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Abstract

Polymeric materials such as polycarbonate (PC) and poly-methyl methacryate (PMMA) are replacing silicon as the major substrate in

microfluidic system fabrication due to their outstanding features such as low cost and good chemical resistance. In this study, chemical

mechanical polishing (CMP) of PC and PMMA substrates was investigated. Four types of slurry were tested on CMP of the polymers under

the same process conditions. The slurry suitable for polishing PC and PMMA was then chosen, and further CMP experiments were carried

out under different process conditions. Experimental results showed that increasing table speed or head load increased the material removal

rates of the polymers. The polymeric surface quality after CMP was acceptable to most MEMS applications. Analysis of variance was also

carried out, and it was found that the interaction of head load and table speed had a significant (95% confidence) effect on surface finish of

polished PMMA. On the other hand, table speed had a highly significant (99% confidence) effect on surface finish of polished PC.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In an article entitled ‘Silicon as a micromechanical

material’, Petersen [1] described techniques for micro-

electro-mechanical systems (MEMS) fabrication. Proces-

sing of silicon wafers has played an enhanced role in

manufacturing of MEMS [2]. On the other hand, increasing

demands for high electrical performance have led to

significant advances in integrated circuit (IC) fabrication

and microelectronics packaging [3–5].

Technical advances inspired the development of chemi-

cal mechanical polishing (CMP) for IC fabrication at IBM

[6,7]. As semiconductor chips are highly integrated, more

precise planarization of each layer on chips is needed [8].

Interlevel dielectric planarization by CMP is necessary for

technologies beyond the 0.35-mm CMOS (complimentary

metal-oxide semiconductor) generation [9]. CMP has

emerged as the preferred manufacturing process for
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planarizing multi-level metal layers in ICs [10,11], although

diamond grinding can also generate mirror surfaces on

brittle materials including silicon [12–17].

A dielectric constant k!3, gap filling at high aspect

ratios [18], and global planarization are challenging

demands for dielectrics in conventional multilevel metalli-

zation schemes of modern IC technologies [19]. Novel IC

devices based on structures of low-k material/Cu have been

proposed recently using the CMP technology [20].

However, reduction of scratches is required in advanced

CMP processes [21]. Ultra-low-k dielectrics are prone to

damage during CMP. Most ultra-low-k materials are also

attacked by CMP or post-CMP cleaning chemicals [22].

Other CMP applications include polishing of Ba0.6Sr0.4TiO3

for ferroelectric random access memory applications [23]

and SiLK dielectric planarization [24].

For MEMS applications, CMP processes have also been

developed for planarizing silicon dioxide and metal layers

[25]. CMP is used to achieve flat, mirror-like surfaces for

optical devices, planarize the topology from previous

manufacturing steps, and reduce film roughness for more

precise lithography or for wafer bonding [26].

Traditionally, silicon and glass have been the major

materials used in MEMS [27]. However, many biomedical
Microelectronics Journal 37 (2006) 295–301
www.elsevier.com/locate/mejo

http://www.elsevier.com/locate/mejo


Table 1

Parameters and their settings for the CMP experiments

Parameter Setting

(experiment 1)

Setting

(experiment 2)

Process time (min) 1 1

Table speed (rpm) 30 20, 30, 40

Oscilation speed (mm/sec) 2 2

Spindle speed (rpm) 40 40

Head load (g/cm2) 100 75, 100, 125

Slurry flow rate (ml/min) 100 100

Slurry Simlox, ILD 1200,

Mazin SRS1 and

SRS3

The slurry selected

after experiment 1

Fig. 1. MRRs of the polymers polished using the four types of slurry.
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devices require soft or polymeric materials such as

polycarbonate (PC) and polyimide. Polymers are inexpen-

sive and can be used in disposable devices, relaxing

stringent sterilization-on-reuse requirements. They provide

a more suitable interface with biological tissue [28]. Soft

materials have many attributes that make them ideally suited

for defining microfluidic, optical and nanoelectromechani-

cal structures with low-cost replication processes [29].

Therefore, further developments have focused on

substituting silicon and silicon dioxide with polymers in

recent years. For semiconductor devices, polymers excel

due to their relatively low dielectric constants, minimized

interconnection delays and improved conductor-packaging

density. In MEMS, the use of polymers is mostly aimed at

creating high-aspect-ratio structures [8].

Microfluidics [30,31], a MEMS technology, enables the

fabrication of networks of channels, chambers, and valves to

control the flow of liquids in amounts as minute as one

picoliter. Chemical analysis, drug delivery, biological

sensing and environmental monitoring typically incorporate

MEMS microfluidic devices [32].

Recent developments in MEMS fabrication techniques

have moved away from the mask/etch paradigm and instead

exploit properties of polymers. Imprinting techniques can be

used to fabricate microfluidic devices on poly-methyl

methacryate (PMMA) substrates [33]. When choosing a

polymer-based substrate, its properties are critical for the

fabrication process and successful application of the device

[34]. Because of their properties like fine resolution and

stability, PMMA and PC are also common materials for

many other applications [35,36].

In a CMP process, one polishing condition can result in a

large difference in material removal rates (MRRs), which

influence other important aspects of a CMP process, such as

planarization efficiency [37]. Major process parameters of

CMP are slurry, polishing pressure, polishing pad material,

polishing pad and workpiece spinning speeds. The success

of CMP depends on selection of process parameters [38].

Common problems encountered in using CMP arise from

lack of predictive capability regarding the MRR and its

dependence on various parameters, and difficulties in

removal of colloidal particles adhering to the workpiece

surface after polishing [30]. The demand of lithographic

exposure resolution increases when component sizes

decrease. The global planarization technology becomes

increasingly important, although CMP may also introduce

surface defects and increase the demand for automatic

defect-detection techniques [39]. CMP mechanisms are

very complicated and not understood clearly yet. It is

extremely difficult to analyze its polishing mechanisms

[40,41]. Therefore, experiments are conducted repeatedly to

ensure the best process conditions [42].

Reports on CMP of polymeric materials are still scarce,

compared to reports on CMP of silicon wafers. In this study,

CMP of PC and PMMA substrates was investigated. Four

types of slurry were tested on CMP of these polymers under
the same process conditions. The slurry suitable for

polishing PC and PMMA was then chosen, and further

CMP experiments were carried out under different process

conditions to study the effects of two key process

parameters on CMP of PC and PMMA.
2. Experiments

PMMA and PC samples were prepared by cutting them

into 2-mm-thick round-shape plates with a 150-mm

diameter. A face polisher was used to grind surfaces of

the samples under a MD 600 polishing disc. The surface

roughness after grinding was between 0.1 and 0.3 mm. The

samples were then polished using specified parameters on

an Okamoto SPP-600S CMP machine.

Table 1 shows the parameter settings used. The slurry

flow rate was 100 ml/min, the spindle rotation speed was

40 rpm, and the oscillation speed was 2 mm/s.

In experiment 1, head load was 100 g/cm2 and table

speed was 30 rpm, which were typical polishing conditions

for bulk removal of silicon using the CMP machine. Four

types of slurry, namely Simlox, ILD 1200, Mazin SRS1 and

SRS3, were evaluated and the most suitable slurry for CMP

of the polymers was then selected based on analysis of

MRRs and surface finish of polished samples. ILD 1200 is



Fig. 2. Results of the material hardness test.

Fig. 3. Surface roughness of the polymers after CMP using four types of

slurry.
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fumed silica polishing slurry containing ammonium

hydroxide. Mazin SRS1 and SRS3 are colloidal silica

polishing slurry for stock removal applications. Okamoto

Simlox A1136 is slurry designed for removal of polymeric

materials.
Fig. 4. Effects of head load and tabl
In experiment 2, two key process parameters, head load

and table speed, were varied to examine their effects on

polishing efficiency and quality. To limit the number of

experiments, three levels (low, median and high) for each

parameter were assigned: 75, 100 and 125 g/cm2 for head

load, and 20, 30 and 40 rpm for table speed. The slurry

selected after experiment 1 was used.

Before and after polishing, the thickness of samples was

measured using a head thickness gauge to compute the

MRR, which was defined to be the thickness reduction per

minute in this study. After CMP, surface roughness of

samples was measured using an atomic force microscope

(AFM), and the arithmetic average roughness Ra and the

root-mean-square roughness Rq were obtained. AFMs are

widely used for characterization of smooth surfaces [43] and

inspection of surface deformations [44].
3. Results and discussion

Fig. 1 shows measured MRRs of the polymers polished

using the four types of slurry. MRRs of PMMA are between

0.009 and 0.018 mm/min, which are much lower than those

of PC (0.043–0.064 mm/min). This significant difference

results from the difference of material hardness. Material

hardness of the polymers was measured using a Vickers

hardness tester and the results are shown in Fig. 2. The

average hardness of PMMA and PC substrates used in our

experiments was 161 and 134 MPa, respectively. PMMA is

harder than PC. The MRRs of PC were seven and three

times those of PMMA when ILD 1200 and Simlox were

used, respectively.

The measured surface roughness of the polymers

polished using the four types of slurry is shown in Fig. 3.

PMMA samples are harder and after CMP have better

surface finish (lower Ra values) than PC samples polished
e speed on MRRs of PMMA.



Fig. 5. Effects of head load and table speed on MRRs of PC.
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under the conditions used. The smoothest PMMA and PC

surfaces were obtained by CMP using Simlox.

Figs. 1 and 3 do not indicate which slurry is the most

effective in polishing both polymers and at the same time

can produce the best surface finish. However, Simlox

produced relatively high MRRs and the lowest surface

roughness values in polishing the polymers. Therefore, it

was selected to be the CMP slurry, and was used in

experiment 2 to evaluate effects of two key process

parameters.

Figs. 4 and 5 show the effects of head load and table

speed on MRRs in polishing of PMMA and PC. MRRs

increase with increased head load and table speed. The

results approximately agree with the Preston Equation [1,6]:

MRR Z KpP
Ds

Dt
(1)

Where P is the pressure, Ds/Dt is the linear velocity of

the pad relative to the workpiece and Kp is the Preston
Fig. 6. Effects of head load and table speed on surface finish of polished

PMMA.
coefficient. Another trend revealed from the two figures was

that within the chosen experimental parameter ranges, the

variation of table speed introduced a more significant

change in MRRs than that of head load.

Surface roughness of polished PMMA and PC samples is

shown in Figs. 6 and 7, respectively. Figs. 8 and 9 show

examples of AFM images of polished polymers. These

figures show that the softer polymer (PC) after CMP had

deeper micro scratches than the harder polymer (PMMA)

after CMP, and therefore had higher surface roughness

values. However, all of polished PMMA and PC surfaces

had nanometer-order surface roughness heights. In general,

the surface quality after CMP appeared to be acceptable to

most MEMS applications. However, intensive post-CMP

cleaning was required to get rid of particles and chemical

remains introduced by the CMP process.

Directly from Figs. 6 and 7, it is difficult to draw any

conclusions whether there are any significant effects of head

load and table speed on surface roughness of polished
Fig. 7. Effects of head load and table speed on surface finish of polished PC.



Fig. 8. AFM image of PMMA polished using Simlox, table speedZ20 rpm, and head loadZ75 g/cm2.

Fig. 9. AFM image of PC polished using Simlox, table speedZ20 rpm, and head loadZ125 g/cm2.

Table 2

ANOVA table for PMMA

Source of

variation

Sum of

squares

Degrees of

freedom

Mean

square

F

value

Table speed 0.498 2 0.249 0.346

Head load 0.68 2 0.34 0.472

Interaction of

head load and

table speed

12.56 4 3.14 4.361

Error 6.48 9 0.72

Total 20.184 17
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PMMA and PC. Therefore, analysis of variance (ANOVA)

of the two-factor factorial experiments was carried out using

the measured surface roughness values to investigate the

effects on surface finish of polished PMMA and PC, as

shown in Tables 2 and 3, respectively. The summary of the

ANOVA results is shown in Table 4.

It was found that only the interaction of head load and

table speed had a significant (risk aZ0.05, 95% confidence)

effect, and individual head load and table speed had no

significant effects on surface finish of polished PMMA

samples. On the other hand, only table speed had a highly

significant (aZ0.01, 99% confidence) effect, and individual

head load and the interaction of head load and table speed



Table 3

ANOVA table for PC

Source of

variation

Sum of

squares

Degrees of

freedom

Mean square F

value

Table speed 22.788 2 11.394 8.421

Head load 2.354 2 1.177 0.870

Interaction of

head load and

table speed

10.232 4 2.558 1.891

Error 12.176 9 1.353

Total 47.55 17

Table 4

Summary of ANOVA results

Level of effect Factor Material

PMMA PC

Significant

(aZ0.05)

Table speed No Yes

Head load No No

Interaction Yes No

Highly significant

(aZ0.01)

Table speed No Yes

Head load No No

Interaction No No

Z.W. Zhong et al. / Microelectronics Journal 37 (2006) 295–301300
had no significant effects on surface finish of polished PC

samples.
4. Conclusions

Four types of slurry were used as abrasives and

experiments of CMP of PMMA and PC were conducted

under the same process conditions. The MRRs and surface

roughness of PC were found to be much higher than those of

PMMA due to different material hardness, regardless of the

types of slurry used. Material hardness of PMMA (161 MPa)

is higher than that of PC (134 MPa). Simlox slurry was

found to be suitable for CMP of the two polymers. Then,

CMP of PMMA and PC was performed by varying two key

process parameters, namely table speed and head load while

other parameters were kept constant. The MRRs were

significantly affected by table speed and head load.

Increasing table speed or head load will increase MRRs.

All polished PMMA and PC surfaces had nanometer-order

surface roughness heights, acceptable to most MEMS

applications. ANOVA was also carried out, and it was

found that the interaction of head load and table speed had a

significant (risk aZ0.05, 95% confidence) effect on surface

finish of polished PMMA samples. On the other hand, table

speed had a highly significant (aZ0.01, 99% confidence)

effect on surface finish of polished PC samples.
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