
Chapter 7
Martingale Approach to Pricing and
Hedging

In the martingale approach to the pricing and hedging of financial deriva-
tives, option prices are expressed as the expected values of discounted option
payoffs. This approach relies on the construction of risk-neutral probability
measures by the Girsanov theorem, and the associated hedging portfolios are
obtained via stochastic integral representations.
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7.1 Martingale Property of the Itô Integral

Recall (Definition 4.2) that an integrable process (Xt)t∈R+ is said to be a
martingale with respect to the filtration (Ft)t∈R+ if

E[Xt | Fs] = Xs, 0 ⩽ s ⩽ t.

In what follows,

L2(Ω) := {F : Ω → R : E[|F |2] < ∞}

denotes the space of square-integrable random variables.

Examples of martingales (i)

1. Given F ∈ L2(Ω) a square-integrable random variable and (Ft)t∈R+ a
filtration, the process (Xt)t∈R+ defined by
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Xt := E[F | Ft], t ⩾ 0,

is an (Ft)t∈R+ -martingale under P. Indeed, since Fs ⊂ Ft, 0 ⩽ s ⩽ t, it
follows from the tower property (A.33) of conditional expectations that

E[Xt | Fs] = E[E[F | Ft] | Fs] = E[F | Fs] = Xs, 0 ⩽ s ⩽ t. (7.1)

2. Any integrable stochastic process (Xt)t∈R+ whose increments (Xt1 −
Xt0 , . . . ,Xtn −Xtn−1) are mutually independent and centered under P

(i.e. E[Xt] = 0, t ∈ R+) is a martingale with respect to the filtration
(Ft)t∈R+ generated by (Xt)t∈R+ , as we have

E[Xt | Fs] = E[Xt −Xs +Xs | Fs]
= E[Xt −Xs | Fs] + E[Xs | Fs]
= E[Xt −Xs] +Xs

= Xs, 0 ⩽ s ⩽ t. (7.2)

In particular, the standard Brownian motion (Bt)t∈R+ is a martingale
because it has centered and independent increments. This fact is also
consequence of Proposition 7.1 below as Bt can be written as

Bt =
w t

0
dBs, t ⩾ 0.

3. The driftless geometric Brownian motion

Xt := X0 eσBt−σ2t/2 (7.3)

is a martingale. Indeed, using the Gaussian moment generating function
identity (A.41), we have

E[Xt | Fs] = E
[
X0 eσBt−σ2t/2 | Fs

]
= X0 e−σ2t/2E

[
eσBt | Fs

]
= X0 e−σ2t/2E

[
e(Bt−Bs)σ+σBs | Fs

]
= X0 e−σ2t/2+σBsE

[
e(Bt−Bs)σ | Fs

]
= X0 e−σ2t/2+σBsE

[
e(Bt−Bs)σ

]
= X0 e−σ2t/2+σBs exp

(
E[(Bt −Bs)σ] +

1
2 Var[(Bt −Bs)σ]

)
= X0 e−σ2t/2+σBs e(t−s)σ2/2

= X0 eσBs−σ2s/2

= Xs, 0 ⩽ s ⩽ t.
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The following result shows that the Itô integral yields a martingale with
respect to the Brownian filtration (Ft)t∈R+ . It is the continuous-time analog
of the discrete-time Theorem 2.11.

Proposition 7.1. The stochastic integral process
( r t

0 usdBs
)
t∈R+

of a square-
integrable adapted process u ∈ L2

ad(Ω × R+) is a martingale, i.e.:

E

[w t
0
uτdBτ

∣∣∣ Fs
]
=

w s
0
uτdBτ , 0 ⩽ s ⩽ t. (7.4)

In particular,
r t
0 usdBs is Ft-measurable, t ⩾ 0, and since F0 = {∅, Ω},

Relation (7.4) applied with t = 0 recovers the fact that the Itô integral is a
centered random variable:

E

[w t
0
usdBs

]
= E

[w t
0
usdBs

∣∣∣ F0

]
=

w 0

0
usdBs = 0, t ⩾ 0.

Proof. The statement is first proved in case (ut)t∈R+ is a simple predictable
process, and then extended to the general case, cf. e.g. Proposition 2.5.7 in
Privault (2009). For example, for u a predictable step process of the form

us := F1[a,b](s) =

F if s ∈ [a, b],

0 if s /∈ [a, b],

with F an Fa-measurable random variable and t ∈ [a, b], by Definition 4.17
we have

E
[w ∞

0
usdBs

∣∣∣ Ft
]
= E

[w ∞

0
F1[a,b](s)dBs

∣∣∣ Ft
]

= E[(Bb −Ba)F | Ft]
= FE[Bb −Ba | Ft]
= F (Bt −Ba)

=
w t
a
usdBs

=
w t

0
usdBs, a ⩽ t ⩽ b.

On the other hand, when t ∈ [0, a] we have
w t

0
usdBs = 0,

and we check that

E
[w ∞

0
usdBs

∣∣∣ Ft
]
= E

[w ∞

0
F1[a,b](s)dBs

∣∣∣ Ft
]

= E[F (Bb −Ba) | Ft]
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= E[E[F (Bb −Ba) | Fa] | Ft]
= E[FE[Bb −Ba | Fa] | Ft]
= 0, 0 ⩽ t ⩽ a,

where we used the tower property (A.33) of conditional expectations and the
fact that Brownian motion (Bt)t∈R+ is a martingale:

E[Bb −Ba | Fa] = E[Bb | Fa] −Ba = Ba −Ba = 0.

The extension from simple processes to square-integrable processes in L2
ad(Ω ×

R+) can be proved as in Proposition 4.21. Indeed, given
(
u(n)

)
n∈N

be a
sequence of simple predictable processes converging to u in L2(Ω × [0,T ])
cf. Lemma 1.1 of Ikeda and Watanabe (1989), pages 22 and 46, by Fatou’s
Lemma A.12, Jensen’s inequality and the Itô isometry (4.16), we have:

E

[(w t
0
usdBs − E

[w ∞

0
usdBs

∣∣∣ Ft
])2

]

= E

[
lim
n→∞

(w t
0
u
(n)
s dBs − E

[w ∞

0
usdBs

∣∣∣ Ft
])2

]

⩽ lim inf
n→∞

E

[(w t
0
u
(n)
s dBs − E

[w ∞

0
usdBs

∣∣∣ Ft
])2

]

= lim inf
n→∞

E

[(
E
[w ∞

0
u
(n)
s dBs −

w ∞

0
usdBs

∣∣∣ Ft
])2]

⩽ lim inf
n→∞

E

[
E

[(w ∞

0
u
(n)
s dBs −

w ∞

0
usdBs

)2 ∣∣∣ Ft
]]

= lim inf
n→∞

E

[(w ∞

0
(u

(n)
s − us)dBs

)2
]

= lim inf
n→∞

E
[w ∞

0
|u(n)s − us|2ds

]
= lim inf

n→∞
∥u(n) − u∥2

L2(Ω×[0,T ])

= 0,

where we used the Itô isometry (4.16). We conclude that

E
[w ∞

0
usdBs

∣∣∣Ft] = w t
0
usdBs, t ⩾ 0,

for u ∈ L2
ad(Ω × R+) a square-integrable adapted process, which leads to

(7.4) after applying this identity to the process (1[0,t]us)s∈R+ , i.e.,

E

[w t
0
uτdBτ

∣∣∣ Fs
]
= E

[w ∞

0
1[0,t](τ )uτdBτ

∣∣∣ Fs
]

268 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

=
w s

0
1[0,t](τ )uτdBτ

=
w s

0
uτdBτ , 0 ⩽ s ⩽ t.

□

Examples of martingales (ii)

1. The martingale property of the driftless geometric Brownian motion (7.3)
can also be recovered from Proposition 7.1, since by Proposition 5.15,
(Xt)t∈R+ satisfies the stochastic differential equation

dXt = σXtdBt,

which shows that Xt can be written using the Brownian stochastic inte-
gral

Xt = X0 + σ
w t

0
XudBu, t ⩾ 0.

2. Consider an asset price process (St)t∈R+ given by the stochastic differ-
ential equation

dSt = µStdt+ σStdBt, t ⩾ 0, (7.5)

with µ ∈ R and σ > 0. By the Discounting Lemma 5.13, the discounted
asset price process S̃t := e−rtSt, t ⩾ 0, satisfies the stochastic differential
equation

dS̃t = (µ− r)S̃tdt+ σS̃tdBt,

and the discounted asset price

S̃t = e−rtSt = S0 e(µ−r)t+σBt−σ2t/2, t ⩾ 0,

is a martingale under P when µ = r. The case µ ̸= r will be treated
in Section 7.3 using risk-neutral probability measures, see Definition 5.4,
and the Girsanov Theorem 7.3, see (7.16) below.

3. The discounted value

Ṽt = e−rtVt, t ⩾ 0,

of a self-financing portfolio is given by

Ṽt = Ṽ0 +
w t

0
ξudS̃u, t ⩾ 0,

cf. Lemma 5.14 is a martingale when µ = r by Proposition 7.1 because
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Ṽt = Ṽ0 + σ
w t

0
ξuS̃udBu, t ⩾ 0, ,

since we have

dS̃t = S̃t((µ− r)dt+ σdBt) = σS̃tdBt

by the Discounting Lemma 5.13. Since the Black-Scholes theory is in fact
valid for any value of the parameter µ we will look forward to including
the case µ ̸= r in the sequel.

7.2 Risk-Neutral Probability Measures

Recall that by definition, a risk-neutral measure is a probability measure P∗

under which the discounted asset price process(
S̃t
)
t∈R+

:= ( e−rtSt)t∈R+

is a martingale, see Definition 5.4 and Proposition 5.5.
Consider an asset price process (St)t∈R+ given by the stochastic differential
equation (7.5). Note that when µ = r, the discounted asset price process(
S̃t
)
t∈R+

= (S0 eσBt−σ2t/2)t∈R+ is a martingale under P∗ = P, which is a
risk-neutral probability measure.

In this section, we address the construction of a risk-neutral probability
measure P∗ in the general case µ ̸= r using the Girsanov Theorem 7.3 below.
For this, we note that by the Discounting Lemma 5.13, the relation

dS̃t = (µ− r)S̃tdt+ σS̃tdBt

where µ− r is the risk premium, can be rewritten as

dS̃t = σS̃tdB̂t, (7.6)

where
(
B̂t
)
t∈R+

is a drifted Brownian motion given by

B̂t :=
µ− r

σ
t+Bt, t ⩾ 0,

where the drift coefficient ν := (µ − r)/σ is the “Market Price of Risk”
(MPoR). The MPoR represents the difference between the return µ expected
when investing in the risky asset St, and the risk-free interest rate r, measured
in units of volatility σ.
From (7.6) and Propositions 5.5 and 7.1 we note that the risk-neutral prob-
ability measure can be constructed as a probability measure P∗ under which
(B̂t)t∈R+ is a standard Brownian motion.
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Let us come back to the informal approximation of Brownian motion via its
infinitesimal increments:

∆Bt = ±
√

∆t,

with
P
(
∆Bt = +

√
∆t
)
= P

(
∆Bt = −

√
∆t
)
=

1
2 ,

and
E[∆Bt] =

1
2

√
∆t− 1

2
√

∆t = 0.
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Fig. 7.1: Drifted Brownian path (B̂t)t∈R+ with ν > 0.

Clearly, given ν ∈ R, the drifted process

B̂t := νt+Bt, t ⩾ 0,

is no longer a standard Brownian motion because it is not centered:

E
[
B̂t
]
= E[νt+Bt] = νt+ E[Bt] = νt ̸= 0,

cf. Figure 7.1. This identity can be formulated in terms of infinitesimal in-
crements as

E[ν∆t+ ∆Bt] =
1
2 (ν∆t+

√
∆t) +

1
2 (ν∆t−

√
∆t) = ν∆t ̸= 0.

In order to make νt+Bt a centered process (i.e. a standard Brownian motion,
since νt+Bt conserves all the other properties (i)-(iii) in the definition of
Brownian motion, one may change the probabilities of ups and downs, which
have been fixed so far equal to 1/2.

That is, the problem is now to find two numbers p∗, q∗ ∈ [0, 1] such that
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p∗(ν∆t+
√

∆t) + q∗(ν∆t−
√

∆t) = 0

p∗ + q∗ = 1.

The solution to this problem is given by

p∗ :=
1
2 (1 − ν

√
∆t) and q∗ :=

1
2 (1 + ν

√
∆t). (7.7)

Definition 7.2. We say that a probability measure Q is absolutely continuous
with respect to another probability measure P if there exists a nonnegative
random variable F : Ω −→ R+ such that E[F ] = 1, and

dQ

dP
= F , i.e. dQ = FdP. (7.8)

In this case, F is called the Radon-Nikodym density of Q with respect to P.
Relation (7.8) is equivalent to the relation

EQ[G] =
w

Ω
G(ω)dQ(ω)

=
w

Ω
G(ω)

dQ

dP
(ω)dP(ω)

=
w

Ω
G(ω)F (ω)dP(ω)

= E [FG] ,

for any random variable G integrable under Q.
Coming back to Brownian motion considered as a discrete random walk with
independent increments ±

√
∆t, we try to construct a new probability measure

denoted P∗, under which the drifted process B̂t := νt+Bt will be a stan-
dard Brownian motion. This probability measure will be defined through its
Radon-Nikodym density

dP∗

dP
:=

P∗(∆Bt1 = ϵ1
√

∆t, . . . , ∆BtN = ϵN
√

∆t)
P(∆Bt1 = ϵ1

√
∆t, . . . , ∆BtN = ϵN

√
∆t)

=
P∗(∆Bt1 = ϵ1

√
∆t) · · · P∗(∆BtN = ϵN

√
∆t)

P(∆Bt1 = ϵ1
√

∆t) · · · P(∆BtN = ϵN
√

∆t)

=
1

(1/2)N P∗(∆Bt1 = ϵ1
√

∆t) · · · P∗(∆BtN = ϵN
√

∆t), (7.9)

ϵ1, ϵ2, . . . , ϵN ∈ {−1, 1}, with respect to the historical probability measure
P, obtained by taking the product of the above probabilities divided by the
reference probability 1/2N corresponding to the symmetric random walk.
Interpreting N = T/∆t as an (infinitely large) number of discrete time steps
and under the identification [0,T ] ≃ {0 = t0, t1, . . . , tN = T}, this Radon-
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Nikodym density (7.9) can be rewritten as

dP∗

dP
≃ 1

(1/2)N
∏

0<t<T

(
1
2 ∓ 1

2ν
√

∆t
)

(7.10)

where 2N becomes a normalization factor.

The following code is rescaling probabilities as in (7.7) based on the value
of the drift µ.

 nsim <- 100; N=12; t <- 0:N; T<-1.0; dt <- T/N; nu=3; p=0.5*(1-nu*(dt)^0.5);
 dB <- matrix((dt)^0.5*(rbinom( nsim * N, 1, p)-0.5)*2, nsim, N)

X <- cbind(rep(0, nsim), t(apply(dB, 1, cumsum)))
 plot(t, X[1, ], xlab = "Time", ylab = "", type = "l", ylim = c(-2*N*dt,2*N*dt), col =

0,cex.axis=1.4,cex.lab=1.4,xaxs="i", mgp = c(1, 2, 0), las=1)
for (i in 1:nsim){if (N<20) {points(t,t*nu*dt+X[i,],pch=20,cex=0.6, col=i+1,lwd=2)}

 lines(t,t*nu*dt+X[i,],type="l",col=i+1,lwd=2)}

The discretized illustration in Figure 7.2 displays the drifted Brownian motion
B̂t := νt+Bt under the shifted probability measure P∗ in (7.10) using the
above code with N = 100. The code makes big transitions less frequent
than small transitions, resulting into a standard, centered Brownian motion
under P∗.

0 20 40 60 80 100

−1.0

−0.5

0.0

0.5

1.0

Time

Fig. 7.2: Drifted Brownian motion paths under a shifted Girsanov measure.

Next, using the expansion

log
(
1 ± ν

√
∆t
)
= ±ν

√
∆t− 1

2 (±ν
√

∆t)2 + o(∆t)

= ±ν
√

∆t− ν2

2 ∆t+ o(∆t),

for small values of ∆t, this Radon-Nikodym density can be informally shown
to converge as follows as N tends to infinity, i.e. as the time step ∆t = T/N
tends to zero:
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dP∗

dP
= 2N

∏
0<t<T

(
1
2 ∓ 1

2ν
√

∆t
)

=
∏

0<t<T

(
1 ∓ ν

√
∆t
)

= exp
(

log
∏

0<t<T

(
1 ∓ ν

√
∆t
))

= exp
( ∑

0<t<T
log
(

1 ∓ ν
√

∆t
))

≃ exp
(
ν
∑

0<t<T
∓

√
∆t− 1

2
∑

0<t<T
(∓ν

√
∆t)2

)

= exp
(

−ν
∑

0<t<T
±

√
∆t− ν2

2
∑

0<t<T
∆t

)

= exp
(

−ν
∑

0<t<T
∆Bt − ν2

2
∑

0<t<T
∆t

)

= exp
(

−νBT − ν2

2 T
)

,

based on the identifications

BT ≃
∑

0<t<T
±

√
∆t and T ≃

∑
0<t<T

∆t.

Informally, the drifted process
(
B̂t)t∈[0,T ] = (νt+ Bt)t∈[0,T ] is a standard

Brownian motion under the probability measure P∗ defined by its Radon-
Nikodym density

dP∗

dP
= exp

(
−νBT − ν2

2 T
)

.

7.3 Change of Measure and the Girsanov Theorem

In this section we restate the Girsanov Theorem in a more rigorous way,
using changes of probability measures. The Girsanov Theorem can actually
be extended to shifts by adapted processes (ψt)t∈[0,T ] as follows, cf. e.g.
Theorem III-42, page 141 of Protter (2004). An extension of the Girsanov
Theorem to jump processes will be covered in Section 20.5. Recall also that
here, Ω := C0([0,T ]) is the Wiener space and ω ∈ Ω is a continuous function
on [0,T ] starting at 0 in t = 0. The Girsanov Theorem 7.3 will be used in
Section 7.4 for the construction of a unique risk-neutral probability measure
P∗, showing absence of arbitrage and completeness in the Black-Scholes mar-
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ket, see Theorems 5.7 and 5.11.

Theorem 7.3. Let (ψt)t∈[0,T ] be an adapted process satisfying the Novikov
integrability condition

E

[
exp

(
1
2
w T

0
|ψt|2dt

)]
< ∞, (7.11)

and let Q denote the probability measure defined by the Radon-Nikodym den-
sity

dQ

dP
= exp

(
−
w T

0
ψsdBs − 1

2
w T

0
|ψs|2ds

)
.

Then
B̂t := Bt +

w t
0
ψsds, 0 ⩽ t ⩽ T ,

is a standard Brownian motion under Q.

In the case of the simple shift

B̂t := Bt + νt, 0 ⩽ t ⩽ T ,

by a drift νt with constant ψs = ν ∈ R, the process
(
B̂t
)
t∈R+

is a standard
(centered) Brownian motion under the probability measure Q defined by

dQ(ω) = exp
(

−νBT − ν2

2 T
)

dP(ω).

For example, the fact that B̂T has a centered Gaussian distribution under Q

can be recovered as follows:

EQ

[
f
(
B̂T
)]

= EQ[f(νT +BT )]

=
w

Ω
f(νT +BT )dQ

=
w

Ω
f(νT +BT ) exp

(
−νBT − 1

2ν
2T

)
dP

=
w ∞

−∞
f(νT + x) exp

(
−νx− 1

2ν
2T

)
e−x2/(2T ) dx√

2πT

=
w ∞

−∞
f(νT + x) e−(νT+x)2/(2T ) dx√

2πT

=
w ∞

−∞
f(y) e−y2/(2T ) dy√

2πT
= EP[f(BT )],

i.e.
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EQ[f(νT +BT )] =
w

Ω
f(νT +BT )dQ (7.12)

=
w

Ω
f(BT )dP

= EP[f(BT )],

showing that, under Q, νT +BT has the centered N (0,T ) Gaussian distribu-
tion with variance T . For example, taking f(x) = x, Relation (7.12) recovers
the fact that B̂T is a centered random variable under Q, i.e.

EQ

[
B̂T
]
= EQ[νT +BT )] = EP[BT ] = 0.

The Girsanov Theorem 7.3 also allows us to extend (7.12) as

EP[F (·)] = E

[
F
(
B· +

w ·

0
ψsds

)
exp

(
−
w T

0
ψsdBs − 1

2
w T

0
|ψs|2ds

)]
= EQ

[
F
(
B· +

w ·

0
ψsds

)]
, (7.13)

for all random variables F ∈ L1(Ω), see also Exercise 7.25.

When applied to the (constant) market price of risk (or Sharpe ratio)

ψt :=
µ− r

σ
,

the Girsanov Theorem 7.3 shows that the process

B̂t :=
µ− r

σ
t+Bt, 0 ⩽ t ⩽ T , (7.14)

is a standard Brownian motion under the probability measure P∗ defined by

dP∗

dP
= exp

(
−µ− r

σ
BT − (µ− r)2

2σ2 T

)
. (7.15)

Hence by Proposition 7.1 the discounted price process (S̃t)t∈R+ solution of

dS̃t = (µ− r)S̃tdt+ σS̃tdBt = σS̃tdB̂t, t ⩾ 0, (7.16)

is a martingale under P∗, therefore P∗ is a risk-neutral probability measure.
We also check that P∗ = P when µ = r.

In the sequel, we consider probability measures Q that are equivalent to P

in the sense that they share the same events of zero probability, see Defini-
tion 1.5. Precisely, recall that a probability measure Q on (Ω, F) is said to
be equivalent to another probability measure P when

Q(A) = 0 if and only if P(A) = 0, for all A ∈ F .
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Note that when Q is defined by (7.8), it is equivalent to P if and only if F > 0
with P-probability one.

7.4 Pricing by the Martingale Method

In this section we give the expression of the Black-Scholes price using expec-
tations of discounted payoffs.

Recall that according to the first fundamental theorem of asset pricing
Theorem 5.7, a continuous market is without arbitrage opportunities if and
only if there exists (at least) an equivalent risk-neutral probability measure
P∗ under which the discounted price process

S̃t := e−rtSt, t ⩾ 0,

is a martingale under P∗. In addition, when the risk-neutral probability mea-
sure is unique, the market is said to be complete.

The equation
dSt
St

= µdt+ σdBt, t ⩾ 0,

satisfied by the price process (St)t∈R+ can be rewritten using (7.14) as

dSt
St

= rdt+ σdB̂t, t ⩾ 0, (7.17)

with the solution

St = S0 eµt+σBt−σ2t/2 = S0 ert+σB̂t−σ2t/2, t ⩾ 0. (7.18)

By the discounting Lemma 5.13, we have

dS̃t = (µ− r)S̃tdt+ σS̃tdBt

= σS̃t

(
µ− r

σ
dt+ dBt

)
= σS̃tdB̂t, t ⩾ 0, (7.19)

hence the discounted price process

S̃t := e−rtSt

= S0 e(µ−r)t+σBt−σ2t/2

= S0 eσB̂t−σ2t/2, t ⩾ 0,

is a martingale under the probability measure P∗ defined by (7.15). We note
that P∗ is a risk-neutral probability measure equivalent to P, also called mar-
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tingale measure, whose existence and uniqueness ensure absence of arbitrage
and completeness according to Theorems 5.7 and 5.11.

Therefore, by Lemma 5.14 the discounted value Ṽt of a self-financing port-
folio can be written as

Ṽt = Ṽ0 +
w t

0
ξudS̃u

= Ṽ0 + σ
w t

0
ξuS̃udB̂u, t ⩾ 0,

and by Proposition 7.1 it becomes a martingale under P∗.
As in Chapter 3, the value Vt at time t of a self-financing portfolio strategy

(ξt)t∈[0,T ] hedging an attainable claim payoff C will be called an arbitrage-
free price of the claim payoff C at time t and denoted by πt(C), t ∈ [0,T ].
Arbitrage-free prices can be used to ensure that financial derivatives are
“marked” at their fair value (“mark to market”).
Theorem 7.4. Let (ξt, ηt)t∈[0,T ] be a portfolio strategy with value

Vt = ηtAt + ξtSt, 0 ⩽ t ⩽ T ,

and let C be a contingent claim payoff, such that

(i) (ξt, ηt)t∈[0,T ] is a self-financing portfolio, and

(ii) (ξt, ηt)t∈[0,T ] hedges the claim payoff C, i.e. we have VT = C.

Then, the arbitrage-free price of the claim payoff C is given by the portfolio
value

πt(C) = Vt = e−(T−t)rE∗[C | Ft], 0 ⩽ t ⩽ T , (7.20)

where E∗ denotes expectation under the risk-neutral probability measure P∗.

Proof. Since the portfolio strategy (ξt, ηt)t∈R+ is self-financing, by Lemma 5.14
and (7.19) the discounted portfolio value Ṽt = e−rtVt satisfies

Ṽt = V0 +
w t

0
ξudS̃u = Ṽ0 + σ

w t
0
ξuS̃udB̂u, t ⩾ 0,

which is a martingale under P∗ from Proposition 7.1, hence

Ṽt = E∗[ṼT ∣∣ Ft
]

= E∗[ e−rTVT | Ft]
= E∗[ e−rTC | Ft]
= e−rTE∗[C | Ft],

which implies

Vt = ertṼt = e−(T−t)rE∗[C | Ft], 0 ⩽ t ⩽ T .
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□

Black-Scholes PDE for vanilla options by the martingale method

The martingale method can be used to recover the Black-Scholes PDE of
Proposition 6.1. As the process (St)t∈R+ has the Markov property, see Sec-
tion 4.5, § V-6 of Protter (2004) and Definition 7.14 below, the value

Vt = e−(T−t)rE∗[ϕ(ST ) | Ft]
= e−(T−t)rE∗[ϕ(ST ) | St], 0 ⩽ t ⩽ T ,

of the portfolio at time t ∈ [0,T ] can be written from (7.20) as a function

Vt = g(t,St) = e−(T−t)rE∗[ϕ(ST ) | St] (7.21)

of t and St, 0 ⩽ t ⩽ T .
Proposition 7.5. Assume that ϕ is a Lipschitz payoff function, and that
(St)t∈R+ is the geometric Brownian motion

(St)t∈R+ =
(
S0 eσB̂t+(r−σ2/2)t)

t∈R+

where (B̂t)t∈R+ is a standard Brownian motion under P∗. Then, the function
g(t,x) defined in (7.21) is in C1,2([0,T ) × R+) and solves the Black-Scholes
PDE 

rg(t,x) = ∂g

∂t
(t,x) + rx

∂g

∂x
(t,x) + 1

2x
2σ2 ∂

2g

∂x2 (t,x)

g(T ,x) = ϕ(x), x > 0.

Proof. It can be checked similarly to the proof of Proposition 6.10 that the
function g(t,x) defined by

g(t,St) = e−(T−t)rE∗[ϕ(ST ) | St] = e−(T−t)rE∗[ϕ(xST/St)]|x=St

is in C1,2([0,T ) × R+) when ϕ is a Lipschitz function, by differentiation of
the lognormal distribution of ST/St. We note that by (4.24), the application
of Itô’s formula Theorem 4.24 to Vt = g(t,St) and (7.17) with ut = σSt and
vt = rSt leads to

d
(

e−rtg(t,St)
)
= −r e−rtg(t,St)dt+ e−rtdg(t,St)

= −r e−rtg(t,St)dt+ e−rt ∂g

∂t
(t,St)dt

+ e−rt ∂g

∂x
(t,St)dSt +

1
2 e−rt(dSt)

2 ∂
2g

∂x2 (t,St)
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= −r e−rtg(t,St)dt+ e−rt ∂g

∂t
(t,St)dt

+vt e−rt ∂g

∂x
(t,St)dt+ ut e−rt ∂g

∂x
(t,St)dB̂t +

1
2 e−rt|ut|2

∂2g

∂x2 (t,St)dt

= −r e−rtg(t,St)dt+ e−rt ∂g

∂t
(t,St)dt (7.22)

+rSt e−rt ∂g

∂x
(t,St)dt+

1
2 e−rtσ2S2

t
∂2g

∂x2 (t,St)dt+ σ e−rtSt
∂g

∂x
(t,St)dB̂t.

By Lemma 5.14 and Proposition 7.1, the discounted price Ṽt = e−rtg(t,St)
of a self-financing hedging portfolio is a martingale under the risk-neutral
probability measure P∗, therefore from e.g. Corollary II-6-1, page 72 of
Protter (2004), all terms in dt should vanish in the above expression of
d
(

e−rtg(t,St)
)
, showing that

−rg(t,St) +
∂g

∂t
(t,St) + rSt

∂g

∂x
(t,St) +

1
2σ

2S2
t
∂2g

∂x2 (t,St) = 0,

and leads to the Black-Scholes PDE

rg(t,x) = ∂g

∂t
(t,x) + rx

∂g

∂x
(t,x) + 1

2σ
2x2 ∂

2g

∂x2 (t,x), x > 0.

□

From (7.22) in the proof of Proposition 7.5, we also obtain the stochastic
integral expression

e−rTϕ(ST ) = e−rT g(T ,ST )

= g(0,S0) +
w T

0
d
(

e−rtg(t,St)
)

= g(0,S0) + σ
w T

0
e−rtSt

∂g

∂x
(t,St)dB̂t,

see also Proposition 5.14, and Proposition 7.11 below.

Forward contracts

The long forward contract with payoff C = ST −K is priced as

Vt = e−(T−t)rE∗[ST −K | Ft]
= e−(T−t)rE∗[ST | Ft] −K e−(T−t)r

= St −K e−(T−t)r, 0 ⩽ t ⩽ T ,

which recovers the Black-Scholes PDE solution (6.9), i.e.

g(t,x) = x−K e−(T−t)r, x > 0, 0 ⩽ t ⩽ T .

280 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

European call options

In the case of European call options with payoff function ϕ(x) = (x−K)+

we recover the Black-Scholes formula (6.11), cf. Proposition 6.11, by a prob-
abilistic argument.

Proposition 7.6. The price at time t ∈ [0,T ] of the European call option
with strike price K and maturity T is given by

g(t,St) = e−(T−t)rE∗[(ST −K)+ | Ft] (7.23)
= StΦ

(
d+(T − t)

)
−K e−(T−t)rΦ

(
d−(T − t)

)
, 0 ⩽ t ⩽ T ,

with 
d+(T − t) :=

log(St/K) + (r+ σ2/2)(T − t)

σ
√
T − t

,

d−(T − t) :=
log(St/K) + (r− σ2/2)(T − t)

σ
√
T − t

, 0 ⩽ t < T ,

where “log” denotes the natural logarithm “ln” and Φ is the standard Gaus-
sian Cumulative Distribution Function.

Proof. The proof of Proposition 7.6 is a consequence of (7.20) and Lemma 7.7
below. Using the relation

ST = S0 erT+σB̂T −σ2T/2

= St e(T−t)r+(B̂T −B̂t)σ−(T−t)σ2/2, 0 ⩽ t ⩽ T ,

that follows from (7.18), by Theorem 7.4 the value at time t ∈ [0,T ] of the
portfolio hedging C is given by

Vt = e−(T−t)rE∗[C | Ft]
= e−(T−t)rE∗[(ST −K)+

∣∣Ft]
= e−(T−t)rE∗[(St e(T−t)r+(B̂T −B̂t)σ−(T−t)σ2/2 −K)+

∣∣Ft]
= e−(T−t)rE∗[(x e(T−t)r+(B̂T −B̂t)σ−(T−t)σ2/2 −K)+

]
|x=St

= e−(T−t)rE∗[( em(x)+X −K)+
]
|x=St

, 0 ⩽ t ⩽ T ,

where
m(x) := (T − t)r− σ2

2 (T − t) + log x
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and
X :=

(
B̂T − B̂t

)
σ ≃ N (0, (T − t)σ2)

is a centered Gaussian random variable with variance

Var [X ] = Var
[(
B̂T − B̂t

)
σ
]
= σ2Var

[
B̂T − B̂t

]
= (T − t)σ2

under P∗. Hence by Lemma 7.7 below we have

g(t,St) = Vt

= e−(T−t)rE∗[( em(x)+X −K
)+]

|x=St

= e−(T−t)r em(St)+σ2(T−t)/2Φ
(
v+

m(St) − logK
v

)
−K e−(T−t)rΦ

(
m(St) − logK

v

)
= StΦ

(
v+

m(St) − logK
v

)
−K e−(T−t)rΦ

(
m(St) − logK

v

)
= StΦ

(
d+(T − t)

)
−K e−(T−t)rΦ

(
d−(T − t)

)
,

0 ⩽ t ⩽ T . □

Relation (7.23) can also be written as

e−(T−t)rE∗[(ST −K)+
∣∣Ft] = e−(T−t)rE∗[(ST −K)+

∣∣St] (7.24)

= StΦ
(

log(St/K) + (r+ σ2/2)(T − t)

σ
√
T − t

)
−K e−(T−t)rΦ

(
log(St/K) + (r− σ2/2)(T − t)

σ
√
T − t

)
, 0 ⩽ t ⩽ T .

Lemma 7.7. Let X ≃ N (0, v2) be a centered Gaussian random variable with
variance v2 > 0. We have

E
[
( em+X −K)+

]
= em+v2/2Φ(v+ (m− logK)/v)−KΦ((m− logK)/v).

Proof. We have

E
[
( em+X −K)+

]
=

1√
2πv2

w ∞

−∞
( em+x −K)+ e−x2/(2v2)dx

=
1√

2πv2

w ∞

−m+logK
( em+x −K) e−x2/(2v2)dx

=
em√
2πv2

w ∞

−m+logK
ex−x2/(2v2)dx− K√

2πv2

w ∞

−m+logK
e−x2/(2v2)dx
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=
em+v2/2
√

2πv2

w ∞

−m+logK
e−(v2−x)2/(2v2)dx− K√

2π

w ∞

(−m+logK)/v
e−y2/2dy

=
em+v2/2
√

2πv2

w ∞

−v2−m+logK
e−y2/(2v2)dy−KΦ((m− logK)/v)

= em+v2/2Φ(v+ (m− logK)/v) −KΦ((m− logK)/v),

where we used Relation (6.15). □

Call-put parity

Let
gp(t,St) := e−(T−t)rE∗[(K − ST )

+
∣∣Ft], 0 ⩽ t ⩽ T ,

denote the price of the put option with strike price K and maturity T .
Proposition 7.8. Call-put parity. We have the relation

gc(t,St) − gp(t,St) = St − e−(T−t)rK (7.25)

between the Black-Scholes prices of call and put options, in terms of the
forward contract price St −K e−(T−t)r.
Proof. From the relation

ST −K = (ST −K)+ − (K − ST )
+,

see https://optioncreator.com/stijwns, and Theorem 7.4, we have

gc(t,St) − gp(t,St)
= e−(T−t)rE∗[(ST −K)+ | Ft] − e−(T−t)rE∗[(K − ST )

+ | Ft]
= e−(T−t)rE∗[(ST −K)+ − (K − ST )

+ | Ft]
= e−(T−t)rE∗[ST −K | Ft]
= e−(T−t)rE∗[ST | Ft] −K e−(T−t)r

= St − e−(T−t)rK, 0 ⩽ t ⩽ T ,

as we have E∗[ST | Ft] = e(T−t)rSt, t ∈ [0,T ], under the risk-neutral proba-
bility measure P∗. □

European put options

Using the call-put parity Relation (7.25) we can recover the European put
option price (6.11) from the European call option price (6.11)-(7.23).
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Proposition 7.9. The price at time t ∈ [0,T ] of the European put option
with strike price K and maturity T is given by

gp(t,St) = e−(T−t)rE∗[(K − ST )
+ | Ft]

= K e−(T−t)rΦ
(

− d−(T − t)
)

− StΦ
(

− d+(T − t)
)
, 0 ⩽ t ⩽ T ,

with 
d+(T − t) :=

log(St/K) + (r+ σ2/2)(T − t)

σ
√
T − t

,

d−(T − t) :=
log(St/K) + (r− σ2/2)(T − t)

σ
√
T − t

, 0 ⩽ t < T ,

where “log” denotes the natural logarithm “ln” and Φ is the standard Gaus-
sian Cumulative Distribution Function.

Proof. By Relation (6.15) and the call-put parity (7.25), we have

gp(t,St) = gc(t,St) − St + e−(T−t)rK

= StΦ
(
d+(T − t)

)
+ e−(T−t)rK − St − e−(T−t)rKΦ

(
d−(T − t)

)
= −St(1 − Φ

(
d+(T − t)

)
) + e−(T−t)rK(1 − Φ

(
d−(T − t)

)
)

= −StΦ
(

− d+(T − t)
)
+ e−(T−t)rKΦ

(
− d−(T − t)

)
.

□

7.5 Hedging by the Martingale Method

Hedging exotic options

In the next Proposition 7.10 we compute a self-financing hedging strategy
leading to an arbitrary square-integrable random claim payoff C ∈ L2(Ω) of
an exotic option admitting a stochastic integral decomposition of the form

C = E∗[C] +
w T

0
ζtdB̂t, (7.26)

where (ζt)t∈[0,t] is a square-integrable adapted process, see for example
page 214. Consequently, the mathematical problem of finding the stochas-
tic integral decomposition (7.26) of a given random variable has important
applications in finance. The process (ζt)t∈[0,T ] can be computed using the
Malliavin gradient on the Wiener space, see, e.g., Di Nunno et al. (2009) or
§ 8.2 of Privault (2009).
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Simple examples of stochastic integral decompositions include the relations

(BT )
2 = T + 2

w T
0
BtdBt,

cf. Exercises 6.1 and 7.1, and

(BT )
3 = 3

w T
0

(
T − t+B2

t

)
dBt,

see Exercise 4.10. In the sequel, recall that the risky asset follows the equation

dSt
St

= µdt+ σdBt, t ⩾ 0, S0 > 0,

and by (7.16), the discounted asset price S̃t := e−rtSt

dS̃t = σS̃tdB̂t, t ⩾ 0, S̃0 = S0 > 0, (7.27)

where (B̂t)t∈R+ is a standard Brownian motion under the risk-neutral prob-
ability measure P∗. The following proposition applies to arbitrary square-
integrable payoff functions, in particular it covers exotic and path-dependent
options.
Proposition 7.10. Consider a random claim payoff C ∈ L2(Ω) and the
process (ζt)t∈[0,T ] given by (7.26), and let

ξt =
e−(T−t)r

σSt
ζt, (7.28)

ηt =
e−(T−t)rE∗[C | Ft] − ξtSt

At
, 0 ⩽ t ⩽ T . (7.29)

Then the portfolio allocation (ξt, ηt)t∈[0,T ] is self-financing, and letting

Vt = ηtAt + ξtSt, 0 ⩽ t ⩽ T , (7.30)

we have
Vt = e−(T−t)rE∗[C | Ft], 0 ⩽ t ⩽ T . (7.31)

In particular we have
VT = C, (7.32)

i.e. the portfolio allocation (ξt, ηt)t∈[0,T ] yields a hedging strategy leading to
the claim payoff C at maturity, after starting from the initial value

V0 = e−rTE∗[C].
Proof. Relation (7.31) follows from (7.29) and (7.30), and it implies

V0 = e−rTE∗[C] = η0A0 + ξ0S0
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at t = 0, and (7.32) at t = T . It remains to show that the portfolio strategy
(ξt, ηt)t∈[0,T ] is self-financing. By (7.26) and Proposition 7.1 we have

Vt = ηtAt + ξtSt

= e−(T−t)rE∗[C | Ft]

= e−(T−t)rE∗
[

E∗[C] +
w T

0
ζudB̂u

∣∣∣ Ft
]

= e−(T−t)r
(

E∗[C] +
w t

0
ζudB̂u

)
= ertV0 + e−(T−t)r

w t
0
ζudB̂u

= ertV0 + σ
w t

0
ξuSu e(t−u)rdB̂u

= ertV0 + σ ert
w t

0
ξuS̃udB̂u.

By (7.27) this shows that the portfolio strategy (ξt, ηt)t∈[0,T ] given by (7.28)-
(7.29) and its discounted portfolio value Ṽt := e−rtVt satisfy

Ṽt = V0 +
w t

0
ξudS̃u, 0 ⩽ t ⩽ T ,

which implies that (ξt, ηt)t∈[0,T ] is self-financing by Lemma 5.14. □

The above proposition shows that there always exists a hedging strategy
starting from

V0 = E∗[C] e−rT .

In addition, since there exists a hedging strategy leading to

ṼT = e−rTC,

then (Ṽt)t∈[0,T ] is necessarily a martingale, with

Ṽt = E∗[ṼT ∣∣ Ft
]
= e−rTE∗[C | Ft], 0 ⩽ t ⩽ T ,

and initial value
Ṽ0 = E∗[ṼT ] = e−rTE∗[C].

Hedging vanilla options

In practice, the hedging problem can now be reduced to the computation of
the process (ζt)t∈[0,T ] appearing in (7.26). This computation, called Delta
hedging, can be performed by the application of the Itô formula and the
Markov property, see e.g. Protter (2001). The next lemma allows us to com-
pute the process (ζt)t∈[0,T ] in case the payoff C is of the form C = ϕ(ST ) for
some function ϕ.
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Proposition 7.11. Assume that ϕ is a Lipschitz payoff function. Then, the
function gc(t,x) defined from the Markov property of (St)t∈[0,T ] by

gc(t,St) := E∗[ϕ(ST ) | Ft] = E∗[ϕ(ST ) | St]

is in C1,2([0,T ) × R), and the stochastic integral decomposition

ϕ(ST ) = E∗[ϕ(ST )]+ w T
0
ζtdB̂t (7.33)

is given by
ζt = σSt

∂C

∂x
(t,St), 0 ⩽ t ⩽ T . (7.34)

In addition, the self-financing hedging strategy (ξt)t∈[0,T ] satisfies

ξt = e−(T−t)r ∂C

∂x
(t,St), 0 ⩽ t ⩽ T . (7.35)

Proof. It can be checked as in the proof of Proposition 7.5 that the function
gc(t,x) is in C1,2([0,T )× R). Therefore, we can apply the Itô formula to the
process

t 7→ gc(t,St) = E∗[ϕ(ST ) | Ft],

which is a martingale from the tower property (A.33) of conditional expec-
tations as in (7.42) or Example (1) page 265. From the fact that the finite
variation term in the Itô formula vanishes when (gc(t,St))t∈[0,T ] is a martin-
gale, (see e.g. Corollary II-6-1 page 72 of Protter (2004)), we obtain:

gc(t,St) = gc(0,S0) + σ
w t

0
Su
∂C

∂x
(u,Su)dB̂u, 0 ⩽ t ⩽ T , (7.36)

with gc(0,S0) = E∗[ϕ(ST )]. Letting t := T , we have

ϕ(ST ) = gc(T ,ST ) = gc(0,S0) + σ
w T

0
St
∂C

∂x
(t,St)dB̂t

which yields (7.34) by uniqueness of the stochastic integral decomposition
(7.33) of C = ϕ(ST ). Finally, (7.35) follows from (7.28) and (7.34) by apply-
ing Proposition 7.10. □

In the case of European options, the process ζ can be computed via the next
proposition which recovers the formula (6.3) for the Delta of a vanilla option,
and follows from Proposition 7.11 and the relation

gc(t,x) = E∗[f(Sxt,T )], 0 ⩽ t ⩽ T , x > 0.

In particular, we have ξt ⩾ 0 and there is no short selling when the payoff
function ϕ is non-decreasing.
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Corollary 7.12. Assume that C = (ST −K)+. Then, for 0 ⩽ t ⩽ T we
have

ζt = σStE
∗
[
ST
St

1[K,∞)

(
x
ST
St

)]
|x=St

, 0 ⩽ t ⩽ T , (7.37)

and

ξt = e−(T−t)rE∗
[
ST
St

1[K,∞)

(
x
ST
St

)]
|x=St

, 0 ⩽ t ⩽ T . (7.38)

Proof. By (7.34) and the relation

ST = S0 eσBT +µT−σ2T/2 = St e(BT −Bt)σ+(T−t)µ−(T−t)σ2/2,

we have

ζt = σSt

(
∂

∂x
E∗[ϕ(ST ) | St = x]

)
x=St

= σSt

(
∂

∂x
E∗
[
ϕ

(
x
ST
St

)])
x=St

, 0 ⩽ t ⩽ T ,

as in Relation (A.49), hence by (7.28) we have

ξt =
1
σSt

e−(T−t)rζt (7.39)

= e−(T−t)r
(
∂

∂x
E∗
[
ϕ

(
x
ST
St

)])
x=St

= e−(T−t)rE∗
[
ST
St
ϕ′
(
x
ST
St

)]
x=St

, 0 ⩽ t ⩽ T .

The above derivation can be checked for ϕ(x) = (x − K)+ and ϕ′(x) =
1[K,∞)(x) e.g. by writing expected values as integrals. □

By evaluating the expectation (7.37) in Corollary 7.12 we can recover the
formula (6.16) in Proposition 6.4 for the Delta of the European call option in
the Black-Scholes model. In that sense, the next proposition provides another
proof of the result of Proposition 6.4.

Proposition 7.13. The Delta of the European call option with payoff func-
tion f(x) = (x−K)+ is given by

ξt = Φ
(
d+(T − t)

)
= Φ

(
log(St/K) + (r+ σ2/2)(T − t)

σ
√
T − t

)
, 0 ⩽ t ⩽ T .

Proof. By Proposition 7.10 and Corollary 7.12, we have
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ξt =
1
σSt

e−(T−t)rζt

= e−(T−t)rE∗
[
ST
St

1[K,∞)

(
x
ST
St

)]
|x=St

= e−(T−t)r

× E∗
[

e(B̂T −B̂t)σ−(T−t)σ2/2+(T−t)r
1[K,∞)(x e(B̂T −B̂t)σ−(T−t)σ2/2+(T−t)r)

]
|x=St

=
1√

2(T − t)π

w ∞

(T−t)σ/2−(T−t)r/σ+σ−1 log(K/St)
eσy−(T−t)σ2/2−y2/(2(T−t))dy

=
1√

2(T − t)π

w ∞

−d−(T−t)/
√
T−t

e−(y−(T−t)σ)2/(2(T−t))dy

=
1√
2π

w ∞

−d−(T−t)
e−(y−(T−t)σ)2/2dy

=
1√
2π

w ∞

−d+(T−t)
e−y2/2dy

=
1√
2π

w d+(T−t)

−∞
e−y2/2dy

= Φ
(
d+(T − t)

)
.

□

The Delta of the Black-Scholes put option can be obtained as in Proposi-
tion 6.7 from (6.3), by differentiation of the call-put parity relation (7.8),
and application of Proposition 7.13.

Proposition 7.13, combined with Proposition 7.6, shows that the Black-
Scholes self-financing hedging strategy is to hold a (possibly fractional) quan-
tity

ξt = Φ
(
d+(T − t)

)
= Φ

(
log(St/K) + (r+ σ2/2)(T − t)

σ
√
T − t

)
⩾ 0 (7.40)

of the risky asset, and to borrow a quantity

−ηt = K e−rTΦ
(

log(St/K) + (r− σ2
t /2)(T − t)

σ
√
T − t

)
⩾ 0 (7.41)

of the riskless (savings) account, see also Corollary 16.18 in Chapter 16.

As noted above, the result of Proposition 7.13 recovers (6.17) which is ob-
tained by a direct differentiation of the Black-Scholes function as in (6.3) or
(7.39).
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Markovian semi-groups

For completeness, we provide the definition of Markovian semi-groups which
can be used to reformulate the proofs of this section.

Definition 7.14. The Markov semi-group (Pt)0⩽t⩽T associated to (St)t∈[0,T ]
is the mapping Pt defined on functions f ∈ C2

b (R) as

Ptf(x) := E∗[f(St) | S0 = x], t ⩾ 0.

By the Markov property and time homogeneity of (St)t∈[0,T ] we also have

Ptf(Su) := E∗[f(St+u) | Fu] = E∗[f(St+u) | Su], t,u ⩾ 0,

and the semi-group (Pt)0⩽t⩽T satisfies the composition property

PsPt = PtPs = Ps+t = Pt+s, s, t ⩾ 0,

as we have, using the Markov property and the tower property (A.33) of
conditional expectations as in (7.42),

PsPtf(x) = E∗[Ptf(Ss) | S0 = x]

= E∗[E∗[f(St) | S0 = y]y=Ss

∣∣S0 = x
]

= E∗[E∗[f(St+s) | Ss = y]y=Ss

∣∣S0 = x
]

= E∗[E∗[f(St+s) | Fs]
∣∣S0 = x

]
= E∗[f(St+s) | S0 = x]

= Pt+sf(x), s, t ⩾ 0.

Similarly, we can show that the process (PT−tf(St))t∈[0,T ] is an Ft-martingale
as in Example (i) above, see (7.1), i.e.:

E∗[PT−tf(St) | Fu] = E∗[E∗[f(ST ) | Ft]
∣∣Fu]

= E∗[f(ST ) | Fu]
= PT−uf(Su), 0 ⩽ u ⩽ t ⩽ T , (7.42)

and we have

Pt−uf(x) = E∗[f(St) | Su = x] = E∗
[
f

(
x
St
Su

)]
, 0 ⩽ u ⩽ t. (7.43)

290 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

Exercises

Exercise 7.1 (Bachelier (1900) model, Exercise 6.1 continued). Consider a
market made of a riskless asset priced At = A0 with zero interest rate, t ⩾ 0,
and a risky asset whose price modeled by a standard Brownian motion as
St = Bt, t ⩾ 0. Price the vanilla option with payoff C = (BT )

2, and recover
the solution of the Black-Scholes PDE of Exercise 6.1.

Exercise 7.2 Given the price process (St)t∈R+ defined as the geometric
Brownian motion

St := S0 eσBt+(r−σ2/2)t, t ⩾ 0,

price the option with payoff function ϕ(ST ) by writing e−rTE∗[ϕ(ST )] as
an integral with respect to the lognormal probability density function, see
Exercise 5.1.

Exercise 7.3 (See Exercise 7.29). Consider an asset price (St)t∈R+ given by
the stochastic differential equation

dSt = rStdt+ σStdBt, (7.44)

where (Bt)t∈R+ is a standard Brownian motion, with r ∈ R and σ > 0.

a) Find the stochastic differential equation satisfied by the power
(
Spt
)
t∈R+

of order p ∈ R of (St)t∈R+ .
b) Using the Girsanov Theorem 7.3 and the discounting Lemma 5.13, con-

struct a probability measure under which the discounted process
(

e−rtSpt
)
t∈R+

is a martingale.

Exercise 7.4 Consider an asset price process (St)t∈R+ which is a martingale
under the risk-neutral probability measure P∗ in a market with interest rate
r = 0, and let ϕ be a convex payoff function. Show that, for any two maturities
T1 < T2 and p, q ∈ [0, 1] such that p+ q = 1 we have

E∗[ϕ(pST1 + qST2)] ⩽ E∗[ϕ(ST2)],

i.e. the price of the basket option with payoff ϕ(pST1 + qST2) is upper
bounded by the price of the option with payoff ϕ(ST2).

Hints:

i) For ϕ a convex function we have ϕ(px+ qy) ⩽ pϕ(x) + qϕ(y) for any
x, y ∈ R and p, q ∈ [0, 1] such that p+ q = 1.
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ii) Any convex function (ϕ(St))t∈R+ of a martingale (St)t∈R+ is a submartingale.

Exercise 7.5 Consider an underlying asset price process (St)t∈R+ under a
risk-neutral measure P∗ with risk-free interest rate r.

a) Does the European call option price C(K) := e−rTE∗[(ST −K)+] in-
crease or decrease with the strike price K? Justify your answer.

b) Does the European put option price C(K) := e−rTE∗[(K − ST )
+] in-

crease or decrease with the strike price K? Justify your answer.

Exercise 7.6 Consider an underlying asset price process (St)t∈R+ under a
risk-neutral measure P∗ with risk-free interest rate r.

a) Show that the price at time t of the European call option with strike
price K and maturity T is lower bounded by the positive part

(
St −

K e−(T−t)r)+ of the corresponding forward contract price, i.e. we have
the model-free bound

e−(T−t)rE∗[(ST −K)+ | Ft] ⩾
(
St −K e−(T−t)r)+, 0 ⩽ t ⩽ T .

b) Show that the price at time t of the European put option with strike price
K and maturity T is lower bounded by K e−(T−t)r − St, i.e. we have the
model-free bound

e−(T−t)rE∗[(K − ST )
+ | Ft] ⩾

(
K e−(T−t)r − St

)+, 0 ⩽ t ⩽ T .

Exercise 7.7 The following two graphs describe the payoff functions ϕ of
bull spread and bear spread options with payoff ϕ(SN ) on an underlying asset
priced SN at maturity time N .

 0

 20

 40
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 100

 0  50  100  150  200

K1 K2x

(i) Bull spread payoff.

 0

 20

 40

 60

 80

 100

 0  50  100  150  200

K1 K2x

(ii) Bear spread payoff.

Fig. 7.3: Payoff functions of bull spread and bear spread options.
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a) Show that in each case (i) and (ii) the corresponding option can be real-
ized by purchasing and/or short selling standard European call and put
options with strike prices to be specified.

b) Price the bull spread option in cases (i) and (ii) using the Black-Scholes
formula.

Hint: An option with payoff ϕ(ST ) is priced e−rTE∗[ϕ(ST )] at time 0. The
payoff of the European call (resp. put) option with strike price K is (ST −
K)+, resp. (K − ST )

+.

Exercise 7.8 Given two strike prices K1 < K2, we consider a long box spread
option realized as the combination of four legs having the same maturity time
N ⩾ 1:

• One long call with strike price K1 and payoff function (x−K1)+,
• One short put with strike price K1 and payoff function −(K1 − x)+,
• One short call with strike price K2 and payoff function −(x−K2)+,
• One long put with strike price K2 and payoff function (K2 − x)+.

The risk-free interest rate is denoted by r ⩾ 0.

0

K1 K2x

Short put at K1
Long put at K2

Short call at K2
Long call at K1

Fig. 7.4: Graphs of call/put payoff functions.

a) Find the payoff of the long box spread option in terms of K1 and K2.
b) Price the long box spread option at times k = 0, 1, . . . ,N using K1, K2

and the interest rate r.
c) From Table 7.1 below, find a choice of strike prices K1 < K2 that can be

used to build a long box spread option on the Hang Seng Index (HSI).
d) Price the option built in part (c) in index points, and then in HK$.

Hints.

i) The closing prices in Table 7.1 are warrant prices quoted in index
points.

ii) Warrant prices are converted to option prices by multiplication by
the number given in the “Entitlement Ratio” column.

iii) The conversion from index points to HK$ is given in Table 7.2.
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e) Would you buy the option priced in part (d) ? Here we can take r = 0 for
simplicity.

Table 7.1: Call and put options on the Hang Seng Index (HSI).

Table 7.2: Contract summary.

Exercise 7.9 Butterfly options. A long call butterfly option is designed to
deliver a limited payoff when the future volatility of the underlying asset is
expected to be low. The payoff function of a long call butterfly option is
plotted in Figure 7.5, with K1 := 50 and K2 := 150.
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 0
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Fig. 7.5: Long call butterfly payoff function.

a) Show that the long call butterfly option can be realized by purchasing
and/or issuing standard European call or put options with strike prices
to be specified.

b) Price the long call butterfly option using the Black-Scholes formula.
c) Does the hedging strategy of the long call butterfly option involve holding

or shorting the underlying stock?

Hints: Recall that an option with payoff ϕ(SN ) is priced in discrete time as
(1 + r)−NE∗[ϕ(SN )] at time 0. The payoff of the European call (resp. put)
option with strike price K is (SN −K)+, resp. (K − SN )+.

Exercise 7.10 Forward contracts revisited. Consider a risky asset whose price
St is given by St = S0 eσBt+rt−σ2t/2, t ⩾ 0, where (Bt)t∈R+ is a standard
Brownian motion. Consider a forward contract with maturity T and payoff
ST − κ.

a) Compute the price Ct of this claim at any time t ∈ [0,T ].

b) Compute a hedging strategy for the option with payoff ST − κ.

Exercise 7.11 Option pricing with dividends (Exercise 6.3 continued). Con-
sider an underlying asset price process (St)t∈R+ paying dividends at the
continuous-time rate δ > 0, and modeled as

dSt = (µ− δ)Stdt+ σStdBt,

where (Bt)t∈R+ is a standard Brownian motion.

a) Show that as in Lemma 5.14, if (ηt, ξt)t∈R+ is a portfolio strategy with
value

Vt = ηtAt + ξtSt, t ⩾ 0,

where the dividend yield δSt per share is continuously reinvested in the
portfolio, then the discounted portfolio value Ṽt can be written as the
stochastic integral

Ṽt = Ṽ0 +
w t

0
ξudS̃u, t ⩾ 0,
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b) Show that, as in Theorem 7.4, if (ξt, ηt)t∈[0,T ] hedges the claim payoff C,
i.e. if VT = C, then the arbitrage-free price of the claim payoff C is given
by

πt(C) = Vt = e−(T−t)rE∗[C | Ft], 0 ⩽ t ⩽ T ,

where E∗ denotes expectation under a risk-neutral probability measure
P∗.

c) Compute the price at time t ∈ [0,T ] of a European call option in a market
with dividend rate δ by the martingale method.

d) Compute the Delta of the option.

Exercise 7.12 Forward start options (Rubinstein (1991)). A forward start
European call option is an option whose holder receives at time T1 (e.g. your
birthday) the value of a standard European call option at the money and
with maturity T2 > T1. Price this birthday present at any time t ∈ [0,T1],
i.e. compute the price

e−(T1−t)rE∗[ e−(T2−T1)rE∗[(ST2 − ST1)
+
∣∣FT1

] ∣∣Ft]
at time t ∈ [0,T1], of the forward start European call option using the Black-
Scholes formula

Bl(x,K,σ, r,T − t) = xΦ
(

log(x/K) + (r+ σ2/2)(T − t)

|σ|
√
T − t

)
−K e−(T−t)rΦ

(
log(x/K) + (r− σ2/2)(T − t)

|σ|
√
T − t

)
,

0 ⩽ t < T .

Exercise 7.13 Cliquet option. Let 0 = T0 < T1 < · · · < Tn denote a
sequence of financial settlement dates, and consider a risky asset priced as the
geometric Brownian motion St = S0 eσBt+rt−σ2t/2, t ⩾ 0, where (Bt)t∈R+

is a standard Brownian motion under the risk-neutral measure P∗. Compute
the price at time t = 0 of the cliquet option whose payoff consists in the sum
of n payments (STk

/STk−1 −K)+ made at times Tk, k = 1, . . . ,n. For this,
use the Black-Scholes formula

e−rTE∗[(ST − κ)+] = S0Φ
(

log(S0/κ) + (r+ σ2/2)T
|σ|

√
T

)
−κ e−rTΦ

(
log(S0/κ) + (r− σ2/2)T

|σ|
√
T

)
, T > 0.

Exercise 7.14 Log contracts. (Exercise 6.10 continued), see also Exercise 8.6.
Consider the price process (St)t∈[0,T ] given by
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dSt
St

= rdt+ σdBt

and a riskless asset valued At = A0 ert, t ∈ [0,T ], with r > 0. Compute the
arbitrage-free price

C(t,St) = e−(T−t)rE∗[logST | Ft],

at time t ∈ [0,T ], of the log contract with payoff logST .

Exercise 7.15 Power option. (Exercise 6.5 continued). Consider the price
process (St)t∈[0,T ] given by

dSt
St

= rdt+ σdBt

and a riskless asset valued At = A0 ert, t ∈ [0,T ], with r > 0. In this problem,
(ηt, ξt)t∈[0,T ] denotes a portfolio strategy with value

Vt = ηtAt + ξtSt, 0 ⩽ t ⩽ T .

a) Compute the arbitrage-free price

C(t,St) = e−(T−t)rE∗[|ST |2
∣∣Ft],

at time t ∈ [0,T ], of the power option with payoff C = |ST |2.
b) Compute a self-financing hedging strategy (ηt, ξt)t∈[0,T ] hedging the claim

payoff |ST |2.

Exercise 7.16 (Bachelier (1900) model, Exercise 6.12 continued).
a) Consider the solution (St)t∈R+ of the stochastic differential equation

dSt = αStdt+ σdBt.

For which value αM of α is the discounted price process S̃t = e−rtSt,
0 ⩽ t ⩽ T , a martingale under P?

b) For each value of α, build a probability measure Pα under which the
discounted price process S̃t = e−rtSt, 0 ⩽ t ⩽ T , is a martingale.

c) Compute the arbitrage-free price

C(t,St) = e−(T−t)rEα

[
eST

∣∣Ft]
at time t ∈ [0,T ] of the contingent claim with payoff exp(ST ), and recover
the result of Exercise 6.12.

d) Explicitly compute the portfolio strategy (ηt, ξt)t∈[0,T ] that hedges the
contingent claim with payoff exp(ST ).

" 297

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

e) Check that this strategy is self-financing.

Exercise 7.17 Compute the arbitrage-free price

C(t,St) = e−(T−t)rEα

[
(ST )

2 ∣∣Ft]
at time t ∈ [0,T ] of the power option with payoff (ST )

2 in the framework of
the Bachelier (1900) model of Exercise 7.16.

Exercise 7.18 (Exercise 5.8 continued, see Proposition 4.1 in Carmona
and Durrleman (2003)). Consider two assets whose prices S(1)

t , S(2)
t at time

t ∈ [0,T ] follow the geometric Brownian dynamics

dS
(1)
t = rS

(1)
t dt+ σ1S

(1)
t dW

(1)
t dS

(2)
t = rS

(2)
t dt+ σ2S

(2)
t dW

(2)
t t ∈ [0,T ],

where
(
W

(1)
t

)
t∈[0,T ],

(
W

(2)
t

)
t∈[0,T ] are two standard Brownian motions with

correlation ρ ∈ [−1, 1] under a risk-neutral probability measure P∗, with
dW

(1)
t

• dW
(2)
t = ρdt.

Estimate the price e−rTE∗[(ST −K)+] of the spread option on ST :=
S
(2)
T −S

(1)
T with maturity T > 0 and strike price K > 0 by matching the first

two moments of ST to those of a Gaussian random variable.

Exercise 7.19 (Exercise 6.2 continued). Price the option with vanilla payoff
C = ϕ(ST ) using the noncentral Chi square probability density function
(17.5) of the Cox et al. (1985) (CIR) model.

Exercise 7.20 Let (Bt)t∈R+ be a standard Brownian motion generating
a filtration (Ft)t∈R+ . Recall that for f ∈ C2(R+ × R), Itô’s formula for
(Bt)t∈R+ reads

f(t,Bt) = f(0,B0) +
w t

0
∂f

∂s
(s,Bs)ds

+
w t

0
∂f

∂x
(s,Bs)dBs +

1
2
w t

0
∂2f

∂x2 (s,Bs)ds.

a) Let r ∈ R, σ > 0, f(x, t) = ert+σx−σ2t/2, and St = f(t,Bt). Compute
df(t,Bt) by Itô’s formula, and show that St solves the stochastic differen-
tial equation

dSt = rStdt+ σStdBt,

where r > 0 and σ > 0.
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b) Show that

E
[
eσBT

∣∣Ft] = eσBt+(T−t)σ2/2, 0 ⩽ t ⩽ T .

Hint: Use the independence of increments of (Bt)t∈[0,T ] in the time split-
ting decomposition

BT = (Bt −B0) + (BT −Bt),

and the Gaussian moment generating function E
[
eαX

]
= eα2η2/2 when

X ≃ N (0, η2).
c) Show that the process (St)t∈R+ satisfies

E[ST | Ft] = e(T−t)rSt, 0 ⩽ t ⩽ T .

d) Let C = ST −K denote the payoff of a forward contract with exercise
price K and maturity T . Compute the discounted expected payoff

Vt := e−(T−t)rE[C | Ft].

e) Find a self-financing portfolio strategy (ξt, ηt)t∈R+ such that

Vt = ξtSt + ηtAt, 0 ⩽ t ⩽ T ,

where At = A0 ert is the price of a riskless asset with fixed interest rate
r > 0. Show that it recovers the result of Exercise 6.7-(c).

f) Show that the portfolio allocation (ξt, ηt)t∈[0,T ] found in Question (e)
hedges the payoff C = ST −K at time T , i.e. show that VT = C.

Exercise 7.21 Binary options. Consider a price process (St)t∈R+ given by

dSt
St

= rdt+ σdBt, S0 = 1,

under the risk-neutral probability measure P∗. A binary (or digital) call, resp.
put, option is a contract with maturity T , strike price K, and payoff

Cd :=

 $1 if ST ⩾ K,

0 if ST < K,
resp. Pd :=

 $1 if ST ⩽ K,

0 if ST > K.

Recall that the prices πt(Cd) and πt(Pd) at time t of the binary call and put
options are given by the discounted expected payoffs

πt(Cd) = e−(T−t)rE[Cd | Ft] and πt(Pd) = e−(T−t)rE[Pd | Ft]. (7.45)

a) Show that the payoffs Cd and Pd can be rewritten as

" 299

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

Cd = 1[K,∞)(ST ) and Pd = 1[0,K](ST ).

b) Using Relation (7.45), Question (a), and the relation

E
[
1[K,∞)(ST )

∣∣St = x
]
= P∗(ST ⩾ K | St = x),

show that the price πt(Cd) is given by

πt(Cd) = Cd(t,St),

where Cd(t,x) is the function defined by

Cd(t,x) := e−(T−t)rP∗(ST ⩾ K | St = x).

c) Using the results of Exercise 5.10-(d) and of Question (b), show that the
price πt(Cd) = Cd(t,St) of the binary call option is given by the function

Cd(t,x) = e−(T−t)rΦ
(
(r− σ2/2)(T − t) + log(x/K)

σ
√
T − t

)
= e−(T−t)rΦ

(
d−(T − t)

)
,

where
d−(T − t) =

(r− σ2/2)(T − t) + log(St/K)

σ
√
T − t

.

d) Assume that the binary option holder is entitled to receive a “return
amount” α ∈ [0, 1] in case the underlying asset price ends out of the
money at maturity. Compute the price at time t ∈ [0,T ] of this modified
contract.

e) Using Relation (7.45) and Question (a), prove the call-put parity relation

πt(Cd) + πt(Pd) = e−(T−t)r, 0 ⩽ t ⩽ T . (7.46)

If needed, you may use the fact that P∗(ST = K) = 0.
f) Using the results of Questions (e) and (c), show that the price πt(Pd) of

the binary put option is given as

πt(Pd) = e−(T−t)rΦ
(

− d−(T − t)
)
.

g) Using the result of Question (c), compute the Delta

ξt :=
∂Cd
∂x

(t,St)

of the binary call option. Does the Black-Scholes hedging strategy of such
a call option involve short selling? Why?

h) Using the result of Question (f), compute the Delta
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ξt :=
∂Pd
∂x

(t,St)

of the binary put option. Does the Black-Scholes hedging strategy of such
a put option involve short selling? Why?

Exercise 7.22 Computation of Greeks. Consider an underlying asset whose
price (St)t∈R+ is given by a stochastic differential equation of the form

dSt = rStdt+ σ(St)dBt,

where σ(x) is a Lipschitz coefficient, and an option with payoff function ϕ
and price

C(x,T ) = e−rTE[ϕ(ST ) | S0 = x],

where ϕ(x) is a twice continuously differentiable (C2) function, with S0 = x.
Using the Itô formula, show that the sensitivity

ThetaT =
∂

∂T

(
e−rTE[ϕ(ST ) | S0 = x]

)
of the option price with respect to maturity T can be expressed as

ThetaT = −r e−rTE[ϕ(ST ) | S0 = x] + r e−rTE
[
Stϕ

′(ST )
∣∣S0 = x

]
+

1
2 e−rTE

[
ϕ′′(ST )σ

2(ST )
∣∣S0 = x

]
.

Problem 7.23 Chooser options. In this problem we denote by C(t,St,K,T ),
resp. P (t,St,K,T ), the price at time t of the European call, resp. put, option
with strike price K and maturity T , on an underlying asset priced St =

S0 eσBt+rt−σ2t/2, t ⩾ 0, where (Bt)t∈R+ is a standard Brownian motion
under the risk-neutral probability measure
a) Prove the call-put parity formula

C(t,St,K,T )−P (t,St,K,T ) = St −K e−(T−t)r, 0 ⩽ t ⩽ T . (7.47)

b) Consider an option contract with maturity T , which entitles its holder to
receive at time T the value of the European put option with strike price
K and maturity U > T .
Write down the price this contract at time t ∈ [0,T ] using a conditional
expectation under the risk-neutral probability measure P∗.

c) Consider now an option contract with maturity T , which entitles its holder
to receive at time T either the value of a European call option or a Euro-
pean put option, whichever is higher. The European call and put options
have same strike price K and same maturity U > T .
Show that at maturity T , the payoff of this contract can be written as
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P (T ,ST ,K,U) + Max
(
0,ST −K e−(U−T )r).

Hint: Use the call-put parity formula (7.47).
d) Price the contract of Question (c) at any time t ∈ [0,T ] using the call and

put option pricing functions C(t,x,K,T ) and P (t,x,K,U).
e) Using the Black-Scholes formula, compute the self-financing hedging strat-

egy (ξt, ηt)t∈[0,T ] with portfolio value

Vt = ξtSt + ηt ert, 0 ⩽ t ⩽ T ,

for the option contract of Question (c).
f) Consider now an option contract with maturity T , which entitles its holder

to receive at time T the value of either a European call or a European put
option, whichever is lower. The two options have same strike price K and
same maturity U > T .

Show that the payoff of this contract at maturity T can be written as

C(T ,ST ,K,U) − Max
(
0,ST −K e−(U−T )r).

g) Price the contract of Question (f) at any time t ∈ [0,T ].
h) Using the Black-Scholes formula, compute the self-financing hedging strat-

egy (ξt, ηt)t∈[0,T ] with portfolio value

Vt = ξtSt + ηt ert, 0 ⩽ t ⩽ T ,

for the option contract of Question (f).
i) Give the price and hedging strategy of the contract that yields the sum

of the payoffs of Questions (c) and (f).
j) What happens when U = T? Give the payoffs of the contracts of Ques-

tions (c), (f) and (i).

Problem 7.24 (Peng (2010)). Consider a risky asset priced

St = S0 eσBt+µt−σ2t/2, i.e. dSt = µStdt+ σStdBt, t ⩾ 0,

a riskless asset valued At = A0 ert, and a self-financing portfolio allocation
(ηt, ξt)t∈R+ with value

Vt := ηtAt + ξtSt, t ⩾ 0.

a) Using the portfolio self-financing condition dVt = ηtdAt + ξtdSt, show
that we have

VT = Vt +
w T
t
(rVs + (µ− r)ξsSs)ds+ σ

w T
t
ξsSsdBs.
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b) Show that under the risk-neutral probability measure P∗ the portfolio
value Vt satisfies the Backward Stochastic Differential Equation (BSDE)

Vt = VT −
w T
t
rVsds−

w T
t
πsdB̂s, (7.48)

where πt := σξtSt is the risky amount invested on the asset St, multiplied
by σ, and (B̂t)t∈R+ is a standard Brownian motion under P∗.

Hint: the Girsanov Theorem 7.3 states that

B̂t := Bt +
(µ− r)t

σ
, t ⩾ 0,

is a standard Brownian motion under P∗.
c) Show that under the risk-neutral probability measure P∗, the discounted

portfolio value Ṽt := e−rtVt can be rewritten as

ṼT = Ṽ0 +
w T

0
e−rsπsdB̂s. (7.49)

d) Express dv(t,St) by the Itô formula, where v(t,x) is a C2 function of t
and x.

e) Consider now a more general BSDE of the form

Vt = VT −
w T
t
f(s,Ss,Vs,πs)ds−

w T
t
πsdBs, (7.50)

with terminal condition VT = g(ST ). By matching (7.50) to the Itô for-
mula of Question (d), find the PDE satisfied by the function v(t,x) defined
as Vt = v(t,St).

f) Show that when
f(t,x, v, z) = rv+

µ− r

σ
z,

the PDE of Question (e) recovers the standard Black-Scholes PDE.
g) Assuming again f(t,x, v, z) = rv +

µ− r

σ
z and taking the terminal con-

dition
VT = (S0 eσBT +(µ−σ2/2)T −K)+,

give the process (πt)t∈[0,T ] appearing in the stochastic integral represen-
tation (7.49) of the discounted claim payoff e−rT (S0 eσBT +(µ−σ2/2)T −
K)+.∗

h) From now on we assume that short selling is penalized† at a rate γ > 0,
i.e. γSt|ξt|dt is subtracted from the portfolio value change dVt whenever

∗ General Black-Scholes knowledge can be used for this question.
† SGX started to penalize naked short sales with an interim measure in September 2008.
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ξt < 0 over the time interval [t, t+ dt]. Rewrite the self-financing condition
using (ξt)− := − min(ξt, 0).

i) Find the BSDE of the form (7.50) satisfied by (Vt)t∈R+ , and the corre-
sponding function f(t,x, v, z).

j) Under the above penalty on short selling, find the PDE satisfied by the
function u(t,x) when the portfolio value Vt is given as Vt = u(t,St).

k) Differential interest rate. Assume that one can borrow only at a rate R
which is higher∗ than the risk-free interest rate r > 0, i.e. we have

dVt = RηtAtdt+ ξtdSt

when ηt < 0, and
dVt = rηtAtdt+ ξtdSt

when ηt > 0. Find the PDE satisfied by the function u(t,x) when the
portfolio value Vt is given as Vt = u(t,St).

l) Assume that the portfolio differential reads

dVt = ηtdAt + ξtdSt − dUt,

where (Ut)t∈R+ is a non-decreasing process. Show that the corresponding
portfolio strategy (ξt)t∈R+ is superhedging the claim payoff VT = C.

Exercise 7.25 Girsanov Theorem. Assume that the Novikov integrability
condition (7.11) is not satisfied. How does this modify the statement (7.13)
of the Girsanov Theorem 7.3?

Problem 7.26 The Capital Asset Pricing Model (CAPM) of W.F. Sharpe
(1990 Nobel Prize in Economics) is based on a linear decomposition

dSt
St

= (r+ α)dt+ β ×
(
dMt

Mt
− rdt

)
of stock returns dSt/St into:

• a risk-free interest rate† r,
• an excess return α,
• a risk premium given by the difference between a benchmark market index

return dMt/Mt and the risk free rate r.

The coefficient β measures the sensitivity of the stock return dSt/St with
respect to the market index returns dMt/Mt. In other words, β is the relative
volatility of dSt/St with respect to dMt/Mt, and it measures the risk of
(St)t∈R+ in comparison to the market index (Mt)t∈R+ .
∗ Regular savings account usually pays r=0.05% per year. Effective Interest Rates (EIR)
for borrowing could be as high as R=20.61% per year.
† The risk-free interest rate r is typically the yield of the 10-year Treasury bond.
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If β > 1, resp. β < 1, then the stock price St is more volatile (i.e. more
risky), resp. less volatile (i.e. less risky), than the benchmark market index
Mt. For example, if β = 2, then St goes up (or down) twice as much as the
index Mt. Inverse Exchange-Traded Funds (IETFs) have a negative value of
β. On the other hand, a fund which has a β = 1 can track the index Mt.

Vanguard 500 Index Fund (VFINX) has a β = 1 and can be considered
as replicating the variations of the S&P 500 index Mt, while Invesco S&P
500 (SPHB) has a β = 1.42, and Xtrackers Low Beta High Yield Bond ETF
(HYDW) has a β close to 0.36 and α = 6.36.

In what follows, we assume that the benchmark market is represented by
an index fund (Mt)t∈R+ whose value is modeled according to

dMt

Mt
= µdt+ σMdBt, (7.51)

where (Bt)t∈R+ is a standard Brownian motion. The asset price (St)t∈R+ is
modeled in a stochastic version of the CAPM as

dSt
St

= rdt+ αdt+ β

(
dMt

Mt
− rdt

)
+ σSdWt, (7.52)

with an additional stock volatility term σSdWt, where (Wt)t∈R+ is a standard
Brownian motion independent of (Bt)t∈R+ , with

Cov(Bt,Wt) = 0 and dBt • dWt = 0, t ⩾ 0.

The following 10 questions are interdependent and should be treated in se-
quence.
a) Show that β coincides with the regression coefficient

β =
Cov(dSt/St, dMt/Mt)

Var[dMt/Mt]
.

Hint: We have

Cov(dWt, dWt) = dt, Cov(dBt, dBt) = dt, and Cov(dWt, dBt) = 0.

b) Show that the evolution of (St)t∈R+ can be written as

dSt = (r+ α+ β(µ− r))Stdt+ St

√
β2σ2

M + σ2
SdZt

where (Zt)t∈R+ is a standard Brownian motion.
Hint: The standard Brownian motion (Zt)t∈R+ can be characterized as
the only continuous (local) martingale such that (dZt)2 = dt, see e.g.
Theorem 7.36 page 203 of Klebaner (2005).
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From now on, we assume that β is allowed to depend locally on the state
of the benchmark market index Mt, as β(Mt), t ⩾ 0.

c) Rewrite the equations (7.51)-(7.52) into the system
dMt

Mt
= rdt+ σMdB

∗
t ,

dSt
St

= rdt+ σMβ(Mt)dB
∗
t + σSdW

∗
t ,

where (B∗
t )t∈R+ and (W ∗

t )t∈R+ have to be determined explicitly.
d) Using the Girsanov Theorem 7.3, construct a probability measure P∗ un-

der which (B∗
t )t∈R+ and (W ∗

t )t∈R+ are independent standard Brownian
motions.

Hint: Only the expression of the Radon-Nikodym density dP∗/dP is
needed here.

e) Show that the market based on the assets St and Mt is without arbitrage
opportunities.

f) Consider a portfolio strategy (ξt, ζt, ηt)t∈[0,T ] based on the three assets
(St,Mt,At)t∈[0,T ], with value

Vt = ξtSt + ζtMt + ηtAt, t ∈ [0,T ],

where (At)t∈R+ is a riskless asset given by At = A0 ert. Write down the
self-financing condition for the portfolio strategy (ξt, ζt, ηt)t∈[0,T ].

g) Consider an option with payoff C = h(ST ,MT ), priced as

f(t,St,Mt) = e−(T−t)rE∗[h(ST ,MT ) | Ft], 0 ⩽ t ⩽ T .

Assuming that the portfolio (Vt)t∈[0,T ] replicates the option price pro-
cess (f(t,St,Mt))t∈[0,T ], derive the pricing PDE satisfied by the function
f(t,x, y) and its terminal condition.

Hint: The following version of the Itô formula with two variables can be
used for the function f(t,x, y), see (4.26):

df(t,St,Mt) =
∂f

∂t
(t,St,Mt)dt+

∂f

∂x
(t,St,Mt)dSt +

1
2 (dSt)

2 ∂
2f

∂x2 (t,St,Mt)

+
∂f

∂y
(t,St,Mt)dMt +

1
2 (dMt)

2 ∂
2f

∂y2 (t,St,Mt) + dSt • dMt
∂2f

∂x∂y
(t,St,Mt).

h) Find the self-financing hedging portfolio strategy (ξt, ζt, ηt)t∈[0,T ] repli-
cating the vanilla payoff h(ST ,MT ).

306 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

i) Solve the PDE of Question (g) and compute the replicating portfolio of
Question (h) when β(Mt) = β is a constant and C is the European call
option payoff on ST with strike price K.

j) Solve the PDE of Question (g) and compute the replicating portfolio of
Question (h) when β(Mt) = β is a constant and C is the European put
option payoff on ST with strike price K.

Problem 7.27 Market bubbles occur when a financial asset becomes overval-
ued for various reasons, for example in the Dutch tulip bubble (1636-1637),
Japan’s stock market bubble (1986), dotcom bubble (2000), or US housing
bubble (2009). Local martingales are used for the modeling of market bubbles
and market crashes, see Cox and Hobson (2005), Heston et al. (2007), Jarrow
et al. (2007), in which case the option call-put parity does not hold in general.
In what follows we let T > 0 and we consider a filtration (Ft)t∈[0,T ] on [0,T ]
with F0 = {∅, Ω} and a probability measure P on (Ω, FT ).

An (Ft)t∈[0,T ]-adapted process (Mt)t∈[0,T ] is called a (true) martingale on
[0,T ] if

i) E[|Mt|] < ∞ for all t ∈ [0,T ],
ii) E[Mt | Fs] =Ms, for all 0 ⩽ s ⩽ t.

An (Ft)t∈[0,T ]-adapted process (Mt)t∈[0,T ] is called a supermartingale on
[0,T ] if

i) E[|Mt|] < ∞ for all t ∈ [0,T ],
ii) E[Mt | Fs] ⩽Ms, for all 0 ⩽ s ⩽ t.

An (Ft)t∈[0,T ]-adapted process (Mt)t∈[0,T ] is called a local martingale on
[0,T ] if there exists a nondecreasing sequence (τn)n⩾1 of [0,T ]-valued stop-
ping times such that

i) limn→∞ τn = T almost surely,
ii) for all n ⩾ 1 the stopped process (Mτn∧t)t∈[0,T ] is a (true) martingale

under P.

A local martingale on [0,T ] which is not a true martingale is called a strict
local martingale.

1) a) Show that any martingale (Mt)t∈[0,T ] on [0,T ] is a local martingale in
[0,T ].

b) Show that any non-negative local martingale (Mt)t∈[0,T ] is a su-
permartingale.
Hint: Use Fatou’s lemma.

c) Show that if (Mt)t∈[0,T ] is a non-negative and strict local martingale
on [0,T ] we have E[MT ] < M0.
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Hint: Do the proof by contradiction using the tower property, the an-
swer to Question (1b), and the fact that if a random variable X satisfies
X ⩽ 0 a.s. and E[X ] = 0, then X = 0 a.s..

d) Show that the call-put parity

C(0,M0) − P (0,M0) = E[M0] − e−rTK

between C(0,M0) and P (0,M0) fails when the discounted asset price
process (Mt)t∈[0,T ] is a strict local martingale.
Hint: See Relation (7.8) in Proposition 7.25.

2) Let (St)t∈[0,T ] be the solution of the stochastic differential equation

dSt =
St√
T − t

dBt (7.53)

with S0 > 0.

a) Show that (St)t∈[0,T−ε] is a martingale on [0,T − ε] for every ε ∈ (0,T ).

Hint: Solve the stochastic differential equation (7.53) by the method
of Proposition 6.16-a), and use Exercise 5.11-b).

b) Find the value of ST by a simple argument.
c) Show that (St)t∈[0,T ] is a strict local martingale on [0,T ].

Hint: Consider the stopping times

τn :=
((

1 − 1
n

)
T

)
∧ inf{t ∈ [0,T ] : |St| ⩾ n}, n ⩾ 1,

and use Proposition 8.1.
d) Plot a sample graph of (St)t∈[0,T ] with T = 1, and attach or upload it

with your submission.

3) CEV model. Consider the positive strict local martingale (St)t∈[0,T ] solu-
tion of dSt = S2

t dBt with S0 > 0, where St has the probability density
function

φt(x) =
S0

x3
√

2πt

(
exp

(
− (1/x− 1/S0)2

2t

)
− exp

(
− (1/x+ 1/S0)2

2t

))
,

x > 0, t ∈ (0,T ], see § 2.1.2 in Jacquier (2017).

a) Plot a sample graph of (St)t∈[0,T ] with T = 1, and attach or upload it
with your submission.

b) Compute E[ST ] and check that the condition of Question (1c) is sat-
isfied.
Hint: Use the change of variable y = 1/x and the standard normal
CDF Φ.

c) Compute the limit of E[ST ] as S0 tends to infinity.
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d) Compute the price E[(ST −K)+] of a European call option with strike
price K > 0 in this model, assuming a risk-free interest rate r = 0.
Hint: The final answer should be written in terms of the standard
normal CDF Φ and of the normal PDF φ.

e) Show that E[(ST −K)+] is bounded uniformly in S0 > 0 and K > 0
by a constant depending on T > 0.

Problem 7.28 Quantile hedging (Föllmer and Leukert (1999), §6.2 of Mel′nikov
et al. (2002)). Recall that given two probability measures P and Q, the
Radon-Nikodym density dP/dQ links the expectations of random variables
F under P and under Q via the relation

EQ[F ] =
w

Ω
F (ω)dQ(ω)

=
w

Ω
F (ω)

dQ

dP
(ω)dP(ω)

= EP

[
F

dQ

dP

]
.

a) Neyman-Pearson Lemma. Given P and Q two probability measures, con-
sider the event

Aα :=
{

dP

dQ
> α

}
, α ⩾ 0.

Show that for A any event, Q(A) ⩽ Q(Aα) implies P(A) ⩽ P(Aα).

Hint: Start by proving that we always have(
dP

dQ
− α

)
(21Aα − 1) ⩾

(
dP

dQ
− α

)
(21A − 1). (7.54)

b) Let C ⩾ 0 denote a nonnegative claim payoff on a financial market with
risk-neutral measure P∗. Show that the Radon-Nikodym density

dQ∗

dP∗ :=
C

EP∗ [C]
(7.55)

defines a probability measure Q∗.

Hint: Check first that dQ∗/dP∗ ⩾ 0, and then that Q∗(Ω) = 1. In the
following questions we consider a nonnegative contingent claim with payoff
C ⩾ 0 and maturity T > 0, priced e−rTEP∗ [C] at time 0 under the risk-
neutral measure P∗.

Budget constraint. In what follows we will assume that no more than a certain
fraction β ∈ (0, 1] of the claim price e−rTEP∗ [C] is available to construct
the initial hedging portfolio V0 at time 0.
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Since a self-financing portfolio process (Vt)t∈R+ started at V0 := β e−rTEP∗ [C]
may fall short of hedging the claim C when β < 1, we will attempt to max-
imize the probability P(VT ⩾ C) of successful hedging, or, equivalently, to
minimize the shortfall probability P(VT < C).

For this, given A an event we consider the self-financing portfolio process
(V At )t∈[0,T ] hedging the claim C1A, priced V A0 = e−rTEP∗ [C1A] at time 0,
and such that V AT = C1A at maturity T .

c) Show that if α satisfies Q∗(Aα) = β, the event

Aα =

{
dP

dQ∗ > α

}
=

{
dP

dP∗ > α
dQ∗

dP∗

}
=

{
dP

dP∗ >
αC

EP∗ [C]

}
maximizes P(A) over all possible events A, under the condition

e−rTEP∗
[
V AT
]
= e−rTEP∗ [C1A] ⩽ β e−rTEP∗ [C]. (7.56)

Hint: Rewrite Condition (7.56) using the probability measure Q∗, and
apply the Neyman-Pearson Lemma of Question (a) to P and Q∗.

d) Show that P(Aα) coincides with the successful hedging probability

P
(
V Aα
T ⩾ C

)
= P(C1Aα ⩾ C),

i.e. show that

P(Aα) = P
(
V Aα
T ⩾ C

)
= P(C1Aα ⩾ C).

Hint: To prove an equality x = y we can show first that x ⩽ y, and then
that x ⩾ y. One inequality is obvious, and the other one follows from
Question (c).

e) Check that the self-financing portfolio process
(
V Aα
t

)
t∈[0,T ] hedging the

claim with payoff C1Aα uses only the initial budget β e−rTEP∗ [C], and
that P

(
V Aα
T ⩾ C

)
maximizes the successful hedging probability.

In the next Questions (f)-(j) we assume that C = (ST −K)+ is the payoff of
a European option in the Black-Scholes model

dSt = rStdt+ σStdBt, (7.57)

with P = P∗, dP/dP∗ = 1, and

S0 := 1 and r =
σ2

2 :=
1
2 . (7.58)

f) Solve the stochastic differential equation (7.57) with the parameters
(7.58).

g) Compute the successful hedging probability
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P
(
V Aα
T ⩾ C

)
= P(C1Aα ⩾ C) = P(Aα)

for the claim C =: (ST −K)+ in terms ofK, T , EP∗ [C] and the parameter
α > 0.

h) From the result of Question (g), express the parameter α using K, T ,
EP∗ [C], and the successful hedging probability P

(
V Aα
T ⩾ C

)
for the claim

C =: (ST −K)+.
i) Compute the minimal initial budget e−rTEP∗ [C1Aα ] required to hedge

the claim C = (ST −K)+ in terms of α > 0, K, T and EP∗ [C].
j) Taking K := 1, T := 1 and assuming a successful hedging probability of

90%, compute numerically:

i) The European call price e−rTEP∗ [(ST −K)+] from the Black-Scholes
formula.

ii) The value of α > 0 obtained from Question (h).

iii) The minimal initial budget needed to successfully hedge the European
claim C = (ST −K)+ with probability 90% from Question (i).

iv) The value of β, i.e. the budget reduction ratio which suffices to suc-
cessfully hedge the claim C =: (ST −K)+ with 90% probability.

Problem 7.29 (Leung and Sircar (2015)) ProShares Ultra S&P500 and
ProShares UltraShort S&P500 are leveraged investment funds that seek daily
investment results, before fees and expenses, that correspond to β times (βx)
the daily performance of the S&P500,® with respectively β = 2 for ProShares
Ultra and β = −2 for ProShares UltraShort. Here, leveraging with a factor
β : 1 aims at multiplying the potential return of an investment by a factor
β. The following ten questions are interdependent and should be treated in
sequence.

a) Consider a risky asset priced S0 := $4 at time t = 0 and taking two
possible values S1 = $5 and S1 = $2 at time t = 1. Compute the two
possible returns (in %) achieved when investing $4 in one share of the asset
S, and the expected return under the risk-neutral probability measure,
assuming that the risk-free interest rate is zero.

b) Leveraging. Still based on an initial $4 investment, we decide to leverage
by a factor β = 3 by borrowing another (β − 1) × $4 = 2 × $4 at rate
zero to purchase a total of β = 3 shares of the asset S. Compute the
two returns (in %) possibly achieved in this case, and the expected return
under the risk-neutral probability measure, assuming that the risk-free
interest rate is zero.

c) Denoting by Ft the ProShares value at time t, how much should the fund
invest in the underlying asset priced St, and how much $ should it borrow
or save on the risk-free market at any time t in order to leverage with a
factor β : 1?
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d) Find the portfolio allocation (ξt, ηt) for the fund value

Ft = ξtSt + ηtAt, t ⩾ 0,

according to Question (c), where At := A0 ert is the riskless money market
account.

e) We choose to model the S&P500 index St as the geometric Brownian
motion

dSt = rStdt+ σStdBt, t ⩾ 0,

under the risk-neutral probability measure P∗. Find the stochastic dif-
ferential equation satisfied by (Ft)t∈R+ under the self-financing condition
dFt = ξtdSt + ηtdAt, and show that the discounted fund value is a mar-
tingale.

f) Is the discounted fund value ( e−rtFt)t∈R+ a martingale under the risk-
neutral probability measure P∗?

g) Find the relation between the fund value Ft and the index St by solving
the stochastic differential equation obtained for Ft in Question (e). For
simplicity we normalize F0 := Sβ0 .

h) Write the price at time t = 0 of the call option with claim payoff C =
(FT −K)+ on the ProShares index using the Black-Scholes formula.

i) Show that when β > 0, the Delta at time t ∈ [0,T ) of the call option with
claim payoff C = (FT −K)+ on ProShares Ultra is equal to the Delta of
the call option with claim payoff C = (ST −Kβ(t))

+ on the S&P500, for
a certain strike price Kβ(t) to be determined explicitly.

j) When β < 0, find the relation between the Delta at time t ∈ [0,T ) of the
call option with claim payoff C = (FT −K)+ on ProShares UltraShort
and the Delta of the put option with claim payoff C = (Kβ(t)− ST )

+ on
the S&P500.

Problem 7.30 Log options. Log options can be used for the pricing of realized
variance swaps, see § 8.2.

a) Consider a market model made of a risky asset with price (St)t∈R+ as
in Exercise 4.22-(d) and a riskless asset with price At = $1 × ert and
risk-free interest rate r = σ2/2. From the answer to Exercise 4.22-(b),
show that the arbitrage-free price

Vt = e−(T−t)rE
[
(logST )+

∣∣Ft]
at time t ∈ [0,T ] of a log call option with payoff (logST )+ is equal to

Vt = σ e−(T−t)r
√
T − t

2π e−B2
t /(2(T−t)) + σ e−(T−t)rBtΦ

(
Bt√
T − t

)
.

b) Show that Vt can be written as
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Vt = g(T − t,St),

where g(τ ,x) = e−rτf(τ , log x), and

f(τ , y) = σ

√
τ

2π e−y2/(2σ2τ ) + yΦ
(

y

σ
√
τ

)
.

c) Figure 7.6 represents the graph of (τ ,x) 7→ g(τ ,x), with r = 0.05 = 5%
per year and σ = 0.1. Assume that the current underlying asset price is $1
and there remains 700 days to maturity. What is the price of the option?

0.5 1 1.5 2
St

0
300

400
600

T-t

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

Fig. 7.6: Option price as a function of underlying asset price and time to maturity.

d) Show∗ that the (possibly fractional) quantity ξt =
∂g

∂x
(T − t,St) of St at

time t in a portfolio hedging the payoff (logST )+ is equal to

ξt = e−(T−t)r 1
St

Φ
(

logSt
σ

√
T − t

)
, 0 ⩽ t ⩽ T .

e) Figure 7.7 represents the graph of (τ ,x) 7→ ∂g
∂x (τ ,x). Assuming that the

current underlying asset price is $1 and that there remains 700 days to
maturity, how much of the risky asset should you hold in your portfolio
in order to hedge one log option?

∗ Recall the chain rule of derivation ∂

∂x
f(τ , log x) =

1
x

∂f

∂y
(τ , y)|y=log x.
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Fig. 7.7: Delta as a function of underlying asset price and time to maturity.

f) Based on the framework and answers of Questions (c) and (e), should you
borrow or lend the riskless asset At = $1 × ert, and for what amount?

g) Show that the Gamma of the portfolio, defined as Γt =
∂2g

∂x2 (T − t,St),
equals

Γt = e−(T−t)r 1
S2
t

(
1

σ
√

2(T − t)π
e−(logSt)2/(2(T−t)σ2) − Φ

(
logSt
σ

√
T − t

))
,

0 ⩽ t < T .
h) Figure 7.8 represents the graph of Gamma. Assume that there remains

60 days to maturity and that St, currently at $1, is expected to increase.
Should you buy or (short) sell the underlying asset in order to hedge the
option?

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8
St

 60  80  100 120 140 160 180 200

T-t
-0.2

 0

 0.2

 0.4

 0.6

 0.8

Fig. 7.8: Gamma as a function of underlying asset price and time to maturity.

i) Let now σ = 1. Show that the function f(τ , y) of Question (b) solves the
heat equation 

∂f

∂τ
(τ , y) = 1

2
∂2f

∂y2 (τ , y)

f(0, y) = (y)+.

Problem 7.31 Log put options with a given strike price.
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a) Consider a market model made of a risky asset with price (St)t∈R+ as in
Exercise 5.10, a riskless asset valued At = $1 × ert, risk-free interest rate
r = σ2/2 and S0 = 1. From the answer to Exercise A.4-(c), show that
the arbitrage-free price

Vt = e−(T−t)rE∗[(K − logST )+
∣∣Ft]

at time t ∈ [0,T ] of a log call option with strike price K and payoff
(K − logST )+ is equal to

Vt = σ e−(T−t)r
√
T − t

2π e−(Bt−K/σ)2/(2(T−t))+ e−(T−t)r(K−σBt)Φ
(
K/σ−Bt√

T − t

)
.

b) Show that Vt can be written as

Vt = g(T − t,St),

where g(τ ,x) = e−rτf(τ , log x), and

f(τ , y) = σ

√
τ

2π e−(K−y)2/(2σ2τ ) + (K − y)Φ
(
K − y

σ
√
τ

)
.

c) Figure 7.9 represents the graph of (τ ,x) 7→ g(τ ,x), with r = 0.125 per
year and σ = 0.5. Assume that the current underlying asset price is $3,
that K = 1, and that there remains 700 days to maturity. What is the
price of the option?

 2.2  2.4  2.6  2.8  3  3.2  3.4  3.6  3.8
St

 0  100  200  300  400  500  600  700

T-t

 0
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 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Fig. 7.9: Option price as a function of underlying asset price and time to maturity.

d) Show∗ that the quantity ξt =
∂g

∂x
(T − t,St) of St at time t in a portfolio

hedging the payoff (K − logST )+ is equal to

ξt = − e−(T−t)r 1
St

Φ
(
K − logSt
σ

√
T − t

)
, 0 ⩽ t ⩽ T .

∗ Recall the chain rule of derivation ∂

∂x
f(τ , log x) =

1
x

∂f

∂y
(τ , y)|y=log x.
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e) Figure 7.10 represents the graph of (τ ,x) 7→ ∂g
∂x (τ ,x). Assuming that the

current underlying asset price is $3 and that there remains 700 days to
maturity, how much of the risky asset should you hold in your portfolio
in order to hedge one log option?

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

St

 0 100 200 300 400 500 600 700 T-t

-0.5

-0.4

-0.3

-0.2

-0.1

 0

Fig. 7.10: Delta as a function of underlying asset price and time to maturity.

f) Based on the framework and answers of Questions (c) and (e), should you
borrow or lend the riskless asset At = $1 × ert, and for what amount?

g) Show that the Gamma of the portfolio, defined as Γt =
∂2g

∂x2 (T − t,St),
equals

Γt = e−(T−t)r 1
S2
t

(
1

σ
√

2(T − t)π
e−(K−logSt)2/(2(T−t)σ2) + Φ

(
K − logSt
σ

√
T − t

))
,

0 ⩽ t ⩽ T .
h) Figure 7.11 represents the graph of Gamma. Assume that there remains

10 days to maturity and that St, currently at $3, is expected to increase.
Should you buy or (short) sell the underlying asset in order to hedge the
option?

 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 St
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T-t

 0
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Fig. 7.11: Gamma as a function of underlying asset price and time to maturity.

i) Show that the function f(τ , y) of Question (b) solves the heat equation
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
∂f

∂τ
(τ , y) = σ2

2
∂2f

∂y2 (τ , y)

f(0, y) = (K − y)+.
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