
Chapter 2
Discrete-Time Market Model

The single-step model considered in Chapter 1 is extended to a discrete-time
model with N + 1 time instants t = 0, 1, . . . ,N . A basic limitation of the
one-step model is that it does not allow for trading until the end of the
first time period is reached, while the multistep model allows for multiple
portfolio re-allocations over time. The Cox-Ross-Rubinstein (CRR) model,
or binomial model, is considered as an example whose importance also lies
with its computer implementability.
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2.1 Discrete-Time Compounding

In this chapter, we work in a finite horizon discrete-time model indexed by
{0, 1, . . . ,N}.

0 1 2 3 N

Investment plan

We invest an amount m each year in an investment plan that carries a
constant interest rate r. At the end of the N -th year, the value of the
amount m invested at the beginning of year k = 1, 2, . . . ,N has turned
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into (1 + r)N−k+1m, and the value of the plan at the end of the N -th year
becomes

AN : = m
N∑
k=1

(1 + r)N−k+1 (2.1)

= m
N∑
k=1

(1 + r)k

= m(1 + r)
(1 + r)N − 1

r
,

hence the duration N of the plan satisfies

N + 1 =
1

log(1 + r)
log
(

1 + r+
rAN
m

)
.

Loan repayment

At time t = 0 one borrows an amount A1 := A over a period of N years at
the constant interest rate r per year.

Proposition 2.1. Constant repayments. Assuming that the loan is com-
pletely repaid at the beginning of year N + 1, the amount m refunded every
year is given by

m =
r(1 + r)NA

(1 + r)N − 1 =
r

1 − (1 + r)−N A. (2.2)

Proof. Denoting by Ak the amount owed by the borrower at the beginning
of year no k = 1, 2, . . . ,N with A1 = A, the amount m refunded at the end
of the first year can be decomposed as

m = rA1 + (m− rA1),

into rA1 paid in interest and m − rA1 in principal repayment, i.e. there
remains

A2 = A1 − (m− rA1)

= (1 + r)A1 −m,

to be refunded. Similarly, the amount m refunded at the end of the second
year can be decomposed as

m = rA2 + (m− rA2),
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into rA2 paid in interest and m − rA2 in principal repayment, i.e. there
remains

A3 = A2 − (m− rA2)

= (1 + r)A2 −m

= (1 + r)((1 + r)A1 −m) −m

= (1 + r)2A1 −m− (1 + r)m

to be refunded. After repeating the argument we find that at the beginning
of year k there remains

Ak = (1 + r)k−1A1 −m− (1 + r)m− · · · − (1 + r)k−2m

= (1 + r)k−1A1 −m
k−2∑
i=0

(1 + r)i

= (1 + r)k−1A1 +m
1 − (1 + r)k−1

r

to be refunded, i.e.

Ak =
m− (1 + r)k−1(m− rA)

r
, k = 1, 2, . . . ,N . (2.3)

In other words, the repayment at the end of year k can be decomposed as

m = rAk + (m− rAk),

with
rAk = m+ (1 + r)k−1(rA1 −m)

in interest repayment, and

m− rAk = (1 + r)k−1(m− rA1)

in principal repayment. At the beginning of year N + 1, the loan should be
completely repaid, hence AN+1 = 0, which reads

(1 + r)NA+m
1 − (1 + r)N

r
= 0,

and yields (2.2). □

We also have

A

m
=

1 − (1 + r)−N

r
. (2.4)

and
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N =
1

log(1 + r)
log m

m− rA
= − log(1 − rA/m)

log(1 + r)
.

Remark: One needs m > rA in order for N to be finite.

The next proposition is a direct consequence of (2.2) and (2.3).

Proposition 2.2. The k-th interest repayment can be written as

rAk = m

(
1 − 1

(1 + r)N−k+1

)
= mr

N−k+1∑
l=1

(1 + r)−l,

and the k-th principal repayment is

m− rAk =
m

(1 + r)N−k+1 , k = 1, 2, . . . ,N .

Note that the sum of discounted payments at the rate r is

N∑
l=1

m

(1 + r)l
= m

1 − (1 + r)−N

r
= A.

In particular, the first interest repayment satisfies

rA = rA1 = mr

N∑
l=1

1
(1 + r)l

= m
(

1 − (1 + r)−N
)

,

and the first principal repayment is

m− rA =
m

(1 + r)N
.

2.2 Arbitrage and Self-Financing Portfolios

Stochastic processes

A stochastic process on a probability space (Ω, F , P) is a family (Xt)t∈T of
random variables Xt : Ω −→ R indexed by a set T. Examples include:

• the one-step (or two-instant) model: T = {0, 1},

• the discrete-time model with finite horizon: T = {0, 1, . . . ,N},

• the discrete-time model with infinite horizon: T = N,

• the continuous-time model: T = R+.
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For real-world examples of stochastic processes, one can mention:

• the time evolution of a risky asset, e.g. Xt represents the price of the asset
at time t ∈ T.

• the time evolution of a physical parameter - for example, Xt represents a
temperature observed at time t ∈ T.

In this chapter, we focus on the finite horizon discrete-time model with T =
{0, 1, . . . ,N}.

0 1 2 3 N

Asset price modeling

The prices at time t = 0 of d+ 1 assets numbered 0, 1, . . . , d are denoted by
the random vector

S0 =
(
S
(0)
0 ,S(1)

0 , . . . ,S(d)
0
)

in Rd+1. Similarly, the values at time t = 1, 2, . . . ,N of assets no 0, 1, . . . , d
are denoted by the random vector

St =
(
S
(0)
t ,S(1)

t , . . . ,S(d)
t

)
on Ω, which forms a stochastic process

(
St
)
t=0,1,...,N .

In what follows we assume that asset no 0 is a riskless asset (of savings account
type) yielding an interest rate r, i.e. we have

S
(0)
t = (1 + r)tS

(0)
0 , t = 0, 1, . . . ,N .

Portfolio strategies

Definition 2.3. A portfolio strategy is a stochastic process
(
ξt
)
t=1,2,...,N ⊂

Rd+1 where ξ(k)t denotes the (possibly fractional) quantity of asset no k held
in the portfolio over the time interval (t− 1, t], t = 1, 2, . . . ,N .

Note that the portfolio allocation

ξt =
(
ξ
(0)
t , ξ(1)t , . . . , ξ(d)t

)
is decided at time t− 1 and remains constant over the interval (t− 1, t] while
the stock price changes from S

(k)
t−1 to S(k)

t over this time interval.
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0

ξ1

1

ξ2

2

ξ3

3

ξN

N

In other words, the quantity
ξ
(k)
t S

(k)
t−1

represents the amount invested in asset no k at the beginning of the time
interval (t− 1, t], and

ξ
(k)
t S

(k)
t

represents the value of this investment at the end of the time interval (t− 1, t],
t = 1, 2, . . . ,N .

Self-financing portfolio strategies

The opening price of the portfolio at the beginning of the time interval (t−
1, t] is

ξt • St−1 =
d∑

k=0
ξ
(k)
t S

(k)
t−1,

when the market “opens” at time t− 1. When the market “closes”at the end
of the time interval (t− 1, t], it takes the closing value

ξt • St =
d∑

k=0
ξ
(k)
t S

(k)
t , (2.5)

t = 1, 2, . . . ,N . After the new portfolio allocation ξt+1 is designed we get the
new portfolio opening price

ξt+1 • St =
d∑

k=0
ξ
(k)
t+1S

(k)
t , (2.6)

at the beginning of the next trading session (t, t+ 1], t = 0, 1, . . . ,N − 1.

Note that here, the stock price St is assumed to remain constant “overnight”,
i.e. from the end of (t− 1, t] to the beginning of (t, t+ 1], t = 1, 2, . . . ,N − 1.

In case (2.5) coincides with (2.6) for t = 0, 1, . . . ,N − 1 we say that the
portfolio strategy

(
ξt
)
t=1,2,...,N is self-financing. A non self-financing portfolio

could be either bleeding money, or burning cash, for no good reason.

Definition 2.4. A portfolio strategy
(
ξt
)
t=1,2,...,N is said to be self-financing

if
ξt • St = ξt+1 • St, t = 1, 2, . . . ,N − 1, (2.7)
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i.e.
d∑

k=0
ξ
(k)
t S

(k)
t︸ ︷︷ ︸

Closing value

=
d∑

k=0
ξ
(k)
t+1S

(k)
t︸ ︷︷ ︸

Opening price

, t = 1, 2, . . . ,N − 1.

The meaning of the self-financing condition (2.7) is simply that one cannot
take any money in or out of the portfolio during the “overnight” transition
period at time t. In other words, at the beginning of the new trading session
(t, t+ 1] one should re-invest the totality of the portfolio value obtained at
the end of the interval (t− 1, t].

The next figure is an illustration of the self-financing condition.

St St St+1St−1

t + 1t − 1 t t

ξt+1ξt ξt ξt+1

ξt+1St+1ξtSt−1 ξtSt ξt+1St=Portfolio value
Asset value

Time scale
Portfolio allocation

(Opening)
“Morning”

(Closing)
“Evening”

(Opening)
“Next morning”

(Closing)
“Next evening”

Fig. 2.1: Illustration of the self-financing condition (2.7).

By (2.5) and (2.6) the self-financing condition (2.7) can be rewritten as

d∑
k=0

ξ
(k)
t S

(k)
t =

d∑
k=0

ξ
(k)
t+1S

(k)
t , t = 0, 1, . . . ,N − 1,

or
d∑

k=0

(
ξ
(k)
t+1 − ξ

(k)
t

)
S
(k)
t = 0, t = 0, 1, . . . ,N − 1.

Note that any portfolio strategy
(
ξt
)
t=1,2,...,N which is constant over time,

i.e. ξt = ξt+1, t = 1, 2, . . . ,N − 1, is self-financing by construction.

Here, portfolio re-allocation happens “overnight”, during which time the
global portfolio value remains the same due to the self-financing condition.
The portfolio allocation ξt remains the same throughout the day, however,
the portfolio value changes from morning to evening due to a change in the
stock price. Also, ξ0 is not defined and its value is actually not needed in this
framework.

" 59

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

In case d = 1 we are only trading d + 1 = 2 assets with prices St =(
S
(0)
t ,S(1)

t

)
and the portfolio allocation reads ξt =

(
ξ
(0)
t , ξ(1)t

)
. In this case,

the self-financing condition means that:

• In the event of an increase in the stock position ξ
(1)
t , the corresponding

cost of purchase
(
ξ
(1)
t+1 − ξ

(1)
t

)
S
(1)
t > 0 has to be deducted from the savings

account value ξ(0)t S
(0)
t , which becomes updated as

ξ
(0)
t+1S

(0)
t = ξ

(0)
t S

(0)
t −

(
ξ
(1)
t+1 − ξ

(1)
t

)
S
(1)
t ,

recovering (2.7).
• In the event of a decrease in the stock position ξ(1)t , the corresponding sale

profit
(
ξ
(1)
t − ξ

(1)
t+1
)
S
(1)
t > 0 has to be added to the savings account value

ξ
(0)
t S

(0)
t , which becomes updated as

ξ
(0)
t+1S

(0)
t = ξ

(0)
t S

(0)
t +

(
ξ
(1)
t − ξ

(1)
t+1
)
S
(1)
t ,

recovering (2.7).

Clearly, the chosen unit of time may not be the day and it can be replaced
by weeks, hours, minutes, or fractions of seconds in high-frequency trading.

Portfolio value

Definition 2.5. The portfolio opening prices at times t = 0, 1, . . . ,N − 1 are
defined as

Vt := ξt+1 • St =
d∑

k=0
ξ
(k)
t+1S

(k)
t , t = 0, 1, . . . ,N − 1.

Under the self-financing condition (2.7), the portfolio closing values Vt at
times t = 1, 2, . . . ,N rewrite as

Vt = ξt • St =
d∑

k=0
ξ
(k)
t S

(k)
t , t = 1, 2, . . . ,N , (2.8)

as summarized in Table 2.1.

V0 V1 V2 · · · · · · VN−1 VN

Opening price ξ1 • S0 ξ2 • S1 ξ3 • S2 · · · · · · ξN • SN−1 N.A.
Closing value N.A. ξ1 • S1 ξ2 • S2 · · · · · · ξN−1 • SN−1 ξN • SN

Table 2.1: Self-financing portfolio value process.
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Discounting

Summing the prices of assets considered at different times requires discount-
ing with respect to a common date in order to compensate for possible mon-
etary inflation. Assuming a yearly risk-free interest rate r, one dollar of year
N can be added to one dollar of year N + 1 either as (1+ r)$1+ $1 if pricing
occurs as of year N + 1, or as $1 + (1 + r)−1$1 if pricing occurs as of year
N .

My portfolio St grew by b = 5% this year.

Q: Did I achieve a positive return?

A:

(a) Scenario A.

My portfolio St grew by b = 5% this year.

The risk-free or inflation rate is r = 10%.

Q: Did I achieve a positive return?

A:

(b) Scenario B.

Fig. 2.2: Why apply discounting?

Definition 2.6. Let

Xt :=
(
S̃
(0)
t , S̃(1)

t , . . . , S̃(d)
t )

denote the vector of discounted asset prices, defined as:

S̃
(i)
t =

1
(1 + r)t

S
(i)
t , i = 0, 1, . . . , d, t = 0, 1, . . . ,N .

(a) Without inflation adjustment. (b) With inflation adjustment.

Fig. 2.3: Are oil prices higher in 2019 compared to 2005?

We can also write

Xt :=
1

(1 + r)t
St, t = 0, 1, . . . ,N .
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The discounted value at time 0 of the portfolio is defined by

Ṽt =
1

(1 + r)t
Vt, t = 0, 1, . . . ,N .

For t = 1, 2, . . . ,N we have

Ṽt =
1

(1 + r)t
ξt • St

=
1

(1 + r)t

d∑
k=0

ξ
(k)
t S

(k)
t

=
d∑

k=0
ξ
(k)
t S̃

(k)
t

= ξt • Xt,

while for t = 0 we get
Ṽ0 = ξ1 • X0 = ξ1 • S0.

The effect of discounting from time t to time 0 is to divide prices by (1+ r)t,
making all prices comparable at time 0.

Arbitrage

The definition of arbitrage in discrete time follows the lines of its analog in
the one-step model.

Definition 2.7. A portfolio strategy
(
ξt
)
t=1,2,...,N constitutes an arbitrage

opportunity if all three following conditions are satisfied:

i) V0 ⩽ 0 at time t = 0, [Start from a zero-cost portfolio, or with a debt.]

ii) VN ⩾ 0 at time t = N , [Finish with a nonnegative amount.]

iii) P(VN > 0) > 0 at time t = N .[Profit is made with nonzero probability.]

2.3 Contingent Claims

Recall that from Definition 1.9, a contingent claim is given by the nonnegative
random payoff C of an option contract at maturity time t = N . For example,
in the case of the European call option of Definition 2, the payoff C is given
by C =

(
S
(i)
N −K

)+ where K is called the strike (or exercise) price of the
option, while in the case of the European put option of Definition 1 we have
C =

(
K − S

(i)
N

)+.

The list given below is somewhat restrictive and there exists many more
option types, with new ones appearing constantly on the markets.
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Physical delivery vs. cash settlement

The cash settlement realized through the payoff C =
(
S
(i)
N −K

)+ can be
replaced by the physical delivery of the underlying asset in exchange for the
strike price K. Physical delivery occurs only when S

(i)
N > K, in which case

the underlying asset can be sold at the price S(i)
N by the option holder, for a

payoff S(i)
N −K. When S(i)

N > K, no delivery occurs and the payoff is 0, which
is consistent with the expression C =

(
S
(i)
N −K

)+. A similar procedure can
be applied to other option contracts.

Vanilla options - examples

Vanilla options are options whose claim payoff depends only on the terminal
value ST of the underlying risky asset price at maturity time T .

i) European options.
The payoff of the European call option on the underlying asset no i with
maturity N and strike price K is

C =
(
S
(i)
N −K

)+
=


S
(i)
N −K if S(i)

N ⩾ K,

0 if S(i)
N < K.

The moneyness at time t = 0, 1, . . . ,N of the European call option with
strike price K on the asset no i is the ratio

M(i)
t :=

S
(i)
t −K

S
(i)
t

, t = 0, 1, . . . ,N .

The option is said to be “out of the money” (OTM) when M(i)
t < 0, “in

the money” (ITM) when M(i)
t > 0, and “at the money” (ATM) when

M(i)
t = 0.

The payoff of the European put option on the underlying asset no i with
exercise date N and strike price K is

C =
(
K − S

(i)
N

)+
=


K − S

(i)
N if S(i)

N ⩽ K,

0 if S(i)
N > K.

The moneyness at time t = 0, 1, . . . ,N of the European put option with
strike price K on the asset no i is the ratio
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M(i)
t :=

K − S
(i)
t

S
(i)
t

, t = 0, 1, . . . ,N .

ii) Binary options.
Binary (or digital) options, also called cash-or-nothing options, are op-
tions whose payoffs are of the form

C = 1[K,∞)

(
S
(i)
N

)
=


$1 if S(i)

N ⩾ K,

0 if S(i)
N < K,

for binary call options, and

C = 1(−∞,K]

(
S
(i)
N

)
=


$1 if S(i)

N ⩽ K,

0 if S(i)
N > K,

for binary put options.

iii) Collar and spread options.
Collar and spread options provide other examples of vanilla options,
whose payoffs can be constructed using call and put option payoffs, see,
e.g., Exercises 3.12 and 3.13.

Exotic options - examples

i) Asian options.

The payoff of an Asian call option (also called option on average) on the
underlying asset no i with exercise date N and strike price K is

C =

(
1

N + 1

N∑
t=0

S
(i)
t −K

)+

.

The payoff of an Asian put option on the underlying asset no i with
exercise date N and strike price K is

C =

(
K − 1

N + 1

N∑
t=0

S
(i)
t

)+

.

We refer to Section 13.1 for the pricing of Asian options in continuous
time. It can be shown, see Exercise 3.14, that Asian call option prices
can be upper bounded by European call option prices.

64 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

Other examples of such options include weather derivatives (based on
averaged temperatures) and volatility derivatives (based on averaged
volatilities).

ii) Barrier options.

The payoff of a down-an-out (or knock-out) barrier call option on the
underlying asset no i with exercise date N , strike price K and barrier
level B is

C =
(
S
(i)
N −K

)+
1{

min
t=0,1,...,N

S
(i)
t > B

}

=


(
S
(i)
N −K

)+ if min
t=0,1,...,N

S
(i)
t > B,

0 if min
t=0,1,...,N

S
(i)
t ⩽ B.

This option is also called a Callable Bull Contract with no residual value,
or turbo warrant with no rebate, in which B denotes the call price B ⩾
K.

The payoff of an up-and-out barrier put option on the underlying asset
no i with exercise date N , strike price K and barrier level B is

C =
(
K − S

(i)
N

)+
1{

Max
t=0,1,...,N

S
(i)
t < B

}

=


(
K − S

(i)
N

)+ if Max
t=0,1,...,N

S
(i)
t < B,

0 if Max
t=0,1,...,N

S
(i)
t ⩾ B.

This option is also called a Callable Bear Contract with no residual
value, in which the call price B usually satisfies B ⩽ K. See Eriksson
and Persson (2006) and Wong and Chan (2008) for the pricing of type
R Callable Bull/Bear Contracts, or CBBCs, also called turbo warrants,
which involve a rebate or residual value computed as the payoff of a
down-and-in lookback option. We refer the reader to Chapters 11, 12,
and 13 for the pricing and hedging of related options in continuous time.

iii) Lookback options.

The payoff of a floating strike lookback call option on the underlying
asset no i with exercise date N is

C = S
(i)
N − min

t=0,1,...,N
S
(i)
t .
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The payoff of a floating strike lookback put option on the underlying
asset no i with exercise date N is

C =

(
Max

t=0,1,...,N
S
(i)
t

)
− S

(i)
N .

We refer to Section 10.4 for the pricing of lookback options in continuous
time.

Options in insurance and investment

Such options are involved in the statements of Exercises 2.1 and 2.2.

Vanilla vs. exotic options

Vanilla options such as European or binary options, have a payoff ϕ(S
(i)
N )

that depends only on the terminal value S(i)
N of the underlying asset at ma-

turity, as opposed to exotic or path-dependent options such as Asian, barrier,
or lookback options, whose payoff may depend on the whole path of the un-
derlying asset price until expiration time.

Exotic vs Vanilla Options
Vanilla options are called that way because:

(A) They were first used for the trading of vanilla by the
Maya beginning around the 14th century.

(B) “Plain vanilla” is the most standard and common of all
ice cream flavors.

(C) To meet FDA standards, pure vanilla extract must
contain 13.35 ounces of vanilla beans per gallon.

(D) Sir Charles C. Vanilla, FLS, was the early discoverer of
the properties of Brownian motion in asset pricing.

Fig. 2.4: Take the Quiz.

2.4 Martingales and Conditional Expectations

Before proceeding to the definition of risk-neutral probability measures in dis-
crete time we need to introduce more mathematical tools such as conditional
expectations, filtrations, and martingales.
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Conditional expectations

Clearly, the expected value of any risky asset or random variable is dependent
on the amount of available information. For example, the expected return on
a real estate investment typically depends on the location of this investment.
In the probabilistic framework the available information is formalized as a
collection G of events, which may be smaller than the collection F of all
available events, i.e. G ⊂ F .∗

The notation E[F | G] represents the expected value of a random variable
F given (or conditionally to) the information contained in G, and it is read
“the conditional expectation of F given G”. In a certain sense, E[F | G]
represents the best possible estimate of F in the mean-square sense, given
the information contained in G.
The conditional expectation satisfies the following five properties, cf. Sec-
tion A.7 for details and proofs.

i) E[FG | G] = GE[F | G] if G depends only on the information contained
in G.

ii) E[G | G] = G when G depends only on the information contained in G.
iii) E[E[F | H] | G] = E[F | G] if G ⊂ H, called the tower property, cf. also

Relation (A.33).
iv) E[F | G] = E[F ] when F “does not depend” on the information con-

tained in G or, more precisely stated, when the random variable F is
independent of the σ-algebra G.

v) If G depends only on G and F is independent of G, then

E[h(F ,G) | G] = E[h(F ,x)]x=G.

When H = {∅, Ω} is the trivial σ-algebra we have

E[F | H] = E[F ], F ∈ L1(Ω).

See (A.33) and (A.39) for illustrations of the tower property by conditioning
with respect to discrete and continuous random variables.

Filtrations

The total amount of “information” available on the market at times t =
0, 1, . . . ,N is denoted by Ft. We assume that

Ft ⊂ Ft+1, t = 0, 1, . . . ,N − 1,
∗ The collection G is also called a σ-algebra, cf. Section A.1.
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which means that the amount of information available on the market increases
over time.

Usually, Ft corresponds to the knowledge of the values S(i)
0 ,S(i)

1 , . . . ,S(i)
t ,

i = 1, 2, . . . , d, of the risky assets up to time t. In mathematical notation we
say that Ft is generated by S(i)

0 ,S(i)
1 , . . . ,S(i)

t , i = 1, 2, . . . , d, and we usually
write

Ft = σ
(
S
(i)
0 ,S(i)

1 , . . . ,S(i)
t , i = 1, 2, . . . , d

)
, t = 1, 2, . . . ,N ,

with F0 = {∅, Ω}.

Example: Consider the simple random walk

Zt := X1 +X2 + · · · +Xt, t ⩾ 0,

where (Xt)t⩾1 is a sequence of independent, identically distributed {−1, 1}
valued random variables. The filtration (or information flow) (Ft)t⩾0 gen-
erated by (Zt)t⩾0 is given by F0 =

{
∅, Ω

}
, F1 =

{
∅, {X1 = 1}, {X1 =

−1}, Ω
}

, and

F2 = σ
({

∅, {X1 = 1,X2 = 1}, {X1 = 1,X2 = −1}, {X1 = −1,X2 = 1},
{X1 = −1,X2 = −1}, Ω

})
.

The notation Ft is useful to represent a quantity of information available at
time t. Note that different agents or traders may work with different filtra-
tions. For example, an insider may have access to a filtration (Gt)t=0,1,...,N
which is larger than the ordinary filtration (Ft)t=0,1,...,N available to an or-
dinary agent, in the sense that

Ft ⊂ Gt, t = 0, 1, . . . ,N .

The notation E[F | Ft] represents the expected value of a random variable
F given (or conditionally to) the information contained in Ft. Again, E[F |
Ft] denotes the best possible estimate of F in mean-square sense, given the
information known up to time t.

We will assume that no information is available at time t = 0, which
translates as

E[F | F0] = E[F ]

for any integrable random variable F . As above, the conditional expectation
with respect to Ft satisfies the following five properties:

i) E[FG | Ft] = FE[G | Ft] if F depends only on the information con-
tained in Ft.
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ii) E[F | Ft] = F when F depends only on the information known at time
t and contained in Ft.

iii) E[E[F | Ft+1] | Ft] = E[F | Ft] if Ft ⊂ Ft+1 (by the tower property, cf.
also Relation (7.1) below).

iv) E[F | Ft] = E[F ] when F does not depend on the information contained
in Ft.

v) If F depends only on Ft and G is independent of Ft, then

E[h(F ,G) | Ft] = E[h(x,G)]x=F .

Note that by the tower property (iii) the process t 7→ E[F | Ft] is a martin-
gale, cf. e.g. Relation (7.1) for details.

Martingales

A martingale is a stochastic process whose value at time t+ 1 can be esti-
mated using conditional expectation given its value at time t. Recall that a
stochastic process (Mt)t=0,1,...,N is said to be (Ft)t=0,1,...,N -adapted if the
value of Mt depends only on the information available at time t in Ft,
t = 0, 1, . . . ,N .

Definition 2.8. A stochastic process (Mt)t=0,1,...,N is called a discrete-time
martingale with respect to the filtration (Ft)t=0,1,...,N if (Mt)t=0,1,...,N is
(Ft)t=0,1,...,N -adapted and satisfies the property

E[Mt+1 | Ft] =Mt, t = 0, 1, . . . ,N − 1.

Note that the above definition implies that Mt ∈ Ft, t = 0, 1, . . . ,N . In other
words, a random process (Mt)t=0,1,...,N is a martingale if the best possible
prediction of Mt+1 in the mean-square sense given Ft is simply Mt.

In discrete-time finance, the martingale property can be used to characterize
risk-neutral probability measures, and for the computation of conditional
expectations.

Exercise. Using the tower property (A.33) of conditional expectation, show
that Definition 2.8 can be equivalently stated by saying that

E[Mn | Fk] =Mk, 0 ⩽ k < n.

A particular property of martingales is that their expectation is constant over
time.

Proposition 2.9. Let (Zn)n∈N be a martingale. We have

E[Zn] = E[Z0], n ⩾ 0.
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Proof. From the tower property (A.33) of conditional expectation, we have:

E[Zn+1] = E[E[Zn+1 | Fn]] = E[Zn], n ⩾ 0,

hence by induction on n ⩾ 0 we have

E[Zn+1] = E[Zn] = E[Zn−1] = · · · = E[Z1] = E[Z0], n ⩾ 0.

□

Weather forecasting can be seen as an example of application of martingales.
If Mt denotes the random temperature observed at time t, this process is a
martingale when the best possible forecast of tomorrow’s temperature Mt+1
given the information known up to time t is simply today’s temperature Mt,
t = 0, 1, . . . ,N − 1.

Definition 2.10. A stochastic process (ξk)k⩾1 is said to be predictable if ξk
depends only on the information in Fk−1, k ⩾ 1.

When F0 simply takes the form F0 = {∅, Ω} we find that ξ1 is a constant
when (ξt)t=1,2,...,N is a predictable process. Recall that on the other hand,
the process

(
S
(i)
t

)
t=0,1,...,N is adapted as S(i)

t depends only on the information
in Ft, t = 0, 1, . . . ,N , i = 1, 2, . . . , d.

The discrete-time stochastic integral (2.9) will be interpreted as the sum of
discounted profits and losses ξk

(
S̃
(1)
k − S̃

(1)
k−1
)
, k = 1, 2, . . . , t, in a portfolio

holding a quantity ξk of a risky asset whose price variation is S̃(1)
k − S̃

(1)
k−1 at

time k = 1, 2, . . . , t.

An important property of martingales is that the discrete-time stochastic
integral (2.9) of a predictable process is itself a martingale, see also Propo-
sition 7.1 for the continuous-time analog of the following proposition, which
will be used in the proof of Theorem 3.5 below.∗

In what follows, the martingale (2.9) will be interpreted as a discounted port-
folio value, in which S̃

(1)
k − S̃

(1)
k−1 represents the increment in the discounted

asset price and ξk is the amount invested in that asset, k = 1, 2 . . . ,N .

Theorem 2.11. Martingale transform. Given (Xk)k=0,1,...,N a martingale
and (ξk)k=1,2,...,N a (bounded) predictable process, the discrete-time process
(Mt)t=0,1,...,N defined by

Mt =
t∑

k=1
ξk(Xk −Xk−1)︸ ︷︷ ︸

Profit/loss

, t = 0, 1, . . . ,N , (2.9)

is a martingale.
∗ See here for a related discussion of martingale strategies in a particular case.
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Proof. Given n > t ⩾ 0, we have

E[Mn | Ft] = E

[
n∑
k=1

ξk(Xk −Xk−1)
∣∣∣ Ft

]

=
n∑
k=1

E
[
ξk(Xk −Xk−1)

∣∣Ft]
=

t∑
k=1

E [ξk(Xk −Xk−1) | Ft] +
n∑

k=t+1
E [ξk(Xk −Xk−1) | Ft]

=
t∑

k=1
ξk(Xk −Xk−1) +

n∑
k=t+1

E [ξk(Xk −Xk−1) | Ft]

= Mt +
n∑

k=t+1
E [ξk(Xk −Xk−1) | Ft] .

In order to conclude to E [Mn | Ft] =Mt it suffices to show that

E [ξk(Xk −Xk−1) | Ft] = 0, t+ 1 ⩽ k ⩽ n.

First, we note that when 0 ⩽ t ⩽ k − 1 we have Ft ⊂ Fk−1, hence by the
tower property (A.33) of conditional expectations, we get

E [ξk(Xk −Xk−1) | Ft] = E [E [ξk(Xk −Xk−1) | Fk−1] | Ft] .

Next, since the process (ξk)k⩾1 is predictable, ξk depends only on the infor-
mation in Fk−1, and using Property (ii) of conditional expectations we may
pull out ξk out of the expectation since it behaves as a constant parameter
given Fk−1, k = 1, 2, . . . ,n. This yields

E [ξk(Xk −Xk−1) | Fk−1] = ξkE [Xk −Xk−1 | Fk−1] = 0 (2.10)

since

E [Xk −Xk−1 | Fk−1] = E [Xk | Fk−1] − E [Xk−1 | Fk−1]

= E [Xk | Fk−1] −Xk−1

= 0, k = 1, 2, . . . ,N ,

because (Xk)k=0,1,...,N is a martingale. By (2.10), it follows that

E [ξk(Xk −Xk−1) | Ft] = E [E [ξk(Xk −Xk−1) | Fk−1] | Ft]
= E [ξkE [Xk −Xk−1 | Fk−1] | Ft]
= 0,

for k = t+ 1, . . . ,n. □
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2.5 Market Completeness and Risk-Neutral Measures

As in the two time step model, the concept of risk-neutral probability mea-
sure (or martingale measure) will be used to price financial claims under the
absence of arbitrage hypothesis.∗

Definition 2.12. A probability measure P∗ on Ω is called a risk-neutral
probability measure if under P∗, the expected return of each risky asset equals
the return r of the riskless asset, that is

E∗[S(i)
t+1
∣∣Ft] = (1 + r)S

(i)
t , t = 0, 1, . . . ,N − 1, (2.11)

i = 0, 1, . . . , d. Here, E∗ denotes the expectation under P∗.

Since S(i)
t ∈ Ft, denoting by

R
(i)
t+1 :=

S
(i)
t+1 − S

(i)
t

S
(i)
t

the return of asset no i over the time interval (t, t+ 1], t = 0, 1, . . . ,N − 1,
Relation (2.11) can be rewritten as

E∗[R(i)
t+1

∣∣ Ft
]
= E∗

[
S
(i)
t+1 − S

(i)
t

S
(i)
t

∣∣∣∣ Ft

]

= E∗
[
S
(i)
t+1

S
(i)
t

∣∣∣∣ Ft

]
− 1

= r, t = 0, 1, . . . ,N − 1,

which means that the average of the return (S
(i)
t+1 − S

(i)
t )/S(i)

t of asset no i
under the risk-neutral probability measure P∗ is equal to the risk-free interest
rate r.

In other words, taking risks under P∗ by buying the risky asset no i has a
neutral effect, as the expected return is that of the riskless asset. The measure
P♯ would yield a positive risk premium if we had

E♯
[
S
(i)
t+1
∣∣Ft] = (1 + r̃)S

(i)
t , t = 0, 1, . . . ,N − 1,

with r̃ > r, and a negative risk premium if r̃ < r.

In the next proposition we reformulate the definition of risk-neutral prob-
ability measure using the notion of martingale.

∗ See also the Efficient Market Hypothesis.
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Proposition 2.13. A probability measure P∗ on Ω is a risk-neutral measure
if and only if the discounted price process

S̃
(i)
t :=

S
(i)
t

(1 + r)t
, t = 0, 1, . . . ,N ,

is a martingale under P∗, i.e.

E∗[S̃(i)
t+1
∣∣Ft] = S̃

(i)
t , t = 0, 1, . . . ,N − 1, (2.12)

i = 0, 1, . . . , d.

Proof. It suffices to check that by the relation S
(i)
t = (1 + r)tS̃

(i)
t , Condi-

tion (2.11) can be rewritten as

(1 + r)t+1E∗[S̃(i)
t+1
∣∣Ft] = (1 + r)(1 + r)tS̃

(i)
t ,

i = 1, 2, . . . , d, which is clearly equivalent to (2.12) after division by (1+ r)t,
t = 0, 1, . . . ,N − 1. □

Note that, as a consequence of Propositions 2.9 and 2.13, the discounted price
process S̃(i)

t := S
(i)
t /(1+ r)t, t = 0, 1, . . . ,n, has constant expectation under

the risk-neutral probability measure P∗, i.e.

E∗[S̃(i)
t

]
= S̃

(i)
0 , t = 1, 2, . . . ,N ,

for i = 0, 1, . . . , d.
In the sequel we will only consider probability measures P∗ that are equivalent
to P, in the sense that they share the same events of zero probability.
Definition 2.14. A probability measure P∗ on (Ω, F) is said to be equivalent
to another probability measure P when

P∗(A) = 0 if and only if P(A) = 0, for all A ∈ F . (2.13)

Next, we restate in discrete time the first fundamental theorem of asset pric-
ing, which can be used to check for the existence of arbitrage opportunities.
Theorem 2.15. A market is without arbitrage opportunity if and only if it
admits at least one equivalent risk-neutral probability measure.

Proof. See Harrison and Kreps (1979) and Theorem 5.17 of Föllmer and
Schied (2004). □

Next, we turn to the notion of market completeness, starting with the defi-
nition of attainability for a contingent claim.
Definition 2.16. A contingent claim with payoff C is said to be attainable
(at time N) if there exists a (predictable) self-financing portfolio strategy
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(
ξt
)
t=1,2,...,N such that

C = ξN • SN =
d∑

k=0
ξ
(k)
N S

(k)
N , P − a.s. (2.14)

In case
(
ξt
)
t=1,2,...,N is a portfolio that attains the claim payoff C at time

N , i.e. if (2.14) is satisfied, we also say that
(
ξt
)
t=1,2,...,N hedges the claim

payoff C. In case (2.14) is replaced by the condition

ξN • SN ⩾ C,

we talk of super-hedging.
When a self-financing portfolio

(
ξt
)
t=1,2,...,N hedges a claim payoff C, the

arbitrage-free price πt(C) of the claim at time t is given by the value

πt(C) = ξt • St

of the portfolio at time t = 0, 1, . . . ,N . Recall that arbitrage-free prices can
be used to ensure that financial derivatives are “marked” at their fair value
(mark to market). Note that at time t = N we have

πN (C) = ξN • SN = C,

i.e. since exercise of the claim occurs at time N , the price πN (C) of the claim
equals the value C of the payoff.
Definition 2.17. A market model is said to be complete if every contingent
claim is attainable.
The next result can be viewed as the second fundamental theorem of asset
pricing in discrete time.
Theorem 2.18. A market model without arbitrage opportunities is complete
if and only if it admits only one equivalent risk-neutral probability measure.
Proof. See Harrison and Kreps (1979) and Theorem 5.38 of Föllmer and
Schied (2004). □

2.6 The Cox-Ross-Rubinstein (CRR) Market Model

We consider the discrete-time Cox-Ross-Rubinstein (Cox et al. (1979)) model,
also called the binomial model, with N + 1 time instants t = 0, 1, . . . ,N and
d = 1 risky asset, see Sharpe (1978). In this setting, the price S(0)

t of the
riskless asset evolves as

S
(0)
t = S

(0)
0 (1 + r)t, t = 0, 1, . . . ,N .
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Let the return of the risky asset S(1) be defined as

Rt :=
S
(1)
t − S

(1)
t−1

S
(1)
t−1

, t = 1, 2, . . . ,N .

In the CRR (or binomial) model, the return Rt is random and allowed to
take only two values a and b at each time step, i.e.

Rt ∈ {a, b}, t = 1, 2, . . . ,N ,

with −1 < a < b and

P(Rt = a) > 0, P(Rt = b) > 0, t = 1, 2, . . . ,N .

That means, the evolution of S(1)
t−1 to S(1)

t is random and given by

S
(1)
t =


(1 + b)S

(1)
t−1 if Rt = b

(1 + a)S
(1)
t−1 if Rt = a

 = (1 +Rt)S
(1)
t−1, t = 1, . . . ,N ,

and

S
(1)
t = S

(1)
0

t∏
k=1

(1 +Rk), t = 0, 1, . . . ,N .

Note that the price process
(
S
(1)
t

)
t=0,1,...,N evolves on a binary recombining

(or binomial) tree of the following type:∗

S2 = S0(1 + b)2

S1 = S0(1 + b)

S0 S2 = S0(1 + a)(1 + b)

S1 = S0(1 + a)

S2 = S0(1 + a)2.

The discounted asset price is
∗ Download the corresponding and that
can be run here or here.
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    "        returns = np.random.choice([b,a],1,p=[p,q]) \n",
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    "    axarr.plot(X[0:N+1],Y[0:N+1],marker='.',markersize = 14)\n",
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    "p = (r-a)/(b-a)\n",
    "q = (b-r)/(b-a)\n",
    "\n",
    "def binomial_grid(n,s0):\n",
    "    global a,b,r,p,q\n",
    "    G=nx.Graph() \n",
    "    for i in range(0,n):\n",
    "        j=-i+1\n",
    "        while (j<i+2):\n",
    "            G.add_edge((i,j),(i+1,j+1),weight=0.0)\n",
    "            G.add_edge((i,j),(i+1,j-1),weight=0.0)\n",
    "            j=j+2\n",
    "       \n",
    "    posG={}\n",
    "    lab={}\n",
    "    for nodes in G.nodes():\n",
    "        posG[nodes]=(nodes[0],nodes[1])\n",
    "        if nodes[0]==0:\n",
    "            lab[nodes]=s0\n",
    "        k=nodes[0]\n",
    "        l=nodes[1]-1\n",
    "        lab[nodes]=float(\"{0:.2f}\".format(s0*(1.0+b)**((k+l)/2)*(1.0+a)**((k-l)/2)))\n",
    "    l=1\n",
    "    for k in range(0,n):\n",
    "        r=np.random.binomial(1,p,1)\n",
    "        if r>0:\n",
    "            G.add_edge((k,l),(k+1,l+1),weight=1.0)\n",
    "            l=l+1\n",
    "        else:\n",
    "            G.add_edge((k,l),(k+1,l-1),weight=1.0)\n",
    "            l=l-1\n",
    "\n",
    "    elarge=[(x,y) for (x,y,z) in G.edges(data=True) if z['weight'] >0.5]\n",
    "    esmall=[(x,y) for (x,y,z) in G.edges(data=True) if z['weight'] <=0.5]\n",
    "    plt.figure(figsize=(20,10))\n",
    "    nx.draw_networkx_edges(G,posG,edge_color='blue',alpha=0.6,width=3,edgelist=esmall,style=\"dashed\")\n",
    "    nx.draw_networkx_labels(G,posG,lab,font_size=15,font_family='sans-serif')\n",
    "    nx.draw_networkx_nodes(G,posG,node_color='red',alpha=0.4,node_size=1000)\n",
    "    nx.draw_networkx_edges(G,posG,edge_color='purple',alpha=0.9,width=3,edgelist=elarge)\n",
    "    plt.ylim(-n+0.5,n+1.5) \n",
    "    plt.xlim(-0.5,n+0.5)\n",
    "    plt.show()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "binomial_grid(8,4.0)"
   ]
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  },
  "widgets": {
   "state": {},
   "version": "1.1.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 1
}
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S̃
(1)
t =

S
(1)
t

(1 + r)t
, t = 0, 1, . . . ,N ,

with

S̃
(1)
t =


1 + b

1 + r
S̃
(1)
t−1 if Rt = b

1 + a

1 + r
S̃
(1)
t−1 if Rt = a

 =
1 +Rt
1 + r

S̃
(1)
t−1, t = 1, 2, . . . ,N ,

and

S̃
(1)
t =

S
(1)
0

(1 + r)t

t∏
k=1

(1 +Rk) = S̃
(1)
0

t∏
k=1

1 +Rk
1 + r

.
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Fig. 2.5: Discrete-time asset price tree in the CRR model.

In this model, the discounted value at times t = 1, 2, . . . ,N of the portfolio
is given by

ξt • Xt = ξ
(0)
t S̃

(0)
0 + ξ

(1)
t S̃

(1)
t .

The information Ft known in the market up to time t is given by the
knowledge of S(1)

1 ,S(1)
2 , . . . ,S(1)

t , which is equivalent to the knowledge of
S̃
(1)
1 , S̃(1)

2 , . . . , S̃(1)
t or R1,R2, . . . ,Rt, i.e. we write

Ft = σ
(
S
(1)
1 ,S(1)

2 , . . . ,S(1)
t

)
= σ

(
S̃
(1)
1 , S̃(1)

2 , . . . , S̃(1)
t

)
= σ(R1,R2, . . . ,Rt),

t = 0, 1, . . . ,N , where, as a convention, S0 is a constant and F0 = {∅, Ω}
contains no information.
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Fig. 2.6: Discrete-time asset price graphs in the CRR model.

Theorem 2.19. The CRR model is without arbitrage opportunities if and
only if a < r < b. In this case the market is complete and the equivalent
risk-neutral probability measure P∗ is given by

P∗(Rt+1 = b | Ft) =
r− a

b− a
and P∗(Rt+1 = a | Ft) =

b− r

b− a
, (2.15)

t = 0, 1, . . . ,N − 1. In particular, (R1,R2, . . . ,RN ) forms a sequence of inde-
pendent and identically distributed (i.i.d.) random variables under P∗, with

p∗ := P∗(Rt = b) =
r− a

b− a
and q∗ := P∗(Rt = a) =

b− r

b− a
, (2.16)

t = 1, 2, . . . ,N .

Proof. In order to check for arbitrage opportunities we may use Theorem 2.15
and look for a risk-neutral probability measure P∗. According to the definition
of a risk-neutral measure this probability P∗ should satisfy Condition (2.11),
i.e.

E∗[S(1)
t+1
∣∣Ft] = (1 + r)S

(1)
t , t = 0, 1, . . . ,N − 1.

Rewriting E∗[S(1)
t+1
∣∣Ft] as

E∗[S(1)
t+1
∣∣Ft] = E∗[S(1)

t+1
∣∣S(1)

t

]
= (1 + a)S

(1)
t P∗(Rt+1 = a | Ft) + (1 + b)S

(1)
t P∗(Rt+1 = b | Ft),

it follows that any risk-neutral probability measure P∗ should satisfy the
equations (1 + b)S

(1)
t P∗(Rt+1 = b | Ft) + (1 + a)S

(1)
t P∗(Rt+1 = a | Ft) = (1 + r)S

(1)
t

P∗(Rt+1 = b | Ft) + P∗(Rt+1 = a | Ft) = 1,
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i.e.  bP∗(Rt+1 = b | Ft) + aP∗(Rt+1 = a | Ft) = r

P∗(Rt+1 = b | Ft) + P∗(Rt+1 = a | Ft) = 1,
with solution

P∗(Rt+1 = b | Ft) =
r− a

b− a
and P∗(Rt+1 = a | Ft) =

b− r

b− a
,

t = 0, 1, . . . ,N − 1. Since the values of P∗(Rt+1 = b | Ft) and P∗(Rt+1 =
a | Ft) computed in (2.15) are non random, they are independent∗ of the
information contained in Ft up to time t. As a consequence, under P∗, the
random variable Rt+1 is independent of R1,R2, . . . ,Rt, hence the sequence
of random variables (Rt)t=0,1,...,N is made of mutually independent random
variables under P∗, and by (2.15) we have

P∗(Rt+1 = b) =
r− a

b− a
and P∗(Rt+1 = a) =

b− r

b− a
.

Clearly, P∗ can be equivalent to P only if r− a > 0 and b− r > 0. In this case
the solution P∗ of the problem is unique by construction, hence the market
is complete by Theorem 2.18. □

As a consequence of Proposition 2.13, letting p∗ := (r − a)/(b− a), when
(ϵ1, ϵ2, . . . , ϵn) ∈ {a, b}N we have

P∗(R1 = ϵ1,R2 = ϵ2, . . . ,RN = ϵn) = (p∗)l(1 − p∗)N−l,

where l, resp. N − l, denotes the number of times the term “b”, resp. “a”,
appears in the sequence (ϵ1, ϵ2, . . . , ϵN ) ∈ {a, b}N .

Exercises

Exercise 2.1 Today I went to Furong Peak Mall. After exiting the Poon Way
MTR station, I was met by a friendly investment consultant from NTRC
Input, who recommended that I subscribe to the following investment plan.
The plan requires to invest $2,550 per year over the first 10 years, with
no contribution required from year 11 until year 20. The total projected
surrender value is $30,835 at maturity N = 20. The plan also includes a
death benefit which is not considered here.
∗ The relation P(A | B) = P(A) is equivalent to the independence relation P(A ∩ B) =
P(A)P(B) of the events A and B.
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Surrender Value
Total Premiums Guaranteed ($S) Projected at 3.25%

Year Paid To-date ($S) Non-Guaranteed ($S) Total ($S)
1 2,550 0 0 0
2 5,100 2,460 140 2,600
3 7,650 4,240 240 4,480
4 10,200 6,040 366 6,406
5 12,750 8,500 518 9,018
10 25,499 19,440 1,735 21,175
15 25,499 22,240 3,787 26,027
20 25,499 24,000 6,835 30,835

Table 2.2: NTRC Input investment plan.

a) Compute the constant interest rate over 20 years corresponding to this
investment plan.

b) Compute the projected value of the plan at the end of year 20, if the
annual interest rate is r = 3.25% over 20 years.

c) Compute the projected value of the plan at the end of year 20, if the
annual interest rate r = 3.25% is paid only over the first 10 years. Does
this recover the total projected value $30, 835?

Exercise 2.2 Today I went to East Mall. After exiting the Bukit Kecil MTR
station, I was approached by a friendly investment consultant from Avenda
Insurance, who recommended me to subscribe to the following investment
plan. The plan requires me to invest $3,581 per year over the first 10 years,
with no contribution required from year 11 until year 20. The total projected
surrender value is $50,862 at maturity N = 20. The plan also includes a
death benefit which is not considered here.

Surrender Value
Total Premiums Guaranteed ($S) Projected at 3.25%

Year Paid To-date ($S) Non-Guaranteed ($S) Total ($S)
1 3,581 0 0 0
2 7,161 1,562 132 1,694
3 10,741 3,427 271 3,698
4 14,321 5,406 417 5,823
5 17,901 6,992 535 7,527
10 35,801 19,111 1,482 20,593
15 35,801 29,046 3,444 32,490
20 35,801 43,500 7,362 50,862

Table 2.3: Avenda Insurance investment plan.

a) Using the following graph, compute the constant interest rate over 20
years corresponding to this investment.
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Fig. 2.7: Graph of the function x 7→ ((1 + x)21 − (1 + x)11)/x.

b) Compute the projected value of the plan at the end of year 20, if the
annual interest rate is r = 3.25% over 20 years.

c) Compute the projected value of the plan at the end of year 20, if the
annual interest rate r = 3.25% is paid only over the first 10 years. Does
this recover the total projected value $50, 862?

Exercise 2.3 A lump sum of $100,000 is to be released through N identical
yearly installment payments m at the beginning of every year, over N = 10
years.

a) Find the value of m.
b) Assume that interests are due at the rate r = 2% on the amount remaining

at the beginning of every year. How does this affect the value of the
constant yearly payment m?

c) Assume that the amount remaining at the beginning of every year is in-
vested at the interest rate r = 2%, and that m is as in Question (a). In
this case, how much is left at the end of year N after the N payments
have been completed?
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Exercise 2.4

Today I received an SMS from
Jack, and I opted for the 3K loan
over 12 months.

a) Compute the monthly interest
rate earned by Jack using the
below graph of the function
r 7→ (1 − (1 + r)−12)/r.

b) Compute the yearly interest
rate earned by Jack.

c) Should I:
i) Block him,

ii) Report him,
iii) Sue him,
iv) All of the above.

10

11

12

0 1 2 3 4
r in %

Exercise 2.5 We consider the following two scenarios:
i) In Scenario (i) we borrow the amount $A at the rate rloan to purchase

a house. By renting out the house we receive investment income com-
pounded every month at the rate rrent, and we refund the loan by paying
$m at the end of every month.

ii) In Scenario (ii) at the end of every month we only invest an amount
$m on an account paying the rate rinv, for the same duration as in
Scenario (i).

a) How much remains on our account in Scenario (i) after the loan has been
completely repaid?
Hint: Refunding $A over N identical payments of $m at the rate rloan > 0
imposes the relation A/m = (1 − (1 + rloan)

−N )/rloan.
b) How much remains on our account in Scenario (ii) at the end of the

investment duration?
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Hint: Reaching a target of $B by investing N identical payments of $m at
the rate rinv > 0 imposes the relation B/m = ((1 + rinv)N − 1)/rinv.

c) Taking N = 12 months and assuming rrent = rinv = 2% and rloan = 5%,
which of Scenario (i) and Scenario (ii) is more profitable?

Hint: Use the graph of Figure 2.8.

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 12

0 1 2 3 4 5

r in %
Fig. 2.8: Graph of the function r 7→ (1 − (1 + r)−12)/r.

Exercise 2.6 Consider a two-step trinomial (or ternary) market model
(St)t=0,1,2 with r = 0 and three possible return rates Rt ∈ {−1, 0, 1}. Show
that the probability measure P∗ given by

P∗(Rt = −1) :=
1
4 , P∗(Rt = 0) :=

1
2 , P∗(Rt = 1) :=

1
4

is risk-neutral.

Exercise 2.7 We consider a riskless asset valued S(0)
k = S

(0)
0 , k = 0, 1, . . . ,N ,

where the risk-free interest rate is r = 0, and a risky asset S(1) whose returns

Rk :=
S
(1)
k − S

(1)
k−1

S
(1)
k−1

, k = 1, 2, . . . ,N , form a sequence of independent identi-

cally distributed random variables taking three values {−b < 0 < b} at each
time step, with

p∗ := P∗(Rk = b) > 0, θ∗ := P∗(Rk = 0) > 0, q∗ := P∗(Rk = −b) > 0,

k = 1, 2, . . . ,N . The information known to the market up to time k is denoted
by Fk.

a) Determine all possible risk-neutral probability measures P∗ equivalent to
P in terms of the parameter θ∗ ∈ (0, 1).

b) Assume that the conditional variance
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Var∗

S(1)
k+1 − S

(1)
k

S
(1)
k

∣∣∣∣∣Fk
 = σ2 > 0, k = 0, 1, . . . ,N − 1, (2.17)

of the asset return is constant and equal to σ2. Show that this condi-
tion defines a unique risk-neutral probability measure P∗

σ under a certain
condition on b and σ, and determine P∗

σ explicitly.

Exercise 2.8 The Ross (2015) Recovery Theorem allows for estimates of the
real-world transition probabilities of an underlying asset from option prices
in a Markovian state model. We consider a one-step asset price model with
N possible states {s1, . . . , sN} at time t = 0 and at time t = 1, and let
Xt ∈ {s1, . . . , sN} denote the state of the market at times t = 0, 1. We also
consider N binary options B1, . . . , BN maturing at t = 1, with respective
payoffs

1{X1=sk}, k = 1, . . . ,N ,

i.e. Bk pays $1 if and only if X1 = sk, k = 1, . . . ,N . For k, l ∈ {1, . . . ,N} we
denote by bk,l the known price of the binary option Bl given that X0 = sk.
a) In this question, we aim at recovering the risk-neutral probabilities

P ∗ = (p∗
k,l)k,l=1,...,N = (P∗(X1 = sl | X0 = sk))k,l=1,...,N

using risk-neutral pricing.

1) From Proposition 1.16, express bk,l using:
i) the price dk of the bond paying $1 at t = 1 when the market starts

from state sk at t = 0, and
ii) the risk-neutral probability p∗

k,l, k, l = 1, . . . ,N .
2) Write the price dk of a bond paying $1 at t = 1 in terms of the binary

option prices bk,l of Bl when the market starts from state sk at t = 0,
k, l = 1, . . . ,N .

3) For k = 1, . . . ,N , express the risk-neutral probabilities p∗
k,l and the

bond prices dk in terms of the known binary option prices bk,l, k, l =
1, . . . ,N .

b) In this question, we aim at recovering the real-world probabilities

P = (pk,l)k,l=1,...,N = (P(X1 = sl | X0 = sk))k,l=1,...,N

using marginal utility pricing. For this, we price the binary option Bl by
the relation

ulbk,l = δukpk,l, k, l = 1, . . . ,N ,

where δ > 0 is an unknown time discount factor and uk > 0 represents
an unknown marginal utility in state sk, k = 1, . . . ,N .

1) How many equations do we have? How many unknowns do we have?
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2) Show that the matrix equation Bu⊤ = δu⊤ holds, where u :=
[u1, . . . ,uN ] and B := (bk,l)k,l=1,...,N .

3) Prove that the equation of Question (b2) admits a unique solution δ,
u1, . . . ,uN made of strictly positive numbers.

Hint. Apply the Perron-Frobenius theorem for positive matrices.
4) Show that the transition probabilities pk,l can be recovered from the

known binary option prices bk,l, k, l = 1, . . . ,N .
5) Assume that X1 does not depend on the initial state X0 = k, k =

1, . . . ,N . Find the relation between δ and the bond prices dk, and the
relation between the real-world and risk-neutral probabilities pk,l, p∗

k,l,
k, l = 1, . . . ,N .

Figure 2.9 gives an example of estimation of transition probabilities on
AMZN option chain data downloaded on March 31, 2022.

Fig. 2.9: Transition probabilities in the recovery theorem.

Exercise 2.9 We consider the discrete-time Cox-Ross-Rubinstein model with
N + 1 time instants t = 0, 1, . . . ,N , with a riskless asset whose price At
evolves as At = A0(1 + r)t, t = 0, 1, . . . ,N . The evolution of St−1 to St is
given by

St =

 (1 + b)St−1

(1 + a)St−1

with −1 < a < r < b. The return of the risky asset S is defined as

Rt :=
St − St−1
St−1

, t = 1, 2, . . . ,N ,

and Ft is generated by R1,R2, . . . ,Rt, t = 1, 2, . . . ,N .
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a) What are the possible values of Rt?
b) Show that, under the probability measure P∗ defined by

p∗ = P∗(Rt+1 = b | Ft) =
r− a

b− a
, q∗ = P∗(Rt+1 = a | Ft) =

b− r

b− a
,

t = 0, 1, . . . ,N − 1, the expected return E∗[Rt+1 | Ft] of S is equal to the
return r of the riskless asset.

c) Show that under P∗ the process (St)t=0,1,...,N satisfies

E∗[St+k | Ft] = (1 + r)kSt, t = 0, 1, . . . ,N − k, k = 0, 1, . . . ,N .

Exercise 2.10 We consider the discrete-time Cox-Ross-Rubinstein model
on N + 1 time instants t = 0, 1, . . . ,N , with a riskless asset whose price At
evolves as At = A0(1 + r)t with r ⩾ 0, and a risky asset whose price St is
given by

St = S0

t∏
k=1

(1 +Rk), t = 0, 1, . . . ,N ,

where the asset returns Rk are independent random variables taking two
possible values a and b with −1 < a < r < b, and P∗ is the probability
measure defined by

p∗ = P∗(Rt+1 = b | Ft) =
r− a

b− a
, q∗ = P∗(Rt+1 = a | Ft) =

b− r

b− a
,

t = 0, 1, . . . ,N −1, where (Ft)t=0,1,...,N is the filtration generated by (Rt)t=1,2,...,N .

a) Compute the conditional expected return E∗[Rt+1 | Ft] under P∗, t =
0, 1, . . . ,N − 1.

b) Show that the discounted asset price process

(
S̃t
)
t=0,1,...,N :=

(
St
At

)
t=0,1,...,N

is a (nonnegative) (Ft)-martingale under P∗.
Hint: Use the independence of asset returns (Rt)t=1,2,...,N under P∗.

c) Compute the moment E∗[(SN )β ] for all β > 0.
Hint: Use the independence of asset returns (Rt)t=1,2,...,N under P∗.

d) For any α > 0, find an upper bound for the probability

P∗(St ⩾ αAt for some t ∈ {0, 1, . . . ,N}
)
.

Hint: Use the fact that when (Mt)t=0,1,...,N is a nonnegative martingale,
we have
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P∗
(

Max
t=0,1,...,N

Mt ⩾ x
)
⩽

E∗[(MN )β ]

xβ
, x > 0, β ⩾ 1. (2.18)

e) For any x > 0, find an upper bound for the probability

P∗
(

Max
t=0,1,...,N

St ⩾ x
)

.

Hint: Note that (2.18) remains valid for any nonnegative submartingale.
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