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Abstract

A new two-layer model has been proposed to study microscale heat transfer associated with a
developing flow boundary layer. As an example, a cold, microscale film of liquid impinging on an
isothermal hot, horizontal surface has been investigated. The boundary layer is divided into two
regions: a micro layer at microscale away from the surface and a macro layer at macroscale away
from the surface. An approximate solution for the velocity and temperature distributions in the flow
along the horizontal surface is developed, which exploits the hydrodynamic similarity solution for
microscale film flow. The approximate solution may provide a valuable basis for assessing microscale
flow and heat transfer in more complex settings.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

There has been an enormous interest in developing microscale systems. The
technological world is working towards the ideology that “small is beautiful”. A whole
new field of studies and research has sprung up to investigate the properties of this
microscale size technology. Recently noticeable progress has been made in the field of
microelectromechanical systems (MEMS), thin films, superlattices and nanomaterials, it
opens up the different fields of studies in the traditional engineering disciplines like heat
transfer.

Heat transfer at microscale is becoming increasingly important in the development of
microtechnological systems. As systems approach microscopic scale, increasing deviations
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Fig. 1. Flow characteristics of a two-dimensional vertical jet striking a horizontal flat plate: (i) embedded
stagnation boundary layer, (ii) outer inviscid deflection region, (iii) quasi Blasius viscous diffusion, (iv) transition
around viscous penetration, (v) similarity film flow.

from the well-established continuum laws are reported [1]. The continuum approaches such
as Navier–Stokes equations are useful to describe macroscopic behavior of fluids. Fluid
particles are assumed to have no mass and only translate. However, they fail to describe
fluids with microstructures. The individual particles of such fluids can be of different
shapes and may shrink or expand. In addition, they can also rotate independently from
the rotation of the fluid as a whole [2]. As the length scale of structural constituents
becomes comparable to the intrinsic characteristic length scale of the fluid mean-free-
path, the validity of the standard continuum approach with no-slip boundary conditions
diminishes and sub-continuum effects are expected to become increasingly important.

In this paper the microscale heat transfer characteristics of a developing flow boundary
layer is studied. As an example, the problem to be examined concerns the microscale film
cooling, which occurs when a cold vertically draining sheet strikes a hot horizontal plate.
Although a sheet of fluid draining under gravity will accelerate and thin, at impact it is
reasonable to model the associated volume flow as a jet of uniform velocityU0 and semi-
thicknessH0, as is illustrated inFig. 1. The notationQ = U0H0 is introduced for the flow
rate and a film Reynolds number may be defined asRe = ρQ/µ, whereµ is the dynamic
viscosity of the fluid.

The boundary layer has two regions: a micro layer at microscale away from the surface
and a macro layer at macroscale away from the surface. The underlying hydrodynamics of
the fluid flow may be summarized as [3]:

(i) a deeply imbedded stagnation boundary layer of thickness;
(ii) an outer inviscid deflection region, in which fluid rapidly accelerates from the value

zero on the axis of symmetry to the free stream value;
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Fig. 2. Basis of approximate solution.

(iii) a Blasius region in which a boundary layer develops against the plane, effectively
within a uniform stream;

(iv) a transition region in which viscous effects penetrate the free surface and reduce its
velocity;

(v) a region well away from the axis of symmetry where similarity solutions for the
developing film thickness, the free surface velocity and the velocity distribution can
be found.

The temperature condition within which heat transfer estimates will be obtained
assumes a constant temperatureTw at the plane and zero heat flux at the free surface. If the
rate of viscous diffusion exceeds that of temperature diffusion, the point at which viscous
effects penetrate the free surface will occur before the point at which the free surface first
experiences the presence of the hot plane. This physical appraisal of the developing flow
field provides the framework for the initial approximate method of solution. Schematically
the flow may be represented as inFig. 2and divided into the following regions.

Region 1

In this region the impinging jet essentially experiences an inviscid symmetric division
and deflection. A viscous boundary layer develops against the horizontal plate within the
deflected jet and eventually penetrates the free surface marking the end of Region 1. A
thermal boundary layer develops simultaneously, but for Prandtl numbers greater than unity
this will still be evolving at the end of Region 1.

Region 2

A judicious choice of approximating profiles in Region 1 is designed to approximate
immediate transition to the film similarity solution at the onset of Region 2. Consequently
Region 2 is examined under the assumption that the full hydrodynamic similarity solution
is applicable. The adjustment of the temperature field as thermal effects develop and
penetrate the free surface within this hydrodynamic setting is monitored. The end of
Region 2 is notionally reached when the presence of the hot wall is first detected at the
free surface.
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Region 3

In the film cooling setting, when there is zero heat flux at the free surface, the film will
eventually reach a uniform temperature distribution, coinciding with the temperature of the
wall. Again within the established hydrodynamics, Region 3 covers the evolution towards
this asymptotic state once wall temperature effects penetrate the free surface.

2. Governing equations

The microscale flow under investigation has been modeled as a steady, two-dimensional
flow of incompressible micropolar fluid in the micro layer and a Newtonian fluid
in the macro layer. The two layers are distinguished by a dimensionless parameter
Knudsen numberKn, which is defined as the ratio of the fluid mean-free-path and the
macroscopic length scale of the physical system. In the absence of body forces, external
pressure gradients and viscous dissipation the equations expressing conservation of mass,
momentum and energy are consequently

Micro layer (0< Y < KnH (X), T = Tw)

(µ+ µr )
∂2U

∂Y 2
+ 2µr

∂ω

∂Y
= 0 (1)

γ
∂2ω

∂Y 2
− 2µr

(
∂U

∂Y
+ 2ω

)
= 0. (2)

Macro layer (KnH (X) < Y < H (X), ω = 0)

∂U

∂X
+ ∂V

∂Y
= 0 (3)

ρ

(
U
∂U

∂X
+ V

∂U

∂Y

)
= µ

∂2U

∂Y 2
(4)

ρCp

(
U
∂T

∂X
+ V

∂T

∂Y

)
= k

∂2T

∂Y 2
(5)

whereµr is the dynamic microrotation viscosity of the fluid. In the specified physical
setting, the equations are to be solved subject to the following conditions:

U = 0, ω = −b

2

∂U

∂Y
, T = Tw on Y = 0, X ≥ 0 (6)

U = εUs, V = 0, ω = 0, T = Tw at Y = KnH (X), X ≥ 0 (7)
∂U

∂Y
= 0, ω = 0,

∂T

∂Y
= 0 atY = H (X), X ≥ 0 (8)∫ H(X)

0
U(X,Y ) dY = constant= H0U0 for X ≥ 0. (9)

In assigning a variable relation between microrotationω and skin friction∂U/∂Y at the
wall surfaceY = 0, the fractionb varies from zero to two. The value ofb = 0 represents
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cases where the fluid particle density is sufficiently great that the microelements close to
the wall are unable to rotate. The valueb = 1 corresponds to weak concentrations, and
whenb = 2 we have cases that are representative of a turbulent boundary layer.

On the assumption that the film thickness remains thin relative to a characteristic
horizontal dimension, a boundary layer treatment of the equations leads to significant
simplification. The following non-dimensional variables are introduced

x = X

ReH0
, y = Y

H0
, h̄(x) = H (X)

H0
,

Ū = U

U0
, V̄ = ReV

U0
, ω̄ = H0ω

U0
, φ̄ = T − Tw

T0 − Tw
. (10)

In the limit Re → +∞, with x remainingO(1), the following equations are obtained

Micro layer (0< y < Knh̄(x), φ̄ = 0)

∂2Ū

∂y2
+ λ

∂ω̄

∂y
= 0 (11)

∂2ω̄

∂y2
− α

(
∂Ū

∂y
+ 2ω̄

)
= 0. (12)

Macro layer (Knh̄(x) < y < h̄(x), ω̄ = 0)

∂Ū

∂x
+ ∂ V̄

∂y
= 0 (13)

Ū
∂Ū

∂x
+ V̄

∂Ū

∂y
= ∂2Ū

∂y2 (14)

Pr

(
Ū
∂φ̄

∂x
+ V̄

∂φ̄

∂y

)
= ∂2φ̄

∂y2
(15)

wherePr = Cpµ/k is the Prandtl number,λ = 2µr/(µ+ µr ) andα = 2µr H 2
0/γ are the

dimensionless micropolar fluid parameters. The boundary conditions now read

Ū = 0, ω̄ = −b

2

∂Ū

∂y
, φ̄ = 0 on y = 0, x ≥ 0 (16)

Ū = εŪs , V̄ = 0, ω̄ = 0, φ̄ = 0 at y = Knh̄(x), x ≥ 0 (17)

∂Ū

∂y
= 0, ω̄ = 0,

∂φ̄

∂y
= 0 at y = h̄(x), x ≥ 0 (18)

∫ h̄(x)

0
Ū dy = 1 for x ≥ 0. (19)

These have been quoted in the context of the fully developed film flow field, which is
approached in Region 3. These solutions provide the basis for developing comprehensive
approximate solutions for the complete flow field downstream of the symmetry point of
impingement incorporating Regions 1, 2 and 3.



650 J.-J. Shu / Superlattices and Microstructures 35 (2004) 645–656

3. Exact solutions for the micro layer (0 < y < Knh̄(x), φ̄ = 0)

The main differences between the governing equations of a Newtonian fluid and a
micropolar fluid are firstly, the stress tensor is not symmetric in the law of conservation
of momentum and secondly, micropolar fluid has an additional equation called law of
conservation of angular momentum. The governing equations for linear momentum and
angular momentum are:

∂2Ū

∂y2
+ λ

∂ω̄

∂y
= 0 (20)

∂2ω̄

∂y2
− α

(
∂Ū

∂y
+ 2ω̄

)
= 0. (21)

The boundary conditions can be stated as follow:

Ū = 0, ω̄ = −b

2

∂Ū

∂y
on y = 0, x ≥ 0 (22)

Ū = εŪs, ω̄ = 0 at y = Knh̄(x), x ≥ 0. (23)

The linearly independent particular solutions forŪ are sinh(y
√
α(2 − λ)), cosh(y ×√

α(2 − λ)), y and 1, while the linearly independent particular solutions forω̄ are
sinh(y

√
α(2 − λ)), cosh(y

√
α(2 − λ)) and 1. Here 2−λ is greater than zero. This is to say

that the dynamic microrotation viscosity,µr , is always positive. This is true for most cases
of liquids. Applying boundary conditions, we can obtain the velocity and angular velocity
profiles, as shown below,

Ū = εŪs

4 − bλ

y

Knh̄

(
4 − bλ

y

Knh̄

)
+ O(Kn2) (24)

ω̄ = − 2bεŪs

(4 − bλ)Kn

(
1 − y

Knh̄

)
+ O(Kn). (25)

With Eqs. (24) and (25), we have successfully derived the velocity and angular velocities
in terms for a micropolar fluid. They incorporate the microrotational viscosity term into
the general forms of velocities and angular velocities.

4. Downstream similarity solutions for the macro layer (Knh̄(x) < y < h̄(x), ω̄ = 0)

Introducing a similarity variableη = y−Knh̄(x)
(1−Kn)h̄(x)

, a stream function form of solution

ψ(x, y) = (1 − Kn)Ūs(x)h̄(x) f (η) leads to the similarity solution as the solution of

2 f ′′′ + 3c2 f ′2 = 0,

f ′(0) = ε, f ′(1) = 1, f ′′(1) = 0. (26)

HereŪs(x) represents the non-dimensional unknown velocity at the free surface,c can be
obtained analytically as
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c = 3− 1
4 F

(
sin

5π

12
; arccos

√
3 − 1 + ε√
3 + 1 − ε

)
=

√
πΓ

(
1
3

)
3Γ

(
5
6

) + ε + O(ε2)

≈ 1.402+ ε + O(ε2)

where the incomplete elliptic integral of the first kind is defined as

F(p;χ) =
∫ χ

0

dθ√
1 − p2 sin2 θ

.

The hydrodynamics are fully determined by the results

Ūs(x) = 9c2

2π2(x + l)
, h̄(x) = π√

3(1 − Kn)
(x + l). (27)

Here l is a non-dimensional shift constant reflecting that the solutions hold at large
distances from the jet incidence. In due coursel may be estimated by further consideration
of the boundary layer growth from the point of impact of the jet. Withφ̄(x, y) = φ̄(η) it is
readily shown that̄φ satisfies

φ̄′′ = 0, φ̄(0) = φ̄′(1) = 0. (28)

Thus, as anticipated, the asymptotic downstream solution for the temperature distribution is
just φ̄(η) = 0, i.e. the temperatureTw ultimately persists throughout the film if∂T/∂y = 0
at the free surface.

5. Approximate solutions

An approximate solution scheme is now presented which examines closely the flow
at impingement. The solution is built up from this vicinity, stage by stage, to provide
comprehensive details of the velocity and temperature distribution along the entire plate.

5.1. Region 1

At impact, an inviscid deflection of the draining sheet occurs over a negligibly small
length scale. Essentially the flow along the plane in this region is modeled as a horizontal
film of uniform velocityU0 arriving at the leading edgeX = 0 of a semi-infinite flat plate.
Only after deflection will the flow be aware of the presence of the solid boundary, and only
then will viscous effects begin to influence the flow field. The development of a viscous
boundary layer within a uniform velocity film indicates a close parallel in this region with
the Blasius boundary layer flow. Similarly the temperature differential between the plane
and the fluid will only begin to influence the temperature distribution after deflection. Thus
a developing thermal boundary layer may also be anticipated fromX = 0.

The equations governing the viscous and thermal boundary layers are exactly the same
as (13)–(15), but the boundary conditions now read

Ū = ε, V̄ = 0, φ̄ = 0 on y = Knh̄(x), x ≥ 0
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Ū → 1, φ̄ → 1 asy approaches the outer limits of the
viscous and thermal boundary layers respectively

Ū = 1, φ̄ = 1 atx = 0, y > 0.

Their solutions forPr > 1 indicate that the length scale of thermal diffusion can be
significantly less than that of viscous diffusion. Viscous effects, in due course, must
penetrate the free surface and the transition region ofFig. 1 is essentially a region of
adjustment from the Blasius profile to the similarity profile. As the profiles are not greatly
dissimilar, a device that in effect compresses the transition region to a single point is
introduced. An approximate velocity profile

Ū(x, y) = f ′(η), η = y − Knh̄(x)

δ(x)
(29)

is assumed, whereδ(x) is the non-dimensional boundary layer thickness. A polynomial
approximation to the velocity profile is more convenient. To maintain the aggregate and
matching properties off ′(η), and simultaneously exploit the convenience of a polynomial
representation, a fourth-order polynomial approximation tof ′(η) has been obtained as

f ′(η) = ε + (c0 + ε)η + (4 − 3c0 − 7ε)η3 + (2c0 − 3 + 5ε)η4,

wherec0 is the constant
√
πΓ ( 1

3 )

3Γ ( 5
6 )

≈ 1.402. The profile is then used in a K´armán–Pohlhausen

method of solution. Over Region 1 unretarded fluid is present whenx < x0, say wherex0
marks the point of penetration of viscous effects at the free surface, so thatŪs(x) = 1 and
δ(x) < h̄(x) over 0< x < x0. Forx > x0 into Region 2δ(x) ≡ h̄(x) andŪs(x) < 1 in a
manner which, using the conservation of flow constraint, can be matched directly onto the
asymptotic similarity solutions. The momentum integral equation reads

d

dx

∫ δ(x)+Knh̄(x)

Knh̄(x)
Ū(1 − Ū) dy =

(
∂Ū

∂y

)
y=Knh̄(x)

+ O(ε2) (30)

and using (29) leads to the solution

δ2 = (19.775+ 6.898ε)x + O(ε2) (31)

whereδ(x) = 0 has been assumed atx = 0, which is valid in the limit of the underlying
assumption. Invoking the conservation of volume flow atx0, the end point of Region 1
leads to∫ δ(x)+Knh̄(x)

Knh̄(x)
Ūdy + (h̄ − δ) = 1 + O(ε2) (32)

whence

h̄(x) = 1 + 3(4 − c0 − 5ε)δ

20
+ O(ε2). (33)

Sinceδ(x0) = h̄

x0 = 0.136− 0.381ε + O(ε2) (34)
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and matching the free surface velocity atx = x0 leads to

l = 0.76+ 1.659ε + O(ε2). (35)

The polynomial f ′(η) is consequently used in subsequent developments of velocity
and temperature distributions. It remains to establish the temperature characteristics in
Region 1. The energy integral equation of (15) becomes

d

dx

∫ δT (x)+Knh̄(x)

Knh̄(x)
Ū(1 − φ̄) dy = 1

Pr

(
∂φ̄

∂y

)
y=Knh̄(x)

+ O(ε2), (36)

whereδT (x) denotes the outer limits of the region of thermal diffusion. ForPr > 1,

δT (x) < δ(x) over 0 < x < x0. The notationηT = y−Knh̄(x)
δT (x)

is introduced and the
ratioδT /δ is denoted by∆ so thatη = ∆ηT . The solution forδT (x) is again developed by
assuming profiles for̄U andφ̄ as

Ū(η) = f ′(η), φ̄(ηT ) = f ′(ηT ) (37)

which ensures identical velocity and temperature distributions forPr = 1 when also
∆ = 1. Assuming a constant ratio∆ leads to

Pr∆2 = 0.142

D(∆)
− (0.055− 0.046∆ − 0.021∆3 + 0.011∆4)ε

D2(∆)
+ O(ε2), (38)

whereD(∆) = ∆(0.149−0.005∆2−0.003∆3). The values of∆ can obtained numerically
for various Prandtl numbers. Notice that as a result of the choice of approximating profile
the velocity distribution at the end of Region 1 exactly matches that of Region 2.

5.2. Region 2

In Region 2, the hydrodynamics are governed by the similarity solution where thermal
diffusion continues to progress across the film. Accordingly the velocity at the free surface
is no longer uniform, but is prescribed in non-dimensional terms by (27). The film thickness
h̄(x) and the viscous boundary layer thicknessδ(x) now coincide as

δ(x) = h̄(x) = π√
3(1 − Kn)

(x + l). (39)

The energy integral Eq. (36) remains appropriate. The presence of the free surface limits
further viscous penetration andδT (x) → δ(x) = h̄(x). In prescribing profilesηT =
y−Knh̄(x)
δT (x)

may again be utilized, but now∆(x) = δT (x)
δ(x) is no longer constant, and must in

fact tend to 1 at the end of Region 2. The following profiles are introduced into the energy
equation:

Ū(x, η) = Ūs(x) f ′(η), φ̄(x, ηT ) = f ′(ηT ). (40)

The equation forδT (x) is accordingly

δT (x)
d

dx

{
Ūs(x)δT (x)

∫ 1

0
f ′(η)[1 − f ′(ηT )] dηT

}
= c0 + ε

Pr
+ O(ε2). (41)
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This resultant first-order equation in∆2 may now be integrated with initial data∆(x0; Pr)
as far as∆(x1(Pr); Pr) = 1 to give

∆2(0.299− 0.019∆2 − 0.014∆3)+ ∆(0.39− 0.535∆ − 0.597∆3 + 0.393∆4)ε

= 0.476− 0.951Kn − 0.339ε

Pr
ln

x + l

x1 + l
+ 0.266− 0.349ε + O(ε2). (42)

x1 marks the end of Region 2, as predicted, using the polynomial profile. Beyondx1 viscous
and thermal effects are present throughout the film.

5.3. Region 3

The boundary condition of zero heat flux at the edge of the developing thermal layer in
Region 1 and Region 2 is based on the assumption of a continuous temperature distribution
developing smoothly into the impinging jet temperature. Once the temperature effects of
the hot wall penetrate the free surface beyondx1(Pr) the zero heat flux boundary condition
remains appropriate. Here, however, it reflects the insulating role of the surrounding air.
As a consequence, the temperature of the film will now rise as a result of continuing heat
input at the plate. In fact the temperature of the film will now progress toTw, so long as
the insulating boundary condition is maintained.

To accommodate the adjustment of the film temperature toTw, the following profiles
are adopted

Ū(x, η) = Ūs(x) f ′(η), φ̄(x, η) = β(x) f ′(η) (43)

where nowη = y−Knh̄(x)
h̄(x)

. The energy integral equation now reads

d

dx

∫ h̄(x)+Knh̄(x)

Knh̄(x)
Ū (β − φ̄) dy −

∫ h̄(x)+Knh̄(x)

Knh̄(x)
Ū

dβ

dx
dy

= 1

Pr

(
∂φ̄

∂y

)
y=Knh̄(x)

+ O(ε2). (44)

The result is an equation forβ(x) within the framework of prescribed film thickness,
namely

(0.142+ 0.052ε)
d

dx
(Ūs h̄β)− (0.61+ 0.75ε)Ūsh̄

dβ

dx

= 1.402+ ε

Pr

β

h̄
+ O(ε2) (45)

and hence,

β(x) =
(

x1 + l

x + l

) 1.015−2.03Kn−2.237ε
Pr + O(ε2) (46)

which satisfies the requirementsβ(x1(Pr)) = 1 and hasβ(x) → 0 at rates dependent
on Pr.
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6. Approximate solution results

The approximate solution scheme outlined provides comprehensive details of the flow
and heat transfer characteristics for the model flow. Estimates of film thickness, velocity
and temperature distributions, skin friction and heat transfer coefficients over the entire
region downstream of the point of impingement can be obtained.

The elements of interest in engineering practice are the shear stress at the solid
boundary, i.e. the skin friction and the rate of heat transfer at the boundary. The skin friction
is defined as

τ = µ

(
∂U

∂Y

)
Y=KnH(X)

(47)

leading to the non-dimensional skin friction coefficient

τ̄ = H0τ

µU0
= τRe

ρU2
0

=
(
∂Ū

∂y

)
y=Knh̄(x)

. (48)

The approximate solutions give

τ̄ = (0.315+ 0.17ε)x− 1
2 + O(ε2) in Region 1

= (0.693− 0.693Kn + 1.482ε)(x + l)−2 + O(ε2) in Regions 2 and 3. (49)

The integrable square root singularity is consistent with the Blasius boundary layer
equivalent. The most significant film cooling design factor is the heat transfer across the
film. The heat transfer at the solid boundary is given by

q = −k

(
∂T

∂Y

)
Y=KnH(X)

= k�T

H0

(
∂φ̄

∂y

)
y=Knh̄(x)

, (50)

where�T = Tw − T0. The non-dimensional version is the Nusselt number defined as

Nu = q H0

k�T
=
(
∂φ̄

∂y

)
y=Knh̄(x)

. (51)

The results are

Nu = 1

∆(Pr)

0.315+ 0.17ε√
x

+ O(ε2) in Region 1

= 1

∆(x; Pr)

0.773− 0.773Kn + 0.551ε

x + l
+ O(ε2) in Region 2

= 0.773− 0.773Kn + 0.551ε

x + l

(
x1 + l

x + l

) 1.015−2.03Kn−2.237ε
Pr

+ O(ε2) in Region 3. (52)

The values of∆(Pr) have been obtained from (38) and∆(x; Pr) is the solution of (42).
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7. Concluding remarks

An approximate solution and the elements of engineering practice, namely the skin
friction and heat transfer coefficients for the microscale flow of a cold two-dimensional jet
against a hot, horizontal plate have been presented. Although at this stage a comparison
between theory and experiment is unavailable, the work provides the basis for re-assessing
microscale condensation.
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