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Abstract: A distributed parameter model of pipeline transmission line behaviour is presented, based on a

Galerkin method incorporating frequency-dependent friction. This is readily interfaced to an existing

model of the pumping dynamics of a plunger pump to allow time-domain simulations of pipeline pressure

pulsations in both suction and delivery lines. A new model for the pump inlet manifold is also proposed.
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NOTATION

a orifice area

A area of valve face

B bulk modulus of elasticity of fluid

Bcn effective bulk modulus of elasticity of liquid

and air in chamber n

BEFF effective bulk modulus of elasticity of fluid

c damping coefficient

cSTOP damping coefficient of valve and stop and seat

cV restrictor valve coefficient

c0 acoustic velocity � pBEFF=r
CD discharge coefficient

CF force coefficient

CQ flow coefficient

DP plunger diameter

f friction factor

F frictional loss in pipe

FN net force acting on valve

FPRE spring preload

g acceleration due to gravity

k total number of terms used in approximation to

frequency-dependent friction

ks valve spring stiffness

kSTOP stiffness of valve end stop and seat

Kcn pressure loss coefficent for chamber n

l length of connecting rod

lF length of fluid jet in vicinity of valve seat

m effective valve mass

mi ith coefficient used in approximation to fre-

quency-dependent friction

M total number of cylinders

ni ith coefficient used in approximation to fre-

quency-dependent friction

N integer � (number of pipeline elements ÿ1)=2

p value of pressure at nodal points

P pressure

P9VC estimated pressure at vena contracta

Pcn pressure in chamber n

PDOWN pressure downstream of valve

PL pressure at entry pump inlet manifold

POUT pressure at pipe boundary � p2N�1

PUP pressure upstream of valve

PVAP fluid vapour pressure

PVC pressure at vena contracta

P0 atmospheric pressure

Q flow

Qc total instantaneous flow drawn from inlet line

Qcn flow into chamber n

QINn inlet valve flow for chamber n

QLV flow through load valve

QNET net cylinder flow

QOUT delivery valve flow

QP flow due to motion of plunger

QV valve flow � QIN or QOUT, as appropriate

QVC vena contracta flow

r crank radius

r0 pipe internal radius

t time

u valve velocity; value of U at nodal points

U rQ=(ðr2
0)
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UIN value of U at pipe boundary � u0

V volume of fluid in cylinder

Van volume of air in chamber n at pressure P0

Vcn volume of chamber n

Vln volume of liquid in chamber n

VTDC volume of fluid in cylinder at top dead centre

VV volume of vapour in cylinder

wm mth weighting function

x distance along pipe

yi value of Yi at nodal points

Yi ith value of frequency-dependent friction loss

coefficient

z valve opening

ã valve orientation

Äx pipeline node spacing

è valve seat half-angle

è0 inclination of pipe

ì fluid viscosity

r fluid density

ö crank angle relative to top dead centre

Subscripts

e operator equation number [equations (22) and

(23)]

j node number

n cylinder number

1 INTRODUCTION

Reciprocating plunger pumps are robust, contamination

tolerant and capable of efficiently pumping many types of

fluids at high delivery pressures. As a consequence, they

are widely used in a diverse range of industrial applica-

tions, including mining (for powered roof supports), chem-

ical plant, reverse osmosis systems and food processing

systems. The most common pump construction consists of

a small number of cylinders, usually mounted in-line, each

with a reciprocating piston driven by a rotating crank and

connecting rod mechanism. During the suction stroke, flow

is drawn from the inlet manifold into a cylinder through a

self-acting non-return valve; various valve designs are

employed although spring-load poppet or disc valves are

most frequently adopted. Fluid delivery also takes place

through a self-acting non-return valve.

It is well known that the pipeline pressure pulsations

produced by these pumps are a source of noise and

vibration and may have a significant influence on the

reliability of a given installation. Consequently, it is

highly desirable to be able to predict pressure pulsations

at the design stage of an installation so that appropriate

steps may be taken to minimize their levels and their

influence.

Considerable research effort has been devoted to the

study of pressure pulsation behaviour in delivery lines of

fluid power systems employing typically gear, vane or axial

piston pumps [e.g. see references (1) and (2)] and to a lesser

extent to the suction lines of these systems (3, 4). However,

fluid power pumps typically employ a large number of

pumping elements (nine cylinders are commonly used in

axial piston machines, for example). As a consequence they

create relatively low amplitude flow pulsations and, in most

instances, low-amplitude pressure pulsations with a rela-

tively high frequency content are generated. This allows a

linearized analysis to be adopted and predictions can be

conveniently conducted in the frequency domain.

In contrast, plunger pumps generally have a small

number of cylinders (three or five are common) and are

usually operated at lower speeds. This leads to very large

flow pulsations, relative to the mean flow. It is possible that

the consequent high-amplitude pressure pulsations, particu-

larly in resonant delivery line systems, may invalidate the

use of linear theory. Hence predictions of behaviour need

to be performed either in the time domain or by means of

an iterative scheme [e.g. see reference (5)]. A frequency

domain approach to the prediction of suction line pulsation

behaviour is likely to be invalid if cavitation is occurring as

the effects are highly non-linear.

Some useful progress has already been made by a

number of workers on the mathematical modelling of the

pumping dynamics of reciprocating plunger pumps.

Johnston (6), for example, has developed a detailed

model which accounts for both valve dynamics and

cavitation in the pump cylinders. However, inlet line

pressure is taken to be constant and the delivery line is

represented by a lumped parameter model. Vetter and

Schweinfurter (7) address the problems of delivery pipe-

line wave propagation effects, but adopt a fairly rudimen-

tary pump model. Most of their predictions of pulsation

behaviour are presented in terms of peak-to-peak pulsa-

tion levels, rather than frequency spectra or time-domain

waveforms. Thus the accuracy of the model is difficult to

establish. Singh and Madavan (5) have presented a more

detailed model of pumping dynamics which is linked to a

frequency-domain model of the delivery pipeline. An

iterative process is used to account for the interactions

between the pipeline and the pump. Predicted pressure

pulsation behaviour is compared with experimental data

in terms of amplitude spectra. Phase spectra are not

included in the paper, so, again, it is difficult to establish

the accuracy of the model in predicting behaviour. Vetter

and Schweinfurter do not attempt to predict suction line

pulsations and although Singh and Madavan claim that

their model will predict suction line behaviour, no results

are presented.

Part 1 of this paper aims to address the inadequacy of

existing models by describing the development of a finite

element model of pipeline dynamics (under non-cavitating

and cavitating conditions) which is integrated with an

existing generic model of pumping dynamics. In Part 2,

which follows, predictions of pressure pulsation behaviour
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in both delivery and suction lines are compared with the

results of experimental studies on two test rigs.

2 PUMP MODEL

This study concentrates on a single-acting, in-line plunger

pump, one cylinder of which is shown schematically in

Fig. 1. A detailed model for such an arrangement has been

developed by Johnston (6). The model accounts for flow

continuity into and out of each cylinder, according to

whether the inlet or delivery valve is open. Inlet pressure is

taken to be constant. In Johnston's approach the flows from

cylinders on their delivery stroke are summed together and

the resultant is used as the input to a lumped parameter

model of the delivery line. Full account is taken of the

forces acting on the inlet and delivery valves to provide

comprehensive modelling of valve dynamics. The basic

equations are reproduced here in Appendix 1 for complete-

ness; full details of the model are given in reference (6). It

should be noted that the approach is readily adapted to suit

other pump configurations.

The modifications necessary for interfacing Johnston's

pump model to distributed parameter models of suction

and delivery lines will now be presented.

2.1 Manifold modelling

The flows from those cylinders communicating with the

delivery manifold are assumed to be created at one discrete

location rather than being spatially distributed over the

length of the manifold. This simplifies the interfacing of

the pump model with the delivery line model. It would not

be difficult to develop a spatially distributed model of

flows into the delivery manifold but the agreement between

predictions and experimental data (see Part 2) suggests that

this is an unnecessary refinement. The summed flows are

introduced at the internal end of the manifold and define

the boundary conditions for the delivery line model

(Section 3). The manifold itself is treated as part of the

delivery line.

Experience has shown (Part 2) that a more detailed

model may be required for the inlet manifold. Once again,

the flows relating to individual cylinders communicating

with the manifold are all assumed to occur at the same

location. However, it has been argued (Part 2) that as a

result of air release, air pockets can form in the inlet

manifold. These, combined with pressure losses, play an

important role in the suction dynamics.

To model such behaviour a small chamber is assumed to

be present upstream of each inlet valve, as illustrated

schematically in Fig. 2. Each chamber can contain a pocket

of air and communicates with the inlet manifold via a

square-law restrictor. This is close to many real pump

designs where the inlet valve is located at the end of a

(usually short) passageway at right angles to the manifold.

Pressure losses are introduced by the right-angled bend

and, depending on manifold geometry, air pockets could be

trapped near the inlet valve. Through the selection of

appropriate restrictor loss coefficients, some account can

be taken of the different pressure losses likely to be

experienced at different locations along the manifold.

The relevant equations for this model are

Qcn � Kcn

p
(PL ÿ Pcn) (1)

and

dPcn

dt
� Bcn

Vcn

(Qcn ÿ QINn) (2)

Numerical integration of equation (2) gives the chamber

pressures, which on substitution in equation (1) provide the

flows drawn from the inlet manifold. The total flow drawn

from the inlet line is

Qc �
XM

n�1

Qcn (3)

That part of the inlet manifold not incorporated in chamber

models is included as part of the inlet line.

To account for the presence of air pockets in the

chambers, an effective bulk modulus of elasticity is

required. From reference (8),

Fig. 2 Schematic of inlet chamber geometry used in the

mathematical model

Fig. 1 Schematic of one cylinder of a reciprocating pump
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Bcn

B
� Vln=Van � P0=Pcn

Vln=Van � P0 B=P2
cn

(4)

In this instance, p0 B=p2
cn � Vln=Van and hence

Bcn � Pcn 1� Vln Pcn

Van P0

� �
(5)

The principal problem with this detailed model is the

difficulty in selecting appropriate values for the volumes

Vln, Van and the pressure loss coefficient Kcn. This may

be eased somewhat by selecting the same parameters for

each restrictor and chamber combination, albeit at the

expense of losing the ability to model cylinder-to-

cylinder variations. However, if this approach is accep-

table, significant gains in computational efficiency can

be achieved by assuming the existence of just one

chamber with which all cylinders communicate. This

chamber is linked to the manifold through one square-

law restrictor. In the case of a three-cylinder pump the

error introduced has been found to be acceptably small

since the `overlap' between two cylinders communicating

with the chamber at the same time is small, relative to

the period of each suction stroke.

3 TRANSMISSION LINE MODELLING

The dynamics of distributed parameter piping systems are

described by hyperbolic partial differential equations. A

commonly used numerical scheme to solve these equations

is the method of characteristics (9, 10) which has been

widely and successfully employed to model fluid transient

behaviour such as waterhammer under non-cavitating and

cavitating conditions. However, because the spatial discre-

tization of the line is intrinsically linked to the time step

and speed of sound in the fluid, difficulties can be

encountered in obtaining compatibility with the small time

steps required to solve the differential equations describing

components connected to the line (11). For example, for

a time step of 10ÿ2 ms and a speed of sound of 1000 m=s,

a line 10 m long would need to be divided into 1000

elements. Moreover, when variable time steps are required,

the calculation of intermediate values by interpolation

becomes a further computational burden.

To avoid these problems, an alternative approach is

adopted in this study in which the Galerkin finite element

method (12, 13) is applied in the spatial variables only. This

gives rise to an initial value problem for a system of

ordinary differential equations, allowing the time step to be

decoupled from the spatial interval.

The flow within a transmission line is to be calculated

under the assumptions of one-dimensional, unsteady com-

pressible flow. Independent variables of space and time are

denoted by x and t. The dependent variables are the

pressure P and the flowrate Q. Hence two partial dif-

ferential equations have to be solved:

Equation of continuity:

1

c2
0

@P

@ t
� r
ðr2

0

@Q

@x
� 0 (6)

Equation of motion:

r
ðr2

0

@Q

@ t
� @P

@x
� F(Q)� rg sin è0 � 0 (7)

In the case of laminar flow the friction term F(Q) can be

expressed as a quasi steady term F0 plus an unsteady term

(`frequency-dependent friction'), for which an approxima-

tion has been developed by Zielke (14) and Kagawa et al.

(15):

F(Q) � F0 � 1

2

Xk

i�1

Yi (8)

where

F0 � 8ìQ

ðr4
0

(9)

and

@Yi

@ t
� ÿ niì

rr2
0

Yi � mi

@F0

@ t

Yi(0) � 0 (10)

The constants ni and mi are given by Kagawa et al. (15)

and are reproduced in Table 1. The number of terms k

should be selected according to the frequency range of

interest.

Table 1 Values of ni and mi for use

in equation (10)

i ni mi

1 2.63744 3 101 1.0
2 7.28033 3 101 1.16725
3 1.87424 3 102 2.20064
4 5.36626 3 102 3.92861
5 1.57060 3 103 6.78788
6 4.61813 3 103 1.16761 3 101

7 1.36011 3 104 2.00612 3 101

8 4.00825 3 104 3.44541 3 101

9 1.18153 3 105 5.91642 3 101

10 3.48316 3 105 1.01590 3 102
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For turbulent flow, the quasi-steady term is replaced by

r f jQjQ
4ð2 r5

0

The unsteady friction term developed for laminar flow

[equation (10)] has been found by Vardy et al. (16) to work

well at Reynolds numbers up to about 104 and has been

adopted here. For cases involving much higher Reynolds

numbers the model proposed by Vardy et al. (16) could be

adopted.

3.1 Galerkin finite element method

Finite element formulations based on the Galerkin method

(17) for time domain analysis have been presented by

Rachford and Ramsey (12) and Paygude et al. (13) using a

conventional uniformly spaced grid system with two

degrees of freedom (pressure and flowrate). In the work

that follows the method is presented for one degree of

freedom (either pressure or flowrate), with an extension to

include the effects of frequency-dependent friction. The

calculation of pressure and flow at alternating nodes is

sometimes referred to as interlacing.

Equations (6) to (10) can be rearranged in terms of

operator equations:

L1(U , P, Yi) � 1

c2
0

@P

@ t
� @U

@x
� 0 (11)

L2(U , P, Yi) � @U

@ t
� @P

@x
� R9U � 1

2

Xk

i�1

Yi � H0 � 0

(12)

L3(U , P, Yi) � @Yi

@ t
� niR

8
Yi ÿ miR

@U

@ t
� 0 (13)

where

U � rQ

ðr2
0

, R � 8ì

rr2
0

and H0 � rg sin è0

For laminar flow, R9 � R. For turbulent flow, the quasi-

steady term may be approximated by

R9 � f jUÿ1j
4rr0

(14)

where Uÿ1 is the value for U from the previous time step.

The transmission line is divided into 2N � 1 equal ele-

ments, each Äx in length. A minimum of five elements is

required.

The Galerkin method involves finding approximations to

U, P and Yi of the form

U (x, t) � u2 j(t)w�2 j(x)� u2 j�2(t)wÿ2 j�2(x) (15)

P(x, t) � p2 j�1(t)w�2 j�1(x)� p2 j�3(t)wÿ2 j�3(x) (16)

Yi(x, t) � yi,2 j(t)w�2 j(x)� yi,2 j�2(t)wÿ2 j�2(x) (17)

for j � 0, 1, . . ., N ÿ 1. The unknown coefficients u, p

and yi are nodal values of U, P and Yi respectively.

The weighting (or basis) functions w�, wÿ are piecewise

polynomials. Here, linear interpolation functions are adop-

ted:

w�m(x) �
xm�2 ÿ x

xm�2 ÿ xm

for xm < x < xm�2

0 otherwise

(
(18)

wÿm(x) � 1ÿ w�m(x) for xm < x < xm�2

0 otherwise

�
(19)

Nodal values are determined by inner products h:, :i
defined as follows:

(L1, w�2 j�1) �
�x2 j�3

x2 j�1

w�2 j�1(x)L1 dx � 0 (20)

(L1, wÿ2 j�1) �
�x2 j�3

x2 j�1

wÿ2 j�1(x)L1 dx � 0 (21)

and, for e � 2 and e � 3,

(Le, w�2 j) �
�x2 j�2

x2 j

w�2 j(x)Le dx � 0 (22)

(Le, wÿ2 j) �
�x2 j�2

x2 j

wÿ2 j(x)Le dx � 0 (23)

Evaluation of these integrals results in a set of ordinary

differential equations which allow the calculation of the

pressures at the odd-numbered nodes and flows at the even-

numbered nodes. In this study it was decided to specify the

flow at one end of the line and the pressure at the other end

(although it is equally possible to formulate solutions for

the cases where either pressure is defined at both ends or

flow is defined at both ends). The pressure=flow boundary

condition structure is appropriate for the test system studied

in Part 2 of this paper, as outlined later. In order to establish

each boundary condition it is necessary to solve the

equation relating to the end condition simultaneously

within the equation describing the behaviour of the at-

tached component. This necessitates the use of a different

weighting function, spanning a single element rather than

two, for the elements at each end of the line. The resultant

grid is illustrated in Fig. 3.
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For the interlaced nodes, the resultant ordinary differ-

ential equations are of the following form:

d

dt

u

p

y

0@ 1A �
ÿR9I

1

16Äx
A ÿ 1

2
(Î 
 I)T

c2
0

16Äx
B 0 0

ÿR2M
 I
R

16Äx
M
 A ÿ R

8
[F� 4M
 (Î 
 I)T]

0BBBBB@

1CCCCCA

3
u

p

y

0@ 1A

� c2
0

16Äx
UIN

0

C

0

0@ 1A� 1

16Äx
POUT

3
D

0

RM
 D

0@ 1Aÿ H0

E

0

RM
 E

0@ 1A (24)

The symbol 
 defines the Kronecker product of a vector

Z � fz1, z2, . . ., zkgT and a matrix G, i.e.

Z 
G �
z1G

z2G

..

.

zkG

0BBB@
1CCCA (25)

where

u � fu2, u4, . . ., u2NgT

p � fp1, p3, . . ., p2Nÿ1gT

y � fy1,2, y1,4, . . ., y1,2N , y2,2, . . ., yk,2NgT

N � fn1, n2, . . ., nkgT, M � fm1, m2, . . ., mkgT

Î � f1, 1, . . ., 1gT

A �

10 ÿ12 2

ÿ1 11 ÿ11 1

ÿ1 11 ÿ11 1
: : : :

: : : :
: : : :

ÿ1 11 ÿ11 1

ÿ1 11 ÿ11

ÿ2 12

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA

B �

ÿ12 2

11 ÿ11 1

ÿ1 11 ÿ11 1
: : : :

: : : :
: : : :

ÿ1 11 ÿ11 1

ÿ1 11 ÿ11 1

ÿ2 12 ÿ10

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
C � f10, ÿ1, 0, . . ., 0, 0, 0gT

D � f0, 0, 0, . . ., 0, 1, ÿ10gT

Fig. 3 Pipeline discretization grid and weighting functions
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E � f1, 1, 1, . . ., 1, 1, 1gT

F �

n1I

n2I
:
:
:

nkI

0BBBBBB@

1CCCCCCA
The nodal values at the boundary conditions are obtained

by applying the same methodology but using different

weighting functions, as dictated by the grid shown in Fig.

3. This results in two further ordinary differential equa-

tions:

d p0

dt
� ÿ 1

2

d p1

dt
� 3c2

0

4Äx
(u0 ÿ u2) (26)

(where u0 � UIN) and

du2N�1

dt
� ÿ 1

2

du2N

dt
� 3

4Äx
( p2Nÿ1 ÿ p2N�1)

ÿ R9

2
(u2N ÿ 2u2N�1)ÿ 3

2
H0 (27)

(where p2N�1 � POUT). For the case of the pump inlet line,

the boundary condition at the reservoir is the constant

pressure source, p2N�1. At the pump, the total instanta-

neous flow drawn into the cylinders defines UIN. However,

individual cylinder flows are dictated by the instantaneous

inlet valve differential pressure. Hence, equation (26) must

be used to provide p0, thereby allowing the flows to be

calculated (see Appendices 1 and 2).

At the pump outlet, the total delivery flow is established

using the same procedure, which now provides UIN for the

delivery line. In the case of a valve terminating the delivery

line (as studied in Part 2 of this paper), equation (26) is

solved simultaneously with the equation describing the

valve behaviour. For a simple restrictor valve returning the

flow to atmospheric pressure, for example, the termination

pressure would be described by the square law relationship:

p2N�1 � cVQ2
LV (28)

where QLV is established from u2N�1 at the previous time

step. This approach may be extended to include valve

dynamics if required.

To accommodate the possibility of cavitation in the

suction line, three different pipeline cavitation models were

considered, based on the work of Shinada and Kojima (18).

For the study reported in Part 2, a vaporous cavitation

model was adopted, following its successful implementa-

tion in a previous investigation employing the method of

characteristics (10). In this scheme the pressure at any node

is constrained not to fall below the vapour pressure. Further

details of the approach are given in reference (10).

4 CONCLUSIONS

It has been argued that current models of plunger pumps

are inadequate in respect of the complex interactions which

take place between the pump and attached pipelines. These

arise because of the distributed parameter nature of the

pipelines and because of cavitation. A finite difference

method for modelling pipelines, based on a Galerkin

method incorporating frequency-dependent friction, has

been proposed. This approach circumvents the computa-

tionally intensive demands associated with the use of the

method of characteristics.

A new model for the pump inlet manifold has been

developed to account for the presence of air pockets. The

pipeline models are readily interfaced to an existing model

of pumping dynamics, to allow time-domain simulations of

pressure pulsations. The effectiveness of the complete

model is assessed in Part 2 of this paper.
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APPENDIX 1

Flow equations

All symbols are defined in the Notation. The instantaneous

volume of a cylinder is defined by the equation

V � VTDC � 1

4
ðD2

P

3 r(1ÿ cosö)� l 1ÿ
r

1ÿ r2

l2
sin2 ö

� �" #( )
(29)

Thus, the rate of change of volume displaced by the

plunger, QP � dV=dt, is

QP � dö

dt

1

4
ðD2

P r sinö 1� (r=l) cosöp
[1ÿ (r2=l2) sin2 ö]

� �
(30)

The net cylinder flow is obtained from the continuity

equation

QNET � QP � QIN ÿ QOUT (31)

From the net cylinder flow, the rate of change of cylinder

pressure can be established:

dPC

dt
� BEFFQNET

V
(32)

(This equation is integrated numerically to determine the

instantaneous cylinder pressure.)

To account for possible cavitation in the cylinder, the

cylinder pressure is monitored at each time step to detect

whether the pressure falls below the vapour pressure of the

fluid. Under cavitating conditions,

dPC

dt
� 0 (33)

PC � PVAP (34)

and the rate of change of the volume of vapour in the

cylinder is

dVV

dt
� ÿQNET (35)

This is integrated numerically to give the instantaneous

vapour volume. Under non-cavitating conditions, VV � 0.

The flow through the inlet and delivery valves is

determined from the orifice equation. This requires, in each

case, the instantaneous valve opening and the differential

pressure across it. The valve opening is established from

the numerical solution of the equation of motion (Appendix

2). The same equations apply for both inlet and delivery

valves. In the case of the inlet valve, the upstream pressure

is that in the inlet manifold and the downstream pressure is

that in the cylinder. In the case of the delivery valve, the

upstream pressure corresponds to that in the cylinder and

the downstream pressure corresponds to that in the delivery

manifold.
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To account for the effects of cavitation on flow through

the valve, an estimate of the pressure at the vena contracta

P9VC is obtained from

P9VC � PDOWN ÿ r
2

QVC

a

� �2
1

C2
D

ÿ a2

A2
ÿ 1

C2
Q

 !
(36)

where PDOWN is the pressure downstream of the valve

under consideration. The flow through the vena contracta,

QVC, is either (QIN ÿ Au) or (QOUT ÿ Au), as appropriate.

These expressions account for the motion of the valve on

the flow (6).

The orifice area is obtained from

a � 2z
p

(ðA) sin è 1ÿ z

4

r
ð

A

� �
sin (2è)

" #
(37)

with the area taken to be a small, but finite, value for z < 0

to account for imperfect sealing when the valve is seated.

It is assumed that the pressure at the vena contracta

cannot fall below the vapour pressure, i.e.

PVC � max fP9VC, PVAPg (38)

The flow through the vena contracta is then given by

QVC � CDa
p

[2(PUP ÿ PVC)=r]p
[1ÿ (CDa=A)2]

(39)

Taking due account of fluid inertia in the vicinity of the

valve seat, a non-linear differential equation for flow is

obtained:

PUP ÿ PVC � r
2

QVC

CDa

� �2

� rlf

a

dQVC

dt
(40)

Finally, accounting for the motion of the valve itself on the

net flow,

dQV

dt
� dQVC

dt
� A

du

dt
(41)

Numerical integration yields the instantaneous flow.

The equations given above apply to just one cylinder. For

multicylinder pumps, the same equations are solved for

each individual cylinder, with the effect of the relative

crankshaft angles on individual plunger positions being

taken into account through appropriate adjustment of ö in

equation (29).

APPENDIX 2

Valve motion

The modelling of the valve dynamics closely follows

the approach of Johnston (6) and is applied to both inlet

and delivery valves. When the valve is partially open

(0 < z < zSTOP),

FN � ACF(PUP ÿ PDOWN)ÿ ãmg ÿ c
dz

dt
ÿ kszÿ FPRE

(42)

In order to simulate valve bounce, the valve seat and the

end stop are modelled as very stiff spring=damper systems.

When z , 0,

FN � ACF(PUP ÿ PDOWN)ÿ ãmg

ÿ cSTOP

dz

dt
ÿ kSTOPzÿ kszÿ FPRE (43)

When z . zSTOP,

FN � ACF(PUP ÿ PDOWN)ÿ ãmg ÿ cSTOP

dz

dt

ÿ kSTOP(zÿ zSTOP)ÿ kszÿ FPRE (44)

This model can be further enhanced to account for the

effect of slip-stick friction and coulomb friction, as

described by Johnston (6), but such effects are not included

here because of the difficulty in establishing suitable

numerical values for the friction levels.

The acceleration of the valve is

du

dt
� FN

m
(45)

and the velocity is

u � dz

dt
(46)

Numerical integration yields the valve opening, z.
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