112a!

pG~ 1
21a2b!G~ 1

21a1b!j1/2~j21!1/2

3E
0

1 ta1b~12t!a2b

j2t
dt on j.1, ~38!

h22~j!5
ay cos~ap!cos~bp!cos@~a1b!p#G~112a!

p cos@~a2b!p#G~ 1
21a2b!G~ 1

21a1b!uju1/2~11uju!1/2

3E
0

1 ta1b~12t!a2b

t1uju
dt on j,0. ~39!

Making use of~20!, the forms of free-surface profilesh12(y) andh22(y) close to the wall are seen to be

h12~y!→ ay cos~ap!cos2~bp!G~11a1b!G~a2b!

pG~ 1
21a2b!G~ 1

21a1b!

3F 4 cos~ap!G~112a!

~112a22b!G~ 1
21a2b!G~ 1

21a1b!
G1/~112a22b!

y21/~112a22b!1O~y1/~112a22b!! as y→0, ~40!

h22~y!→ ay cos~ap!cos2~bp!cos@~a2b!p#G~11a2b!G~a1b!

p cos@~a2b!p#G~ 1
21a2b!G~ 1

21a1b!

3F 4 cos~ap!cos@~a1b!p#G~112a!

~112a12b!cos@~a2b!p#G~ 1
21a2b!G~ 1

21a1b!
G1/~112a12b!

y21/~112a12b!

1O~y1/~112a12b!! as y→0. ~41!

FIG. 4. Impact free-surface profileh22(y)/ay and h12(y)/ay ~solid lines!
relative to the profile in absence of the wall~dotted lines! for a5

1
10 and

b5
1
4.

FIG. 5. Impact pressure distributionsp0(x,0)/ay on the wall for various
anglea andb truncated wedge.
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Impact free-surface profiles for variousa and b are
shown in Figs. 3 and 4. It has been found that the free-
surface profilesh12(y) andh22(y) close to the wall are pro-
portional toy21/(112a22b) and y21/(112a12b), respectively,
which are neither linear in Cumberbatch’s assumption1 nor
exponential in Zhanget al.’s assumption.2

The impact pressure on the wall is the real part off 0(w)
for 0,j,1. Using~27! and~33! and integrating by parts, we
have on 0,j5sin2 f,1, 0,f,p/2

p0~j!5Re~ f 0uz50!

5
2ay~11l!G~112a!

pG~11g1!G~11g2!

3E
0

p/2

sina1b u cosa2b u lnUsin~u1f!

sin~u2f!
Udu.

~42!

Figures 5 and 6 show clearly that the maximum impact hy-
drodynamic pressure always appears near the center of the
fluid truncated wedge.

IV. CONCLUSIONS

The problems of oblique breaking waves impingement
on the wall and the free-surface profiles have been solved
analytically by using a small-time expansion. The results ob-
tained show that the free-surface profiles can be determined
if the angles and acceleration of the oblique breaking wave
are given. The results of this paper agree with the results of
the case of a normal impact~Shu3! with angleb50. In ad-
dition, we have further confirmed that the free-surface profile
close to the wall is neither linear in Cumberbatch’s
assumption1 nor exponential in Zhanget al.’s assumption.2
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