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This paper is intended to study impact forces of breaking waves on a rigid wall based on a nonlinear
potential-flow theory. This is a model problem for some technologically important design issues such as the
impact of breaking waves on ships, coastal and offshore structures. We are interested in the short-time succes-
sive triggering of nonlinear effects using a small-time expansion. The analytical solutions for the impact force
on a rigid wall and the free-surface profile are derived.
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I. INTRODUCTION

There is a long history of experimental and theoretical
studies to determine impact forces acting on a rigid wall,
which is suddenly started from rest and made to move to-
wards a fluid taper. The problem is motivated by the impact
of breaking waves on ships, coastal and offshore structures,
which is one of the most severe environmental loads on
structures. The impact due to a breaking wave striking a wall
is of high intensity and short duration. This is attributed to
the direct collision between a fluid and a wall surface. The
direct collision of a breaking wave with a wall generates an
impulsive pressure on the wall. This is similar to the problem
of initial-stage water impact. Unfortunately, existing wave
theories based on small- and finite-amplitude assumptions
cannot be directly adopted to evaluate the breaking wave
force on a wall due to the highly nonlinear and transient
nature of the problem.

In reviewing the previous studies, one of the most impor-
tant and unresolved questions is how the initial stage of the
breaking wave impingement on the wall can be properly
characterized and simulated. Cumberbatch[1] considered the
case of symmetric normal impact of a water wedge on a wall
and Zhanget al. [2] extended his work to an oblique impact.
These two works stemmed from anad hocassumption on the
free-surface profiles close to the wall: in Cumberbatch[1], a
linear function was assumed, while in Zhanget al. [2], an
exponential function was used.

In the present study the free-surface profiles are analyti-
cally determined without prescribed functions. Effects of
gravity, viscosity and surface tension can be neglected since
inertia forces are dominant during the small-time impact pro-
cess. The essential mechanism involved in the impact pro-
cess can be described by the theoretical treatment of poten-
tial flow [3]. A small portion of the breaker tip is initially cut
off to produce a finite wetted area on the wall and a high
spike in the consequent impact results from an acceleration
of water towards the wall. We are interested here in the
short-time successive triggering of nonlinear effects using a
small-time expansion of the full, nonlinear initial/boundary
value problem. The leading small-time expansion is taken to
include the accelerating effect. The analytical solutions for
the hydrodynamic force on a wall and the free-surface profile
are derived. It is worth to mention to this end that the tech-
nique used in investigating the earthquake effect on dams

[4–7] has been adopted here in the mathematical treatment to
the present problem although physical settings are different.

II. GOVERNING EQUATIONS

We consider a rigid horizontal wall, being suddenly
started from rest and made to move vertically with constant
accelerationa0 towards a two-dimensional fluid taper with
semi-angleap s0,a,

1
2

d. A definition sketch of the flow is
shown in Fig. 1. The axis of the fluid taper is perpendicular
to the wall. Let me nondimensionalize timet by sL /a0d1/2,
distancesx,yd by L, velocity su,vd by sa0Ld1/2, pressurep by
ra0L, whereL is the wetted wall semilength when the break-
ing wave just touches the wall at timet=0 and r is the
density of the fluid. A mathematical statement of the above
problem can now be written as

FIG. 1. Physicalz plane is conformally mapped onto the upper
half of thew plane.

PHYSICAL REVIEW E 70, 066306(2004)

1539-3755/2004/70(6)/066306(4)/$22.50 ©2004 The American Physical Society066306-1



]u

]x
+

]v
]y

= 0, s1d

]u

]t
+ u

]u

]x
+ v

]u

]y
= −

]p

]x
, s2d

]v
]t

+ u
]v
]x

+ v
]v
]y

= −
]p

]y
. s3d

For negative timet,0 everything is at rest,

u = v = 0, h = 0 for t , 0, s4d

where h is the free-surface “elevation” in thex direction
beyond the undisturbed surface. On the surface, the kine-
matic and dynamic boundary conditions require

u = −
]h

]t
− v

]h

]y
, p = 0 onx = − 1 −y tansapd − hsy,td.

s5d

On the wall surface, the normal velocity of fluid particles
must be the same as that of the wall at all the time

v = a0t on y =
1

2
a0t

2. s6d

On the axis of the fluid taper, the normal velocity of the fluid
must vanish from consideration of symmetry about the axis
of the fluid taper,

u = 0 onx = 0. s7d

The pressure vanishes at infinity,

p → 0 asy → `. s8d

The solution domain for this set of equations(1)–(3) with
conditions(4)–(8) is unknown at this stage of the analysis
but is conveniently described as

Hsx,y,td:− 1 −y tansapd − hsy,td ø x ø 0,

1

2
a0t

2 ø y , `, 0 ø t , `J .

III. MATHEMATICAL ANALYSIS

The full nonlinear initial/boundary value problem consists
of equations(1)–(3) with conditions(4)–(8). These equations
are solved analytically by employing a small-time expansion.
We assume that

usx,y,td = u1sx,ydt + Ost2d, vsx,y,td = v1sx,ydt + Ost2d,

s9d

psx,y,td = p0sx,yd + Ostd, hsy,td = h2sydt2 + Ost3d.

s10d

The leading-order equations are

]u1

]x
+

]v1

]y
= 0, u1 = −

]p0

]x
, v1 = −

]p0

]y
s11d

subject to the conditions

u1 = − 2h2, p0 = 0 onx = − 1 −y tansapd, s12d

v1 = a0 on y = 0, s13d

u1 = 0 onx = 0, s14d

p0 → 0 asy → `. s15d

It is clear that pressurep0 satisfies the Laplace equation

]2p0

]x2 +
]2p0

]y2 = 0. s16d

Introducing a complex-conjugate functionq0 with respect to
p0, we can construct an analytic function

f0szd ; p0 + iq0, z= x + iy . s17d

As shown in Fig. 1, the conformal mapping

z= − 1 +
Gs1 + ad

ÎpGS1

2
+ aDE0

w

ta−1/2s1 − td−1/2dt s18d

given by the Schwarz-Christoffel transformation, maps the
upper half of thew planesw=j+ izd onto the region occupied
by the fluid. HereG is the Gamma function defined by

Gswd =E
0

`

tw−1e−tdt.

Functionf0 is also analytic in the transformed variablew. On
the free surface, which corresponds toj,0 on the negative
real axis,p0 vanishes. On the axis of the fluid taper, which
corresponds to the negative real axis in thew plane, we have
]p0/]n=0, which means thatq0 is a constant. Without loss of
generality, we may assumeq0=0 for j.1 along the negative
real axis. On the wall surface, which corresponds to the line
segment 0,j,1, we take]p0/]n=−a0. Therefore, along
the real axis in thew plane, we have

Resf0d = 0 on −` , j , 0, s19d

ReS ]f0

]n
D = − a0 on 0, j , 1, s20d

Imsf0d = 0 on 1, j , `. s21d

If ssjd measures the distance from pointO in Fig. 1 to any
point on the wall surface, the Cauchy-Riemann equations
give

Resf0d = 0 on −` , j , 0, s22d

Imsf0d = − a0ssjd on 0, j , 1, s23d

Imsf0d = 0 on 1, j , `, s24d

where the distancessjd is given by Eq.(18) as
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ssjd =
Gs1 + ad

ÎpGS1

2
+ aDEj

1

ta−1/2s1 − td−1/2dt on 0, j , 1.

s25d

If we introduce a new analytic functiong0swd by

g0swd = w−1/2f0swd, s26d

the boundary conditions forg0swd are unmixed

Imsg0d = 0 on −` , j , 0, s27d

Imsg0d = − a0j−1/2ssjd on 0, j , 1, s28d

Imsg0d = 0 on 1, j , `. s29d

The analytic functiong0swd which is regular in the upper
half w plane and vanishes at infinity can be obtained from the
Schwarz integral formula

g0swd =
1

p
E

−`

` Imsg0d
t − w

dt. s30d

Substituting Eqs.(26)–(29) into Eq. (30), we have

f0swd = −
a0w

1/2

p
E

0

1 sstd
t1/2st − wd

dt. s31d

The impact pressure on the wall is the real part off0swd for
0,j,1. Using Eq.(25) and integrating by parts, we have
on 0,j,1

P0sjd = Resuf0uz=0d =
a0Gs1 + ad

p3/2GS1

2
+ aDR0

1

ta−1/2

3s1 − td−1/2 lnU t1/2 + j1/2

t1/2 − j1/2Udt,

s32d

wherer denotes the Cauchy principal value. It is better to
express the above formula in the form that is suitable for
easy computation. Differentiating Eq.(32) with respect toj,
we obtain

dP0

dj
=

a0Gs1 + ad

p3/2j1/2GS1

2
+ aDR0

1 tas1 − td−1/2

t − j
dt on 0, j , 1.

s33d

The integral on the right-hand side of Eq.(33) can be ob-
tained by contour integration. Thus

dP0

dj
=

a0Gs1 + adcossapd

p3/2j1/2GS1

2
+ aD E0

` ta

s1 + td1/2st + jd
dt

on 0, j , 1. s34d

Integrating Eq.(34), we have

P0sjd =
8a0Gs1 + adcossapd

p3/2GS1

2
+ aD

3E
0

p/2 ja+1/2

stan2 u + jd1/2

udu

sins2udstanud2a on 0, j

, 1. s35d

From Eqs.(11) and (12), we have

h2sjd = −
1

2
cossapdImSU ]f0

]w
U

z=0
D on j , 0. s36d

After some mathematical manipulation, we obtain

h2sjd = −
a0 cossapd

4p Fuju−1/2E
0

1 sstd
t1/2st + ujud

dt

− 2uju1/2E
0

1 sstd
t1/2st + ujud2dtG on j , 0. s37d

Using Eq.(25) and integrating by parts, we have onj,0

h2sjd =
a0Gs1 + adcossapd

2p3/2GS1

2
+ aDÎuju

E
0

1 ta

s1 − td1/2st + ujud
dt

on j , 0. s38d

Making use of Eq.(18), the form of free-surface profile
h2syd close to the wall is seen to be

h2syd → a03 G3+2as1 + adcos2s1+adsapd

4aps3+4ad/2as1 + 2adG3+2aS1

2
+ aD4

1/s1+2ad

3y−1/s1+2ad + Osy1/s1+2add asy → 0. s39d

Impact free-surface profiles for various semiangle tapers
are shown in Fig. 2. It has been found that the free-surface
profile h2syd close to the wall is proportional toy−1/s1+2ad,

FIG. 2. Impact free-surface shapesh2syd /a0 for various semi-
anglea tapers.
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which is neither linear in Cumberbatch’s assumption[1] nor
exponential in Zhanget al.’s assumption[2]. Figure 3 shows
that the impact hydrodynamic pressure decreases asx in-
creases, whereas the pressure decreases asa increases.
Therefore, the pressure distribution fora→0 is the maxi-
mum envelope of all pressure distributions. The maximum
pressure always occurs on the axis of the fluid taper.

It is worth mentioning to this end that the above results
could be presented using other choice of the length scale. For
example, when comparing quantities of interest with the
same timescale, the penetration depthH could be defined to
replaceL in the definition of the length scale as shown in
Fig. 1. The results of the impact free-surface shapes and
impact pressure distributions are

h2syd → a03 G3+2as1 + adsin2s1+adsapd

4aps3+4ad/2as1 + 2adG3+2aS1

2
+ aD4

−1/s1+2ad

3y−1/s1+2ad + Osy1/s1+2add asy → 0 s40d

and

P0sjd =
8a0Gs1 + adsinsapd

p3/2GS1

2
+ aD E

0

p/2 ja+1/2

stan2 u + jd1/2

3
udu

sins2udstanud2a on 0, j , 1, s41d

respectively. The results show that sharp edge(smalla) pro-
duces lower pressures by using the same timescale compari-
son.

IV. CONCLUSIONS

An analytical approach is pursued to study the impact
force of a breaking wave on a rigid wall. The initial stage of
the impact is characterized by an impact of a two-
dimensional liquid taper acting on the wall with a prescribed
acceleration. The problems of the impact forces of breaking
waves impingement on the wall and the free-surface profile
have been solved analytically by using a small-time expan-
sion. Explicit analytical formulas for evaluating the impact
pressure and the free-surface profile have been given. It has
been found that the free-surface profile close to the wall is
neither linear in Cumberbatch’s assumption[1] nor exponen-
tial in Zhanget al.’s assumption[2].

[1] E. Cumberbatch, J. Fluid Mech.7, 353 (1960).
[2] S. Zhang, D. K. P. Yue, and K. Tanizawa, J. Fluid Mech.327,

221 (1996).
[3] J.-J. Shu, Phys. Fluids16, 610 (2004).

[4] A. T. Chwang, J. Fluid Mech.87, 343 (1978).
[5] A. T. Chwang, Phys. Fluids26, 383 (1983).
[6] P. L.-F. Liu, J. Fluid Mech.165, 131 (1986).
[7] A. C. King and D. J. Needham, J. Fluid Mech.268, 89 (1994).

FIG. 3. Impact pressure distributionsP0sx,0d /a0 on the wall for
various semianglea tapers.
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