
Appendix: Background on Probability
Theory

In this appendix, we review a number of basic probabilistic tools that can
be needed for option pricing and hedging. We refer the reader to Pitman
(1999) Jacod and Protter (2000), Devore (2003), for additional background
on probability theory.
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A.1 Probability Sample Space and Events

We will need the following notation coming from set theory. Given A and
B to abstract sets, “A ⊂ B” means that A is contained in B, and in this
case, B \A denotes the set of elements of B which do not belong to A. The
property that the element ω belongs to the set A is denoted by “ω ∈ A”,
and given two sets A and Ω such that A ⊂ Ω, we let Ac = Ω \A denote
the complement of A in Ω. The finite set made of n elements ω1, . . . ,ωn is
denoted by {ω1, . . . ,ωn}, and we will usually distinguish between the element
ω and its associated singleton set {ω}.

A probability sample space is an abstract set Ω that contains the possible
outcomes of a random experiment.

Examples

i) Coin tossing: Ω = {H,T}.
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ii) Rolling one die: Ω = {1, 2, 3, 4, 5, 6}.

iii) Picking one card at random in a pack of 52: Ω = {1, 2, 3, . . . , 52}.

iv) An integer-valued random outcome: Ω = N = {0, 1, 2, . . .}.

In this case the outcome ω ∈ N can be the random number of trials
needed until some event occurs.

v) A nonnegative, real-valued outcome: Ω = R+.

In this case the outcome ω ∈ R+ may represent the (nonnegative) value
of a continuous random time.

vi) A random continuous parameter (such as time, weather, price or wealth,
temperature, ...): Ω = R.

vii) Random choice of a continuous path in the space Ω = C(R+) of all
continuous functions on R+.

In this case, ω ∈ Ω is a function ω : R+ −→ R and a typical example is
the graph t 7−→ ω(t) of a stock price over time.

Product spaces:

Probability sample spaces can be built as product spaces and used for the
modeling of repeated random experiments.

i) Rolling two dice: Ω = {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}.

In this case a typical element of Ω is written as ω = (k, l) with k, l ∈
{1, 2, 3, 4, 5, 6}.

ii) A finite number n of real-valued samples: Ω = Rn.

In this case the outcome ω is a vector ω = (x1, . . . ,xn) ∈ Rn with n
components.

Note that to some extent, the more complex Ω is, the better it fits a practical
and useful situation, e.g. Ω = {H,T} corresponds to a simple coin tossing
experiment while Ω = C(R+) the space of continuous functions on R+ can
be applied to the modeling of stock markets. On the other hand, in many
cases and especially in the most complex situations, we will not attempt to
specify Ω explicitly.

Events

An event is a collection of outcomes, which is represented by a subset of Ω. In
what follows we consider collections of events, called σ-algebras (or σ-fields),
according to the following definition.
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Definition A.1. A collection G of events is a σ-algebra provided that it
satisfies the following conditions:

(i) ∅ ∈ G,
(ii) For all countable sequences (An)n⩾1 such that An ∈ G, n ⩾ 1, we have⋃

n⩾1
An ∈ G,

(iii) A ∈ G =⇒ (Ω \A) ∈ G,

where Ω \A := {ω ∈ Ω : ω /∈ A}.

Note that Properties (ii) and (iii) above also imply the stability of σ-algebras
under intersections, as

⋂
n⩾1

An =

( ⋃
n⩾1

Acn

)c
∈ G, (A.1)

for all countable sequences An ∈ G, n ⩾ 1.

The collection of all events in Ω will often be denoted by F . The empty set
∅ and the full space Ω are considered as events but they are of less importance
because Ω corresponds to “any outcome may occur” while ∅ corresponds to
an absence of outcome, or no experiment.

In the context of stochastic processes, two σ-algebras F and G such that
F ⊂ G will refer to two different amounts of information, the amount of
information associated to F being here lower than the one associated to G.

The formalism of σ-algebras helps in describing events in a short and precise
way.

Examples

i) Let Ω = {1, 2, 3, 4, 5, 6}.

The event A = {2, 4, 6} corresponds to

“the result of the experiment is an even number”.

ii) Taking again Ω = {1, 2, 3, 4, 5, 6},

F := {Ω, ∅, {2, 4, 6}, {1, 3, 5}}

defines a σ-algebra on Ω which corresponds to the knowledge of parity
of an integer picked at random from 1 to 6.

Note that in the set-theoretic notation, an event A is a subset of Ω, i.e.
A ⊂ Ω, while it is an element of F , i.e. A ∈ F . For example, we have
Ω ⊃ {2, 4, 6} ∈ F , while {{2, 4, 6}, {1, 3, 5}} ⊂ F .
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iii) Taking

G := {Ω, ∅, {2, 4, 6}, {2, 4}, {6}, {1, 2, 3, 4, 5}, {1, 3, 5, 6}, {1, 3, 5}} ⊃ F ,

defines a σ-algebra on Ω which is bigger than F and includes the parity
information contained in F , in addition to information on whether the
outcome of the experiment is equal to 6 or not.

iv) Take

Ω = {H,T} × {H,T} = {(H,H), (H,T ), (T ,H), (T ,T )}.

In this case, the collection F of all possible events is given by

F = {∅, {(H,H)}, {(T ,T )}, {(H,T )}, {(T ,H)}, (A.2)
{(T ,T ), (H,H)}, {(H,T ), (T ,H)}, {(H,T ), (T ,T )},
{(T ,H), (T ,T )}, {(H,T ), (H,H)}, {(T ,H), (H,H)},
{(H,H), (T ,T ), (T ,H)}, {(H,H), (T ,T ), (H,T )},
{(H,T ), (T ,H), (H,H)}, {(H,T ), (T ,H), (T ,T )}, Ω} .

Note that the set F of all events considered in (A.2) above has altogether

1 =

(
n

0

)
event of cardinality 0,

4 =

(
n

1

)
events of cardinality 1,

6 =

(
n

2

)
events of cardinality 2,

4 =

(
n

3

)
events of cardinality 3,

1 =

(
n

4

)
event of cardinality 4,

with n = 4, for a total of

16 = 2n =
4∑

k=0

(
4
k

)
= 1 + 4 + 6 + 4 + 1

events. The collection of events

G := {∅, {(T ,T ), (H,H)}, {(H,T ), (T ,H)}, Ω}

defines a sub σ-algebra of F , which corresponds to the restricted information
“the results of two coin tossings are different”.

Exercise: Write down the set of all events on Ω = {H,T}.
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Note also that (H,T ) is different from (T ,H), whereas {(H,T ), (T ,H)} is
equal to {(T ,H), (H,T )}.

In addition, we will distinguish between the outcome ω ∈ Ω and its associated
event {ω} ∈ F , which satisfies {ω} ⊂ Ω.

A.2 Probability Measures

Definition A.2. A probability measure is a mapping P : F −→ [0, 1] that
assigns a probability P(A) ∈ [0, 1] to any event A ∈ F , with the properties

a) P(Ω) = 1, and

b) P

⋃
n⩾1

An

 =
∑
n⩾1

P(An), whenever Ak ∩Al = ∅, k ̸= l.

Property (b) above is named the law of total probability. It states in particular
that we have

P(A1 ∪ · · · ∪An) = P(A1) + · · · + P(An)

when the subsets A1, . . . ,An of Ω are disjoint, and

P(A∪B) = P(A) + P(B) (A.3)

if A∩B = ∅. We also have the complement rule

P(Ac) = P(Ω \A) = P(Ω) − P(A) = 1 − P(A).

When A and B are not necessarily disjoint we can write

P(A∪B) = P(A) + P(B) − P(A∩B),

which extends to arbitrary families of events (Ai)i∈I indexed by a finite set
I as the inclusion-exclusion principle

P

(⋃
i∈I

Ai

)
=
∑
J⊂I

(−1)|J |+1P

⋂
j∈J

Aj

 , (A.4)

and

P

⋂
j∈J

Aj

 =
∑
I⊂J

(−1)|I|+1P

(⋃
i∈I

Ai

)
. (A.5)

The triple
(Ω, F , P) (A.6)
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is called a probability space, and was introduced by A.N. Kolmogorov (1903-
1987). This setting is generally referred to as the Kolmogorov framework.

A property or event is said to hold P-almost surely (also written P-a.s.) if
it holds with probability equal to one.
Example
Take

Ω =
{
(T ,T ), (H,H), (H,T ), (T ,H)

}
and

F = {∅, {(T ,T ), (H,H)}, {(H,T ), (T ,H)}, Ω} .

The uniform probability measure P on (Ω, F) is given by setting

P({(T ,T ), (H,H)}) :=
1
2 and P({(H,T ), (T ,H)}) :=

1
2 .

In addition, we have the following convergence properties.

1. Let (An)n∈N be a non-decreasing sequence of events, i.e. An ⊂ An+1,
n ⩾ 0. Then we have

P

( ⋃
n∈N

An

)
= lim

n→∞
P(An). (A.7)

2. Let (An)n∈N be a non-increasing sequence of events, i.e. An+1 ⊂ An,
n ⩾ 0. Then we have

P

( ⋂
n∈N

An

)
= lim

n→∞
P(An). (A.8)

Theorem A.3. Borel-Cantelli Lemma. Let (An)n⩾1 denote a sequence of
events on (Ω, F , P), such that∑

n⩾1
P(An) < ∞.

Then we have
P

( ⋂
n⩾1

⋃
k⩾n

Ak

)
= 0,

i.e. the probability that An occurs infinitely many times occur is zero.

A.3 Conditional Probabilities and Independence

We start with examples.

796 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/Andrey_Kolmogorov
https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

Consider a population Ω =M ∪W made of a set M of men and a set W of
women. Here the σ-algebra F = {Ω, ∅,W ,M} corresponds to the information
given by gender. After polling the population, e.g. for a market survey, it turns
out that a proportion p ∈ [0, 1] of the population declares to like apples, while
a proportion 1 − p declares to dislike apples. Let A ⊂ Ω denote the subset
of individuals who like apples, while Ac ⊂ Ω denotes the subset individuals
who dislike apples, with

p = P(A) and 1 − p = P(Ac),

e.g. p = 60% of the population likes apples. It may be interesting to get a
more precise information and to determine

- the relative proportion P(A∩W )

P(W )
of women who like apples, and

- the relative proportion P(A∩M )

P(M )
of men who like apples.

Here, P(A∩W )/P(W ) represents the probability that a randomly chosen
woman in W likes apples, and P(A∩M )/P(M) represents the probability
that a randomly chosen man in M likes apples. Those two ratios are inter-
preted as conditional probabilities, for example P(A∩M )/P(M ) denotes
the probability that a given individual likes apples given that he is a man.

For another example, suppose that the population Ω is split as Ω = Y ∪O
into a set Y of “young” people and another set O of “old” people, and denote
by A ⊂ Ω the set of people who voted for candidate A in an election. Here
it can be of interest to find out the relative proportion

P(A | Y ) =
P(Y ∩A)

P(Y )

of young people who voted for candidate A.

Definition A.4. Given any two events A,B ⊂ Ω with P(B) ̸= 0, we call

P(A | B) :=
P(A∩B)

P(B)

the probability of A given B, or conditionally to B.

Remark A.5. We note that if P(B) = 1 we have P(A∩Bc) ⩽ P(Bc) = 0,
hence P(A∩Bc) = 0, which implies

P(A) = P(A∩B) + P(A∩Bc) = P(A∩B),

and P(A | B) = P(A).

We also recall the following property:
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P

(
B ∩

⋃
n⩾1

An

)
= P

( ⋃
n⩾1

(B ∩An)

)
=
∑
n⩾1

P(B ∩An)

=
∑
n⩾1

P(B | An)P(An)

=
∑
n⩾1

P(An | B)P(B),

for any family of disjoint events (An)n⩾1 with Ai ∩ Aj = ∅, i ̸= j, and
P(B) > 0, n ⩾ 1. This also shows that conditional probability measures are
probability measures, in the sense that whenever P(B) > 0, we have

a) P(Ω | B) = 1, and

b) P

( ⋃
n⩾1

An

∣∣∣∣B
)

=
∑
n⩾1

P(An | B), whenever Ak ∩Al = ∅, k ̸= l.

In particular, if
⋃
n⩾1

An = Ω, (An)n⩾1 becomes a partition of Ω and we get

the law of total probability

P(B) =
∑
n⩾1

P(B ∩An) =
∑
n⩾1

P(An | B)P(B) =
∑
n⩾1

P(B | An)P(An),

(A.9)
provided that Ai ∩Aj = ∅, i ̸= j, and P(B) > 0, n ⩾ 1.

Remark. In general we have

P

(
A

∣∣∣∣ ⋃
n⩾1

Bn

)
̸=
∑
n⩾1

P(A | Bn),

even when Bk ∩Bl = ∅, k ̸= l. Indeed, taking for example A = Ω = B1 ∪B2
with B1 ∩B2 = ∅ and P(B1) = P(B2) = 1/2, we have

1 = P(Ω | B1 ∪B2) ̸= P(Ω | B1) + P(Ω | B2) = 2.

Independent events

Definition A.6. Two events A and B such that P(A), P(B) > 0 are said
to be independent if

P(A | B) = P(A). (A.10)

We note that the independence condition (A.10) is equivalent to
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P(A∩B) = P(A)P(B).

A.4 Random Variables

A real-valued random variable is a mapping∗

X : Ω −→ R

ω 7−→ X(ω)

from a probability sample space Ω into the state space R. Given

X : Ω −→ R

a random variable and a (measurable)† subset A of R, we denote by {X ∈ A}
the event

{X ∈ A} := {ω ∈ Ω : X(ω) ∈ A}.

Examples

i) Let Ω := {1, 2, 3, 4, 5, 6} × {1, 2, 3, 4, 5, 6}, and consider the mapping

X : Ω −→ R

(k, l) 7−→ k+ l.

Then X is a random variable giving the sum of the two numbers appear-
ing on each die.

ii) the time needed everyday to travel from home to work or school is a
random variable, as the precise value of this time may change from day
to day under unexpected circumstances.

iii) the price of a risky asset can be modeled using a random variable.

In what follows, we will often use the notion of indicator function 1A of an
event A ⊂ Ω.

Definition A.7. For any A ⊂ Ω, the indicator function 1A is the random
variable

1A : Ω −→ {0, 1}
ω 7−→ 1A(ω)

∗ See (MOE and UCLES 2016, page 14) lines 4-5 and (MOE and UCLES 2020, page
19) lines 4-5.
† Measurability of subsets of R refers to Borel measurability, a concept which will not
be defined in this text.
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defined by

1A(ω) =

{
1 if ω ∈ A,
0 if ω /∈ A.

Indicator functions satisfy the property

1A∩B(ω) = 1A(ω)1B(ω), (A.11)

since

1A∩B(ω) = 1 ⇐⇒ ω ∈ A∩B
⇐⇒ ω ∈ A and ω ∈ B

⇐⇒ 1A(ω) = 1 and 1B(ω) = 1
⇐⇒ 1A(ω)1B(ω) = 1.

We also have

1A∪B = 1A + 1B − 1A∩B = 1A + 1B − 1A1B ,

and
1A∪B = 1A + 1B , (A.12)

if A∩B = ∅.

For example, if Ω = N and A = {k}, for all l ⩾ 0 we have

1{k}(l) =

1 if k = l,

0 if k ̸= l.

Given X a random variable, we also let

1{X=n} =

1 if X = n,

0 if X ̸= n,

and

1{X<n} =

1 if X < n,

0 if X ⩾ n.

A.5 Probability Distributions

The probability distribution of a random variableX : Ω −→ R is the collection

{P(X ∈ A) : A is a measurable subset of R}.

800 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

As the collection of measurable subsets of R coincides with the σ-algebra
generated by the intervals in R, the distribution of X can be reduced to the
knowledge of the probabilities

{P(a < X ⩽ b) = P(X ⩽ b) − P(X ⩽ a) : a < b ∈ R},

or of the cumulative distribution functions

{P(X ⩽ a) : a ∈ R}, or {P(X ⩾ a) : a ∈ R},

see e.g. Corollary 3.8 in Çınlar (2011).
Two random variables X and Y are said to be independent under the

probability P if their probability distributions satisfy

P(X ∈ A , Y ∈ B) = P(X ∈ A)P(Y ∈ B)

for all (measurable) subsets A and B of R.

Distributions admitting a density

We say that the distribution of X admits a probability density distribution
function φX : R −→ R+ if, for all a ⩽ b, the probability P(a ⩽ X ⩽ b) can
be written as

P(a ⩽ X ⩽ b) =
w b
a
φX (x)dx.

−4 −3 −2 −1 0 1 2 3 4
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Fig. A.1: Probability density function φX .
We also say that the distribution of X is absolutely continuous, or that X
is an absolutely continuous random variable. This, however, does not imply
that the density function φX : R −→ R+ is continuous.

In particular, we always have
w ∞

−∞
φX (x)dx = P(−∞ ⩽ X ⩽ ∞) = 1

for any probability density functions φX : R −→ R+.
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Remark A.8. Note that if the distribution of X admits a probability density
function φX , then for all a ∈ R we have

P(X = a) =
w a
a
φX (x)dx = 0, (A.13)

and this is not a contradiction.

In particular, Remark A.8 shows that

P(a ⩽ X ⩽ b) = P(X = a)+P(a < X ⩽ b) = P(a < X ⩽ b) = P(a < X < b),

for a ⩽ b. Property (A.13) appears for example in the framework of lottery
games with a large number of participants, in which a given number “a”
selected in advance has a very low (almost zero) probability to be chosen.

The probability density function φX can be recovered from the Cumulative
Distribution Functions (CDFs)

x 7−→ FX (x) := P(X ⩽ x) =
w x

−∞
φX (s)ds,

and
x 7−→ 1 − FX (x) = P(X ⩾ x) =

w ∞

x
φX (s)ds,

as

φX (x) =
∂FX
∂x

(x) =
∂

∂x

w x
−∞

φX (s)ds = − ∂

∂x

w ∞

x
φX (s)ds, x ∈ R.

Examples

i) The uniform distribution on an interval.

The probability density function of the uniform distribution on the in-
terval [a, b], a < b, is given by

φ(x) =
1

b− a
1[a,b](x), x ∈ R.

ii) The Gaussian distribution.

The probability density function of the standard normal distribution is
given by

φ(x) =
1√
2π

e−x2/2, x ∈ R.

More generally, the probability density function of the Gaussian distri-
bution with mean µ ∈ R and variance σ2 > 0 is given by

φ(x) :=
1√

2πσ2
e−(x−µ)2/(2σ2), x ∈ R.
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In this case, we write X ≃ N (µ,σ2).

iii) The exponential distribution.

The probability density function of the exponential distribution with
parameter λ > 0 is given by

φ(x) := λ1[0,∞)(x) e−λx =

λ e−λx, x ⩾ 0

0, x < 0.
(A.14)
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(a) Exponential CDF.

0 1 2 3 4 5 6
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

P
ro
b
ab

il
it
y
d
en
si
ty

(b) Exponential PDF.

Fig. A.2: Exponential CDF and PDF.

We also have
P(X > t) = e−λt, t ⩾ 0. (A.15)

iv) The gamma distribution.

The probability density function of the gamma distribution is given by

φ(x) :=
aλ

Γ(λ)
1[0,∞)(x)x

λ−1 e−ax =


aλ

Γ(λ)
xλ−1 e−ax, x ⩾ 0

0, x < 0,

where a > 0 and λ > 0 are scale and shape parameters, and

Γ(λ) :=
w ∞

0
xλ−1 e−xdx, λ > 0,

is the gamma function.

v) The Cauchy distribution.

The probability density function of the Cauchy distribution is given by

φ(x) :=
1

π(1 + x2)
, x ∈ R.
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vi) The lognormal distribution.

The probability density function of the lognormal distribution is given
by

φ(x) := 1[0,∞)(x)
1

xσ
√

2π
e−(µ−log x)2/(2σ2) =


1

xσ
√

2π
e−(µ−log x)2/(2σ2), x ⩾ 0

0, x < 0.

Exercise: For each of the above probability density functions φ, check that
the condition w ∞

−∞
φ(x)dx = 1

is satisfied.

Joint densities

Given two absolutely continuous random variables X : Ω −→ R and Y :
Ω −→ R, we can form the R2-valued random variable (X,Y ) defined by

(X,Y ) : Ω −→ R2

ω 7−→ (X(ω),Y (ω)).

We say that (X,Y ) admits a joint probability density

φ(X,Y ) : R2 −→ R+

when

P((X,Y ) ∈ A×B) = P(X ∈ A and Y ∈ B) =
w

B

w

A
φ(X,Y )(x, y)dxdy

for all measurable subsets A, B of R, see Figure A.3.

-1

 0

 1
x

-1 -0.5  0  0.5  1  1.5
y

 0

 0.1

Fig. A.3: Probability P((X, Y ) ∈ [−0.5, 1] × [−0.5, 1]) computed as a volume integral.
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The probability density function φ(X,Y ) can be recovered from the joint cu-
mulative distribution function

(x, y) 7−→ F(X,Y )(x, y) := P(X ⩽ x and Y ⩽ y) =
w x

−∞

w y
−∞

φ(X,Y )(s, t)dsdt,

and

(x, y) 7−→ P(X ⩾ x and Y ⩾ y) =
w ∞

x

w ∞

y
φ(X,Y )(s, t)dsdt,

as

φ(X,Y )(x, y) = ∂2

∂x∂y
F(X,Y )(x, y) (A.16)

=
∂2

∂x∂y

w x
−∞

w y
−∞

φ(X,Y )(s, t)dsdt (A.17)

=
∂2

∂x∂y

w ∞

x

w ∞

y
φ(X,Y )(s, t)dsdt,

x, y ∈ R.

The probability densities φX : R −→ R+ and φY : R −→ R+ of X : Ω −→ R

and Y : Ω −→ R are called the marginal densities of (X,Y ), and are given
by

φX (x) =
w ∞

−∞
φ(X,Y )(x, y)dy, x ∈ R, (A.18)

and
φY (y) =

w ∞

−∞
φ(X,Y )(x, y)dx, y ∈ R.

The conditional probability density φX|Y =y : R −→ R+ of X given Y = y is
defined by

φX|Y =y(x) :=
φ(X,Y )(x, y)

φY (y)
, x, y ∈ R, (A.19)

provided that φY (y) > 0. In particular, X and Y are independent if and only
if

φX|Y =y(x) = φX (x), i.e., φ(X,Y )(x, y) = φX (x)φY (y), x, y ∈ R.

Example

If X1, . . . ,Xn are independent exponentially distributed random variables
with parameters λ1, . . . ,λn we have

P(min(X1, . . . ,Xn) > t) = P(X1 > t, . . . ,Xn > t)

= P(X1 > t) · · · P(Xn > t)

= e−(λ1+···+λn)t, t ⩾ 0, (A.20)

" 805

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

hence min(X1, . . . ,Xn) is an exponentially distributed random variable with
parameter λ1 + · · · + λn.
From the joint probability density function of (X1,X2) given by

φ(X1,X2)(x, y) = φX1(x)φX2(y) = λ1λ2 e−λ1x−λ2y, x, y ⩾ 0,

we can write

P(X1 < X2) = P(X1 ⩽ X2)

=
w ∞

−∞

w y
−∞

φ(X1,X2)(x, y)dxdy

= λ1λ2
w ∞

0

w y
0

e−λ1x−λ2ydxdy

=
λ1

λ1 + λ2
, (A.21)

and we note that

P(X1 = X2) = λ1λ2
w

{(x,y)∈R2
+ : x=y}

e−λ1x−λ2ydxdy = 0.

Discrete distributions

We only consider integer-valued random variables, i.e. the distribution of X
is given by the values of P(X = k), k ⩾ 0.
Examples

i) The Bernoulli distribution.
We have

P(X = 1) = p and P(X = 0) = 1 − p, (A.22)

where p ∈ [0, 1] is a parameter.
Note that any Bernoulli random variable X : Ω −→ {0, 1} can be written
as the indicator function

X = 1A

on Ω with A = {X = 1} = {ω ∈ Ω : X(ω) = 1}.
ii) The binomial distribution.

We have

P(X = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, . . . ,n,

where n ⩾ 1 and p ∈ [0, 1] are parameters and (nk) = n!/(k!(n− k)!),
0 ⩽ k ⩽ n.
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iii) The geometric distribution.
In this case, we have

P(X = k) = (1 − p)pk, k ⩾ 0, (A.23)

where p ∈ (0, 1) is a parameter. For example, if (Xk)k∈N is a sequence of
independent Bernoulli random variables with distribution (A.22), then
the random variable,∗

T0 := inf{k ⩾ 0 : Xk = 0}

can denote the duration of a game until the time that the wealth Xk of a
player reaches 0. The random variable T0 has the geometric distribution
(A.23) with parameter p ∈ (0, 1).

iv) The negative binomial (or Pascal) distribution.
We have

P(X = k) =

(
k+ r− 1
r− 1

)
(1 − p)rpk, k ⩾ 0, (A.24)

where p ∈ (0, 1) and r ⩾ 1 are parameters. Note that the sum of r ⩾ 1
independent geometric random variables with parameter p has a negative
binomial distribution with parameter (r, p). In particular, the negative
binomial distribution recovers the geometric distribution when r = 1.

v) The Poisson distribution.
We have

P(X = k) =
λk

k!
e−λ, k ⩾ 0,

where λ > 0 is a parameter.

The probability that a discrete nonnegative random variable X : Ω −→
N ∪ {+∞} is finite is given by

P(X < ∞) =
∑
k⩾0

P(X = k), (A.25)

and we have

1 = P(X = ∞) + P(X < ∞) = P(X = ∞) +
∑
k⩾0

P(X = k).

Remark A.9. The distribution of a discrete random variable cannot admit
a probability density. If this were the case, by Remark A.8 we would have
∗ The notation “inf” stands for “infimum”, meaning the smallest n ⩾ 0 such that
Xn = 0, if such an n exists.
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P(X = k) = 0 for all k ⩾ 0 and

1 = P(X ∈ R) = P(X ∈ N) =
∑
k⩾0

P(X = k) = 0,

which is a contradiction.

Given two discrete random variables X and Y , the conditional distribution
of X given Y = k is given by

P(X = n | Y = k) =
P(X = n and Y = k)

P(Y = k)
, n ⩾ 0,

provided that P(Y = k) > 0, k ⩾ 0.

A.6 Expectation of Random Variables

The expectation, or expected value, of a random variable X is the mean, or
average value, of X. In practice, expectations can be even more useful than
probabilities. For example, knowing that a given equipment (such as a bridge)
has a failure probability of 1.78493 out of a billion can be of less practical use
than knowing the expected lifetime (e.g. 200000 years) of that equipment.

For example, the time T (ω) to travel from home to work/school can be a
random variable with a new outcome and value every day, however we usually
refer to its expectation E[T ] rather than to its sample values that may change
from day to day.

Expected value of a Bernoulli random variable

Any Bernoulli random variable X : Ω −→ {0, 1} can be written as the
indicator function X := 1A where A is the event A = {X = 1}, and the
parameter p ∈ [0, 1] of X is given by

p = P(X = 1) = P(A) = E[1A] = E[X ].

The expectation of a Bernoulli random variable with parameter p is defined
as

E[1A] := 1 × P(A) + 0 × P(Ac) = P(A). (A.26)
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Expected value of a discrete random variable

Next, let X : Ω −→ N be a discrete random variable. The expectation E[X ]
of X is defined as the sum

E[X ] =
∑
k⩾0

kP(X = k), (A.27)

in which the possible values k ⩾ 0 of X are weighted by their probabilities.
More generally we have

E[ϕ(X)] =
∑
k⩾0

ϕ(k)P(X = k),

for all sufficiently summable functions ϕ : N −→ R.

The expectation of the indicator functionX = 1A = 1{X=1} can be recovered
from (A.27) as

E[X ] = E[1A] = 0 × P(Ω \A) + 1 × P(A) = 0 + P(A) = P(A).

Note that the expectation is a linear operation, i.e. we have

E[aX + bY ] = aE[X ] + bE[Y ], a, b ∈ R, (A.28)

provided that
E[|X|] + E[|Y |] < ∞.

Examples

i) Expected value of a Poisson random variable with parameter λ > 0:

E[X ] =
∑
k⩾0

kP(X = k) = e−λ
∑
k⩾1

k
λk

k!
= λ e−λ

∑
k⩾0

λk

k!
= λ. (A.29)

ii) Estimating the expected value of a Poisson random variable using R:

Taking λ := 2, we can use the following code:
 poisson_samples <- rpois(100000, lambda = 2)
 poisson_samples

mean(poisson_samples)

Given X : Ω −→ N ∪ {+∞} a discrete nonnegative random variable X, we
have

P(X < ∞) =
∑
k⩾0

P(X = k),

and
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1 = P(X = ∞) + P(X < ∞) = P(X = ∞) +
∑
k⩾0

P(X = k),

and in general

E[X ] = +∞ × P(X = ∞) +
∑
k⩾0

kP(X = k).

In particular, P(X = ∞) > 0 implies E[X ] = ∞, and the finiteness condition
E[X ] < ∞ implies P(X < ∞) = 1, however the converse is not true. For
example, assume that X has the geometric distribution

P(X = k) :=
1

2k+1 , k ⩾ 0, (A.30)

with parameter p = 1/2, and

E[X ] =
∑
k⩾0

k

2k+1 =
1
4
∑
k⩾1

k

2k−1 =
1
4

1
(1 − 1/2)2 = 1 < ∞.

Letting ϕ(X) := 2X , we have

P(ϕ(X) < ∞) = P(X < ∞) =
∑
k⩾0

1
2k+1 = 1,

and
E[ϕ(X)] =

∑
k⩾0

ϕ(k)P(X = k) =
∑
k⩾0

2k
2k+1 =

∑
k⩾0

1
2 = +∞,

hence the expectation E[ϕ(X)] is infinite although ϕ(X) is finite with prob-
ability one.∗

Conditional expectation

The notion of expectation takes its full meaning under conditioning. For ex-
ample, the expected return of a random asset usually depends on information
such as economic data, location, etc. In this case, replacing the expectation
by a conditional expectation will provide a better estimate of the expected
value.

For instance, life expectancy is a natural example of a conditional expec-
tation since it typically depends on location, gender, and other parameters.

The conditional expectation of a finite discrete random variable X : Ω −→
N given an event A is defined by
∗ This is the St. Petersburg paradox.
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E[X | A] =
∑
k⩾0

kP(X = k | A) =
∑
k⩾1

k
P(X = k and A)

P(A)
.

Lemma A.10. Given an event A such that P(A) > 0, we have

E[X | A] = 1
P(A)

E
[
X1A

]
. (A.31)

Proof. The proof is done only for X : Ω −→ N a discrete random vari-
able, however (A.31) is valid for general real-valued random variables. By
Relation (A.11) we have

E[X | A] =
∑
k⩾0

kP(X = k | A)

=
1

P(A)

∑
k⩾0

kP({X = k} ∩A) = 1
P(A)

∑
k⩾0

kE
[
1{X=k}∩A

]

=
1

P(A)

∑
k⩾0

kE
[
1{X=k}1A

]
=

1
P(A)

E

1A∑
k⩾0

k1{X=k}


=

1
P(A)

E
[
1AX

]
,

where we used the relation

X =
∑
k⩾0

k1{X=k}

which holds since X takes only integer values. □

Example

i) For example, consider Ω = {1, 3, −1, −2, 5, 7} with the non-uniform
probability measure given by

P({−1}) = P({−2}) = P({1}) = P({3}) = 1
7 , P({5}) = 2

7 , P({7}) = 1
7 ,

and the random variable
X : Ω −→ Z

given by
X(k) = k, k = 1, 3, −1, −2, 5, 7.

Here, E[X | X > 1] denotes the expected value of X given

A = {X > 1} = {3, 5, 7} ⊂ Ω,

i.e. the mean value of X given that X is strictly positive. This conditional
expectation can be computed as
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E[X | X > 1]
= 3 × P(X = 3 | X > 1) + 5 × P(X = 5 | X > 1) + 7 × P(X = 7 | X > 1)

=
3 + 2 × 5 + 7

4
=

3 + 5 + 5 + 7
7 × 4/7

=
1

P(X > 1)E
[
X1{X>1}

]
,

where P(X > 1) = 4/7 and the truncated expectation E
[
X1{X>1}

]
is

given by E
[
X1{X>1}

]
= (3 + 2 × 5 + 7)/7.

ii) Estimating a conditional expectation using R:
 geo_samples <- rgeom(100000, prob = 1/4)

mean(geo_samples)
 mean(geo_samples[geo_samples<10])

Taking p := 3/4, we have

E[X ] = (1 − p)
∑
k⩾1

kpk =
p

1 − p
= 3,

and

E[X | X < 10] = 1
P(X < 10)E

[
X1{X<10}

]
=

1
P(X < 10)

9∑
k=0

kP(X = k)

=
1

9∑
k=0

pk

9∑
k=1

kpk

=
p(1 − p)

1 − p10
∂

∂p

9∑
k=0

pk

=
p(1 − p)

1 − p10
∂

∂p

(
1 − p10

1 − p

)
=
p(1 − p10 − 10(1 − p)p9)

(1 − p)(1 − p10)
≃ 2.4032603455.

If the random variable X : Ω −→ N is independent∗ of the event A, we have
∗ i.e., P({X = k} ∩ A) = P({X = k})P(A) for all k ⩾ 0.
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E[X1A] = E[X ]E[1A] = E[X ]P(A),

and we naturally find
E[X | A] = E[X ]. (A.32)

Taking X = 1A with

1A : Ω −→ {0, 1}

ω 7−→ 1A :=
{

1 if ω ∈ A,
0 if ω /∈ A,

shows that, in particular,

E[1A | A] = 0 × P(X = 0 | A) + 1 × P(X = 1 | A)
= P(X = 1 | A)
= P(A | A)
= 1.

One can also define the conditional expectation of X given A = {Y = k}, as

E[X | Y = k] =
∑
n⩾0

nP(X = n | Y = k),

where Y : Ω −→ N is a discrete random variable.

Proposition A.11. Given X a discrete random variable such that E[|X|] <
∞, we have the relation

E[X ] = E[E[X | Y ]], (A.33)

which is sometimes referred to as the tower property.

Proof. We have

E[E[X | Y ]] =
∑
k⩾0

E[X | Y = k]P(Y = k)

=
∑
k⩾0

∑
n⩾0

nP(X = n | Y = k)P(Y = k)

=
∑
n⩾0

n
∑
k⩾0

P(X = n and Y = k)

=
∑
n⩾0

nP(X = n) = E[X ],

where we used the marginal distribution
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P(X = n) =
∑
k⩾0

P(X = n and Y = k), n ⩾ 0,

that follows from the law of total probability (A.9) with Ak = {Y = k}, k ⩾ 0.
□

Taking
Y =

∑
k⩾0

k1Ak
,

with Ak := {Y = k}, k ⩾ 0, from (A.33) we also get the law of total
expectation

E[X ] = E[E[X | Y ]] (A.34)
=
∑
k⩾0

E[X | Y = k]P(Y = k)

=
∑
k⩾0

E[X | Ak]P(Ak).

Example

Life expectancy in Singapore is E[T ] = 80 years overall, where T denotes
the lifetime of a given individual chosen at random. Let G ∈ {m,w} denote
the gender of that individual. The statistics show that

E[T | G = m] = 78 and E[T | G = w] = 81.9,

and we have

80 = E[T ]

= E[E[T |G]]
= P(G = w)E[T | G = w] + P(G = m)E[T | G = m]

= 81.9 × P(G = w) + 78 × P(G = m)

= 81.9 × (1 − P(G = m)) + 78 × P(G = m),

showing that

80 = 81.9 × (1 − P(G = m)) + 78 × P(G = m),

i.e.
P(G = m) =

81.9 − 80
81.9 − 78 =

1.9
3.9 = 0.487.

Variance

The variance of a random variable X is defined by

814 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://en.wikipedia.org/wiki/List_of_countries_by_life_expectancy
https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

Var[X ] := E
[
X2]− (E[X ])2,

provided that E
[
|X|2

]
< ∞. If (Xk)k=1,...,n is a sequence of independent

random variables, we have

Var
[

n∑
k=1

Xk

]
= E

( n∑
k=1

Xk

)2
−

(
E

[
n∑
k=1

Xk

])2

= E

[
n∑
k=1

Xk

n∑
l=1

Xl

]
− E

[
n∑
k=1

Xk

]
E

[
n∑
l=1

Xl

]

= E

[
n∑
k=1

n∑
l=1

XkXl

]
−

n∑
k=1

n∑
l=1

E[Xk]E[Xl]

=
n∑
k=1

E
[
X2
k

]
+

∑
1⩽k ̸=l⩽n

E[XkXl] −
n∑
k=1

(E[Xk])
2 −

∑
1⩽k ̸=l⩽n

E[Xk]E[Xl]

=
n∑
k=1

(
E
[
X2
k

]
− (E[Xk])

2)
=

n∑
k=1

Var [Xk]. (A.35)

Random sums

In what follows, we consider Y : Ω −→ N an a.s. finite, integer-valued ran-
dom variable, i.e. we have P(Y < ∞) = 1 and P(Y = ∞) = 0. Based on the
tower property of conditional expectations (A.33) or ordinary conditioning,

the expectation of a random sum
Y∑
k=1

Xk, where (Xk)k∈N is a sequence of

random variables, can be computed from the tower property (A.33) or from
the law of total expectation (A.34) as

E

[
Y∑
k=1

Xk

]
= E

[
E

[
Y∑
k=1

Xk

∣∣∣Y ]]

=
∑
n⩾0

E

[
Y∑
k=1

Xk

∣∣∣Y = n

]
P(Y = n)

=
∑
n⩾0

E

[
n∑
k=1

Xk

∣∣∣Y = n

]
P(Y = n),

and if the sequence (Xk)k∈N is (mutually) independent of Y , this yields
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E

[
Y∑
k=1

Xk

]
=
∑
n⩾0

E

[
n∑
k=1

Xk

]
P(Y = n)

=
∑
n⩾0

P(Y = n)
n∑
k=1

E[Xk].

Random products

Similarly, for a random product we will have, using the independence of Y
with (Xk)k∈N,

E

[
Y∏
k=1

Xk

]
=
∑
n⩾0

E

[
n∏
k=1

Xk

]
P(Y = n) (A.36)

=
∑
n⩾0

P(Y = n)
n∏
k=1

E[Xk],

where the last equality requires the (mutual) independence of the random
variables in the sequence (Xk)k⩾1.

Distributions admitting a density

Given a random variable X whose distribution admits a probability density
φX : R −→ R+ we have

E[X ] =
w ∞

−∞
xφX (x)dx,

and more generally,

E[ϕ(X)] =
w ∞

−∞
ϕ(x)φX (x)dx, (A.37)

for all sufficiently integrable function ϕ on R. For example, ifX has a standard
normal distribution we have

E[ϕ(X)] =
w ∞

−∞
ϕ(x) e−x2/2 dx√

2π
.

Examples

a) In case X has a Gaussian distribution with mean µ ∈ R and variance
σ2 > 0, we have

E[ϕ(X)] =
1√

2πσ2

w ∞

−∞
ϕ(x) e−(x−µ)2/(2σ2)dx. (A.38)
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b) The uniform random variable U on [0, 1] satisfies E[U ] = 1/2 < ∞ and

P(1/U < ∞) = P(U > 0) = P(U ∈ (0, 1]) = 1,

however we have
E[1/U ] =

w 1

0
dx

x
= +∞,

and P(1/U = +∞) = P(U = 0) = 0.

c) If the random variable X has an exponential distribution with parameter
µ > 0 we have

E
[
eλX

]
= µ

w ∞

0
eλx e−µxdx =


µ

µ− λ
< ∞ if µ > λ,

+∞, if µ ⩽ λ.

Exercise: In case X ≃ N (µ,σ2) has a Gaussian distribution with mean µ ∈ R

and variance σ2 > 0, check that

µ = E[X ] and σ2 = E
[
X2]− (E[X ])2.

When (X,Y ) : Ω −→ R2 is a R2-valued couple of random variables whose
distribution admits a probability density φX,Y : R2 −→ R+ we have

E[ϕ(X,Y )] =
w ∞

−∞

w ∞

−∞
ϕ(x, y)φX,Y (x, y)dxdy,

for all sufficiently integrable function ϕ on R2.

The expectation of an absolutely continuous random variable satisfies the
same linearity property (A.28) as in the discrete case.

The conditional expectation of an absolutely continuous random variable can
be defined as

E[X | Y = y] =
w ∞

−∞
xφX|Y =y(x)dx

where the conditional probability density φX|Y =y(x) is defined in (A.19),
with the relation

E[X ] = E[E[X | Y ]] (A.39)

which is called the tower property and holds as in the discrete case, since

E[E[X | Y ]] =
w ∞

−∞
E[X | Y = y]φY (y)dy

=
w ∞

−∞

w ∞

−∞
xφX|Y =y(x)φY (y)dxdy

=
w ∞

−∞
x
w ∞

−∞
φ(X,Y )(x, y)dydx
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=
w ∞

−∞
xφX (x)dx = E[X ],

where we used Relation (A.18) between the probability density of (X,Y ) and
its marginal X.

For example, an exponentially distributed random variable X with prob-
ability density function (A.14) has the expected value

E[X ] = λ
w ∞

0
x e−λxdx =

1
λ

.

Proposition A.12. (Fatou’s lemma). Let (Fn)n∈N be a sequence of non-
negative random variable. Then we have

E
[

lim inf
n→∞

Fn
]
⩽ lim inf

n→∞
E[Fn].

In particular, Fatou’s lemma shows that if in addition the sequence (Fn)n∈N

converges with probability one and the sequence (E[Fn])n∈N converges in R

then we have
E
[

lim
n→∞

Fn
]
⩽ lim

n→∞
E[Fn].

Moment Generating Functions

Characteristic functions

The characteristic function of a random variable X is the function

ΨX : R −→ C

defined by
ΨX (t) = E

[
eitX

]
, t ∈ R.

The characteristic function ΨX of a random variable X with probability
density function f : R −→ R+ satisfies

ΨX (t) =
w ∞

−∞
eixtφ(x)dx, t ∈ R.

On the other hand, if X : Ω −→ N is a discrete random variable we have

ΨX (t) =
∑
n⩾0

eitnP(X = n), t ∈ R.

One of the main applications of characteristic functions is to provide a char-
acterization of probability distributions, as in the following theorem.
Theorem A.13. Two random variables X : Ω −→ R and Y : Ω −→ R have
same distribution if and only if

818 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

ΨX (t) = ΨY (t), t ∈ R.

Theorem A.13 is used to identify or to determine the probability distribution
of a random variable X, by comparison with the characteristic function ΨY

of a random variable Y whose distribution is known.

The characteristic function of a random vector (X,Y ) is the function
ΨX,Y : R2 −→ C defined by

ΨX,Y (s, t) = E
[
eisX+itY

]
, s, t ∈ R.

Theorem A.14. The random variables X : Ω −→ R and Y : Ω −→ R are
independent if and only if

ΨX,Y (s, t) = ΨX (s)ΨY (t), s, t ∈ R.

A random variable X has a Gaussian distribution with mean µ and variance
σ2 if and only if its characteristic function satisfies

E
[
eiαX

]
= eiαµ−α2σ2/2, α ∈ R. (A.40)

From Theorems A.13 and A.14 we deduce the following proposition.

Proposition A.15. Let X ≃ N (µ,σ2
X ) and Y ≃ N (ν,σ2

Y ) be independent
Gaussian random variables. Then X + Y also has a Gaussian distribution

X + Y ≃ N (µ+ ν,σ2
X + σ2

Y ).

Proof. Since X and Y are independent, by Theorem A.14 the characteristic
function ΨX+Y of X + Y is given by

ΦX+Y (t) = ΦX (t)ΦY (t)

= eitµ−t2σ2
X

/2 eitν−t2σ2
Y

/2

= eit(µ+ν)−t2(σ2
X
+σ2

Y
)/2, t ∈ R,

where we used (A.40). Consequently, the characteristic function of X + Y is
that of a Gaussian random variable with mean µ+ ν and variance σ2

X + σ2
Y

and we conclude by Theorem A.13. □

Moment generating functions

The moment generating function of a random variable X is the function
ΦX : R −→ R defined by

ΦX (t) := E
[
etX
]
,
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for t in a neighborhood of 0. In particular, we have

E[Xn] =
∂n

∂tn
ΦX (0), n ⩾ 1,

provided that E[|X|n] < ∞, and

ΦX (t) = E
[
etX
]
=
∑
n⩾0

tn

n!
E[Xn],

provided that E
[
et|X|] < ∞, t ∈ R, and for this reason the moment gen-

erating function GX characterizes the moments E[Xn] of X : Ω −→ N,
n ⩾ 0.

The moment generating function ΦX of a random variable X with probability
density function f : R −→ R+ satisfies

ΦX (t) =
w ∞

−∞
extφ(x)dx, t ∈ R.

For example, the moment generating functions (MGF) of a Gaussian random
variable X with mean µ and variance σ2 is given by

E
[
eαX

]
= eαµ+α2σ2/2, α ∈ R. (A.41)

Note that in probability, the moment generating function is written as a
bilateral transform defined using an integral from −∞ to +∞.

A.7 Conditional Expectation

The construction of conditional expectations of the form E[X | Y ] given
above for discrete and absolutely continuous random variables can be gener-
alized to σ-algebras.

Definition A.16. Given F a σ-algebra on Ω, a random variable X : Ω −→
R is said to be F-measurable if

{X ⩽ x} := {ω ∈ Ω : X(ω) ⩽ x} ∈ F ,

for all x ∈ R.

Intuitively, when X is F-measurable, the knowledge of the values of X de-
pends only on the information contained in F . For example, when F =

σ(A1, . . . ,An) where (An)n⩾1 is a partition of Ω with
⋃
n⩾1

An = Ω, any

F-measurable random variable X can be written as
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X(ω) =
n∑
k=1

ck1Ak
(ω), ω ∈ Ω,

for some c1, . . . , cn ∈ R.

Definition A.17. Given (Ω, F , P) a probability space we let L2(Ω, F) de-
note the space of F-measurable and square-integrable random variables, i.e.

L2(Ω, F) :=
{
X : Ω −→ R : E

[
|X|2

]
< ∞

}
.

More generally, for p ⩾ 1 one can define the space Lp(Ω, F) of F-measurable
and p-integrable random variables as

Lp(Ω, F) :=
{
X : Ω −→ R : E[|X|p] < ∞

}
.

We define a inner product ⟨·, ·⟩L2(Ω,F) between elements of L2(Ω, F), as

⟨X,Y ⟩L2(Ω,F) := E[XY ], X,Y ∈ L2(Ω, F). (A.42)

This inner product is associated to the norm ∥ · ∥L2(Ω) by the relation

∥X∥L2(Ω) =
√

E
[
X2] =√⟨X,X⟩L2(Ω,F), X ∈ L2(Ω, F).

The norm ∥ · ∥L2(Ω) also defines the mean-square distance

∥X − Y ∥L2(Ω) =
√

E
[
(X − Y )2]

between random variables X,Y ∈ L2(Ω, F), and it induces a notion of or-
thogonality, namely X is orthogonal to Y in L2(Ω, F) if and only if

⟨X,Y ⟩L2(Ω,F) = 0.

Proposition A.18. The ordinary expectation E[X ] achieves the minimum
distance ∥∥X − E[X ]

∥∥2
L2(Ω)

= min
c∈R

∥X − c∥2
L2(Ω). (A.43)

Proof. It suffices to differentiate

∂

∂c
E
[
(X − c)2] = −2E[X − c] = 0,

showing that the minimum in (A.43) is reached when E[X − c] = 0, i.e.
c = E[X ]. □

Similarly to Proposition A.18, the conditional expectation will be defined by
a distance minimizing procedure.
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Definition A.19. Given G ⊂ F a sub σ-algebra of F and X ∈ L2(Ω, F),
the conditional expectation of X given G, and denoted

E[X | G],

is defined as the orthogonal projection of X onto L2(Ω, G).

L2(Ω, G)

X

E[X | G]

L2(Ω, F)

0

As a consequence of the uniqueness of the orthogonal projection onto the
subspace L2(Ω, G) of L2(Ω, F), the conditional expectation E[X | G] is char-
acterized by the relation

⟨Y ,X − E[X | G]⟩L2(Ω,F) = 0,

which rewrites as
E[Y (X − E[X | G])] = 0,

i.e.
E[Y X ] = E[YE[X | G]],

for all bounded and H-measurable random variables Y , where ⟨·, ·⟩L2(Ω,F)

denotes the inner product (A.42) in L2(Ω, F). The next proposition extends
Proposition A.18 as a consequence of Definition A.19. See Theorem 5.1.4
page 197 of Stroock (2011) for an extension of the construction of conditional
expectation to the space L1(Ω, F) of integrable random variable.

Proposition A.20. The conditional expectation E[X | G] realizes the mini-
mum in mean-square distance between X ∈ L2(Ω, F) and L2(Ω, G), i.e. we
have

∥X − E[X | G]∥L2(Ω) = min
Y ∈L2(Ω,G)

∥X − Y ∥L2(Ω). (A.44)

Proof. This is a consequence of the Pythagorean theorem written as

∥X − Y ∥L2(Ω) = ∥X − E[X | G]∥L2(Ω) + ∥E[X | G] − Y ∥L2(Ω),

for any Y ∈ L2(Ω, G). □

The following proposition will often be used as a characterization of E[X | G].

Proposition A.21. Given X ∈ L2(Ω, F), Z := E[X | G] is the unique
random variable Z in L2(Ω, G) that satisfies the relation
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E[Y X ] = E[Y Z] (A.45)

for all bounded and G-measurable random variables Y .

We note that taking Y = 1 in (A.45) yields

E[E[X | G]] = E[X ]. (A.46)

In particular, when G = {∅, Ω} we have E[X | G] = E[X | {∅, Ω}] and

E[X | {∅, Ω}] = E[E[X | {∅, Ω}]] = E[X ]

because E[X | {∅, Ω}] is in L2(Ω, {∅, Ω}) and is a.s. constant. In addition,
the conditional expectation operator has the following properties.

i) E[XY | G] = YE[X | G] if Y depends only on the information contained
in G.

Proof. By the characterization (A.45) it suffices to show that

E[H(XY )] = E[H(YE[X|G])], (A.47)

for all bounded and G-measurable random variables H, which implies
E[XY | G] = YE[X | G].

Relation (A.47) holds from (A.45) because the product HY is G-
measurable hence Y in (A.45) can be replaced with HY .

ii) E[Y |G] = Y when Y depends only on the information contained in G.

Proof. This is a consequence of point (i) above by taking X := 1.

iii) E[E[X|G] | H] = E[X|H] if H ⊂ G, called the tower property.

Proof. First, we note that by (A.46), (iii) holds when H = {∅, Ω}. Next,
by the characterization (A.45) it suffices to show that

E[HE[X|G]] = E[HE[X|H]], (A.48)

for all bounded and H-measurable random variables H, which will imply
(iii) from (A.45).

In order to prove (A.48) we check that by point (i) above and (A.46) we
have

E[HE[X|G]] = E[E[HX|G]] = E[HX ]

= E[E[HX|H]] = E[HE[X|H]],

and we conclude by the characterization (A.45).
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iv) E[X|G] = E[X ] when X “does not depend” on the information con-
tained in G or, more precisely stated, when the random variable X is
independent of the σ-algebra G.

Proof. It suffices to note that for all bounded G-measurable Y we have

E[XY ] = E[X ]E[Y ] = E[YE[X ]],

and we conclude again by (A.45).

v) If Y depends only on G and X is independent of G, then

E[h(X,Y )|G] = E[h(X,x)]x=Y . (A.49)

Proof. This relation can be proved using the tower property, by noting
that for any bounded K ∈ L2(Ω, G) we have

E[KE[h(x,X)]x=Y ] = E[KE[h(x,X) | G]x=Y ]
= E[KE[h(Y ,X) | G]]
= E[E[Kh(Y ,X) | G]]
= E[Kh(Y ,X)],

which yields (A.49) by the characterization (A.45).

The notion of conditional expectation can be extended from square-integrable
random variables in L2(Ω, F) to integrable random variables in L1(Ω, F),
cf. e.g. Theorem 5.1 in Kallenberg (2002).

Proposition A.22. When the σ-algebra G := σ(A1,A2, . . . ,An) is generated
by n disjoint events A1,A2, . . . ,An ∈ F , we have

E[X | G] =
n∑
k=1

1Ak
E[X | Ak] =

n∑
k=1

1Ak

E[X1Ak
]

P(Ak)
.

Proof. It suffices to note that the G-measurable random variables can be
generated by indicators of the form 1Al

, and that

E

[
1Al

n∑
k=1

1Ak

E[X1Ak
]

P(Ak)

]
= E

[
1Al

E[X1Al
]

P(Al)

]
=

E[X1Al
]

P(Al)
E
[
1Al

]
= E

[
X1Al

]
, l = 1, 2, . . . ,n,

showing (A.45). The relation

E[X | Ak] =
E[X1Ak

]

P(Ak)
, k = 1, 2, . . . ,n,
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follows from Lemma A.10. □

For example, in case Ω = {a, b, c, d} and G =
{

∅, Ω, {a, b}, {c}, {d}
}

, we have

E[X | G] = 1{a,b}E[X | {a, b}] + 1{c}E[X | {c}] + 1{d}E[X | {d}]

= 1{a,b}
E
[
X1{a,b}

]
P({a, b}) + 1{c}

E
[
X1{c}

]
P({c})

+ 1{d}
E
[
X1{d}

]
P({d})

.

Regarding conditional probabilities we have similarly, forA ⊂ Ω = {a, b, c, d},

P(A | G) = 1{a,b}
P
(
A∩ {a, b}

)
P({a, b}) + 1{c}

P
(
A∩ {c}

)
P({c})

+ 1{d}
P
(
A∩ {d}

)
P({d})

= 1{a,b}P(A | {a, b}) + 1{c}P(A | {c}) + 1{d}P(A | {d}).

In particular, if A = {a} ⊂ Ω = {a, b, c, d} we find

P({a} | G) = 1{a,b}P({a} | {a, b})

= 1{a,b}
P
(
{a} ∩ {a, b}

)
P({a, b})

= 1{a,b}
P({a})

P({a, b}) .

In other words, the probability of getting the outcome a is P({a})/P({a, b})
knowing that the outcome is either a or b, otherwise it is zero.

Exercises

Exercise A.1 Let X denote a Poisson random variable with parameter
λ > 0.
a) Compute the expected value E[X ] of X.
b) Compute the second moment E[X2] and variance Var[X ] of X.

Exercise A.2 Let X denote a centered Gaussian random variable with
variance η2, η > 0. Show that the probability P (eX > c) is given by

P
(
eX > c

)
= Φ(−(log c)/η),

where log = ln denotes the natural logarithm and

Φ(x) =
1√
2π

w x
−∞

e−y2/2dy, x ∈ R,

denotes the Gaussian cumulative distribution function.
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Exercise A.3 Let X ≃ N (µ,σ2) be a Gaussian random variable with pa-
rameters µ ∈ R and σ > 0, and probability density function

φ(x) :=
1√

2πσ2
e−(x−µ)2/(2σ2), x ∈ R.

a) Confirm that φ ⩾ 0 is indeed a probability density function, i.e., show
that

1√
2πσ2

w ∞

−∞
e−(x−µ)2/(2σ2)dx = 1.

b) Write down E[X ] as an integral, and show that

µ = E[X ].

c) Write down E[X2] as an integral, and show that

σ2 = E[(X − E[X ])2].

d) Write down E[ eX ] as an integral and prove (A.41), i.e. show that

E[ eX ] = eµ+σ2/2.

Exercise A.4 Let X ≃ N (0,σ2) be a centered Gaussian random variable
with variance σ2 > 0 and probability density function

φ(x) :=
1√

2πσ2
e−(x−µ)2/(2σ2), x ∈ R.

a) Consider the function x 7→ x+ from R to R+, defined as

x+ =

x if x ⩾ 0,

0 if x ⩽ 0.

Compute E[X+] as an integral.
b) Consider the function x 7→ (x−K)+ from R to R+, defined as

(x−K)+ =

x−K if x ⩾ K,

0 if x ⩽ K,

where K ∈ R. Compute E[(X −K)+] as an integral using the cumulative
distribution function of the standard normal distribution

Φ(x) :=
w x

−∞
e−y2/2 dy√

2π
, x ∈ R.
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c) Consider the function x 7→ (K − x)+ from R to R+, defined as

(K − x)+ =

K − x if x ⩽ K,

0 if x ⩾ K,

where K ∈ R. Compute E[(K −X)+] using the cumulative distribution
function Φ.

Exercise A.5 Let X ≃ N (0, v2) be a centered Gaussian random variable
with variance v2 > 0.

a) Compute

E
[
eσX1[K,∞)(x eσX )

]
=

1√
2πv2

w ∞

σ−1 log(K/x)
eσy−y2/(2v2)dy.

Hint. Use the completion of square identity

σy− y2

v2 =
v2σ2

4 −
(y
v

− vσ

2

)2
.

b) Compute

E[(em+X −K)+] =
1√

2πv2

w ∞

−∞
(em+x −K)+ e−x2/(2v2)dx.
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