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Slamming of a breaking wave on a wall
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This paper is intended to study impact forces of breaking waves on a rigid wall based on a nonlinear
potential-flow theory. This is a model problem for some technologically important design issues such as the
impact of breaking waves on ships, coastal and offshore structures. We are interested in the short-time succes-
sive triggering of nonlinear effects using a small-time expansion. The analytical solutions for the impact force
on a rigid wall and the free-surface profile are derived.
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I. INTRODUCTION [4—7] has been adopted here in the mathematical treatment to

There is a long history of experimental and theoreticaithe present problem although physical settings are different.
studies to determine impact forces acting on a rigid wall,
which is suddenly started from rest and made to move to-
wards a fluid taper. The problem is motivated by the impact Il. GOVERNING EQUATIONS
of breaking waves on ships, coastal and offshore structures,
which is one of the most severe environmental loads on We consider a rigid horizontal wall, being suddenly
structures. The impact due to a breaking wave striking a walstarted from rest and made to move vertically with constant
is of high intensity and short duration. This is attributed toaccelerationa, towards a two-dimensional fluid taper with
the direct collision between a fluid and a wall surface. Thesemi-anglear (0< a<3). A definition sketch of the flow is
direct collision of a breaking wave with a wall generates anshown in Fig. 1. The axis of the fluid taper is perpendicular
impulsive pressure on the wall. This is similar to the problemto the wall. Let me nondimensionalize timeby (L/ag)'/?,
of initial-stage water impact. Unfortunately, existing wave distance(x,y) by L, velocity (u,v) by (a,L)"/2 pressure by
theories based on small- and finite-amplitude assumptionﬁaOL, whereL is the wetted wall semilength when the break-
cannot be directly adopted to evaluate the breaking wavehg wave just touches the wall at timte=0 andp is the
force on a wall due to the highly nonlinear and transientgensity of the fluid. A mathematical statement of the above

nature of the problem. . _ problem can now be written as
In reviewing the previous studies, one of the most impor-

tant and unresolved questions is how the initial stage of the
breaking wave impingement on the wall can be properly
characterized and simulated. Cumberbaitidrconsidered the
case of symmetric normal impact of a water wedge on a wall
and Zhanget al. [2] extended his work to an oblique impact.
These two works stemmed from ad hocassumption on the
free-surface profiles close to the wall: in Cumberbdtth a
linear function was assumed, while in Zhaagal. [2], an
exponential function was used.

In the present study the free-surface profiles are analyti-
cally determined without prescribed functions. Effects of
gravity, viscosity and surface tension can be neglected since
inertia forces are dominant during the small-time impact pro-
cess. The essential mechanism involved in the impact pro-
cess can be described by the theoretical treatment of poten-
tial flow [3]. A small portion of the breaker tip is initially cut
off to produce a finite wetted area on the wall and a high
spike in the consequent impact results from an acceleration
of water towards the wall. We are interested here in the
short-time successive triggering of nonlinear effects using a
small-time expansion of the full, nonlinear initial/boundary A B 0 C
value problem. The leading small-time expansion is taken to }
include the accelerating effect. The analytical solutions for 0 1
the hydrodynamic force on a wall and the free-surface profile
are derived. It is worth to mention to this end that the tech- FIG. 1. Physicak plane is conformally mapped onto the upper
nigue used in investigating the earthquake effect on damsalf of thew plane.
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o u,  dv 17 17
s _U=0, (1) _1+_1=0’ ulz_ﬁ' vlz_ﬁ (12)
ox ady ox oX ay
subject to the conditions
au  du . du_ dp
g u&ﬂ}a_y__&’ 2 U =-27,, Pe=0 onx=-1-ytanam), (12)
wn o WP vi=a ony=0, (13
—+tu—tuv—=-—. 3
gt Xy dy u;=0 onx=0, (14)
For negative time <0 everything is at rest,
Po— 0 asy— . (15)
u=v=0, =0 fort<o, (4) i - :
It is clear that pressurp, satisfies the Laplace equation
where 7 is the free-surface “elevation” in the direction 2 2
beyond the undisturbed surface. On the surface, the kine- 9P, TPo_q (16)
matic and dynamic boundary conditions require X2 ay?
an Iy Introducing a complex-conjugate functiog with respect to
U=- TV PT 0 onx=-1-ytanam) - n(y,t). Po, We can construct an analytic function
(5) fo(2) =po+ido, z=Xx+iy. 17
On the wall surface, the normal velocity of fluid particles AS Shown in Fig. 1, the conformal mapping
must be the same as that of the wall at all the time T(1+a) w
L z=-1+ 1 f #V1-nYdr (18
v=at ony= antz- (6) x”WI‘(E + a) 0

On the axis of the fluid taper, the normal velocity of the fluid given by the Schwarz-Christoffel transformation, maps the
must vanish from consideration of symmetry about the axigipper half of thev plane(w=£+i¢) onto the region occupied
of the fluid taper, by the fluid. Herel is the Gamma function defined by

u=0 onx=0. 7) rw) :J e
The pressure vanishes at infinity, 0

p—0 asy— . (8) Functionfy is also an_alytic in the transformed variab\lfeO_n
. . . _ . the free surface, which correspondsé&ta 0 on the negative
The solution domain for this set of equatio®—-3) with  real axis,p, vanishes. On the axis of the fluid taper, which
conditions(4)<(8) is unknown at this stage of the analysis corresponds to the negative real axis inhplane, we have

but is conveniently described as dpo/ In=0, which means thaj, is a constant. Without loss of
generality, we may assungg=0 for £> 1 along the negative
(x,y,t):= 1 -y tan(am) — 5(y,tH) < x<0, real axis. On the wall surface, which corresponds to the line
segment B<¢<1, we takedpy/dn=-a,. Therefore, along
1, the real axis in thev plane, we have
Qo =y=® Ost<eer Re(f) =0 on - < £<0, (19)
dfg
Reg —|=-a, on0<¢<l, (20)
I1l. MATHEMATICAL ANALYSIS an
The full nonlinear initial/boundary value problem consists Im(f) =0 on 1< ¢ < o. (21)

of equationg1)—(3) with conditions(4)—«8). These equations
are solved analytically by employing a small-time expansionlf s(¢) measures the distance from po@tin Fig. 1 to any
We assume that point on the wall surface, the Cauchy-Riemann equations

UY=L O, vy =oaxyt+0@, OV
(9) Rdfo) =0 on —»<£<O, (22)
Im(fg) =— 0 1, 23
P(X,Y,1) = Po(xY) + O(t),  7(y,t) = 7a(y)t? + O(t%). m(fo) =~ ags(§) on0<¢< (23
(10 Im(f)) =0 on 1< &< oo, (24)
The leading-order equations are where the distancg(¢) is given by Eq.(18) as

066306-2



SLAMMING OF A BREAKING WAVE ON A WALL PHYSICAL REVIEW E 70, 066306(2004)

F 1+ 1 08
s(¢) = %f # Y 1-7Ydr on0<é<1.
\’WI‘<§ + a') ¢
06|
(25)
If we introduce a new analytic functiogy(w) by
go(w) = w V%o (w), 260 ™
the boundary conditions fagy(w) are unmixed
Im(gg) =0 on - < ¢<0, (27) 02r
Im(go) = - apé M%s(§) on 0< ¢<1, (28)
0 / .
4
Im(gg) =0 on 1< é< oo, (29) 1 x ’

The analytic functiongy(w) which is regular in the upper FIG. 2. Impact free-surface shapes(y)/ay for various semi-
half w plane and vanishes at infinity can be obtained from theétnglea tapers.
Schwarz integral formula

o 8ayl’(1 + a)cod am)
_1 (" Im(go) Po(é) =
GoW) = Wf_w T—W dr. (30 WSIZF(% + a)
Substituting Eqs(26)—(29) into Eqg.(30), we have w2 gt oo
1/2 1 Xf - " no< é
o) = — 2O f TUZS(T) dr (31 o (tarf 6+ 9 2sin(20)(tan )2
T Jo (r—w) -1 35

The impact pressure on the wall is the real parfq0év) for From Eqgs(11) and(12), we have
0<¢é< 1. Using Eq.(25) and integrating by parts, we have ’

on 0<é<1 fo

1 d
(&) = - > cos(om)lm< w

) oné<0. (36)
=0

I'l+a« 1
PO(&) = Rd f0|£:0) = M% Ta—l/Z

1 After some mathematical manipulation, we obtain
773’2F<— + a) 0

2 1

__% cog am) _1/2J‘ Lﬂd
N A2y A . 7(€) T A {|§| 4 |d) T
7,1/2_ §1/2 ' L
_ / s(7)
(32) 2|§|12f0 KT |§|)2d7 oné<0. (37)

where¢ denotes the Cauchy principal value. It is better to . . : h
express the above formula in the form that is suitable foldSing Eq.(25) and integrating by parts, we have §r-0

easy computation. Differentiating E¢B2) with respect tcg, aol'(1 + @)cod am) 1 o
we obtain 72() = f 12 dr
L " 2773’2I‘<1 + a) Ja’e (1 -DY(7+ &)
dP, 1+ ™A-7" ‘
d—O: I( 1a) (-7 dr on0<é<1. 2
¢ 773’2§1/2F(5 + a) 0 7—¢§ oné<0. (39
33 Making use of EQq.(18), the form of free-surface profile
(33 7,(y) close to the wall is seen to be
The integral on the right-hand side of E@3) can be ob- 3420 (1+a) 1(1+22)
tained by contour integration. Thus 7(y) — 8 2241 + a)cos™(am)
1
dPy _ aol'(1 + @)cogam) fw il d 47 3+402 (1 + 2a)F3+2“(§ + a)
e 172 T
dé 773/251/21«(% + a) o L+ A7+ Xy M1+2) 4 O(yU1+20) a5y Q. (39
Impact free-surface profiles for various semiangle tapers
on0< é< 1. (34) are shown in Fig. 2. It has been found that the free-surface
Integrating Eq(34), we have profile #,(y) close to the wall is proportional tg2/(1+22),
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3241 + a)sif ™) (ar) ~1M1+20)
7(Y) — 1
asl 47 3+A02(1 + 2a)r3+2a<5 + a)
6
1.5
Xy—1/(1+2a) + O(yl/(l+20()) asy — 0 (40)
P0) a=1 and
a, 4L 3
Py() = 8agl'(1 + a)sin(am) (™2 g*+1/2
o(é) =
ﬂ_g,zF(} . a) o (tarf g+ §)Y?
05t 2
6do
X———— on0<é<1, 41
, , , sin(26)(tan 6)%« ¢ (4D
% 02 0.4 0.6 0.8 1 .
X respectively. The results show that sharp eggmeall «) pro-

FIG. 3. Impact pressure distributio(x, 0)/ag on the wall for duces lower pressures by using the same timescale compari-
various semianglex tapers. son.

which is neither linear in Cumberbatch’s assumptidhnor
exponential in Zhangt al's assumptiorj2]. Figure 3 shows
that the impact hydrodynamic pressure decreases ias

IV. CONCLUSIONS

An analytical approach is pursued to study the impact

creases, whereas the pressure decreasea awreases.
Therefore, the pressure distribution far—0 is the maxi-

force of a breaking wave on a rigid wall. The initial stage of
the impact is characterized by an impact of a two-

mum envelope of all pressure distributions. The maximundimensional liquid taper acting on the wall with a prescribed

pressure always occurs on the axis of the fluid taper.

acceleration. The problems of the impact forces of breaking

It is worth mentioning to this end that the above resultswaves impingement on the wall and the free-surface profile
could be presented using other choice of the length scale. Ftvave been solved analytically by using a small-time expan-
example, when comparing quantities of interest with thesion. Explicit analytical formulas for evaluating the impact
same timescale, the penetration deltlcould be defined to pressure and the free-surface profile have been given. It has
replacelL in the definition of the length scale as shown in been found that the free-surface profile close to the wall is
Fig. 1. The results of the impact free-surface shapes andeither linear in Cumberbatch’s assumpt[@hnor exponen-
impact pressure distributions are tial in Zhanget al's assumptior{2].
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