Chapter 22
Basic Numerical Methods

Numerical methods in finance include finite difference methods, and statisti-
cal and Monte Carlo methods for computation of option prices and hedging
strategies. This chapter is a basic introduction to finite difference methods
for the resolution of PDEs and stochastic differential equations. We cover the
explicit and implicit finite difference schemes for the heat equations and the
Black-Scholes PDE, as well as the Euler and Milshtein schemes for stochastic
differential equations.
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22.1 Euler Discretization

In order to apply the Monte Carlo method in option pricing, we need to
generate a sequence (X1, ..., Xy) of sample values of a random variable X,
such that the empirical mean

o(X1) + -+ 9o(Xn)

E[6(X)] ~ -

can be used according to the strong law of large number for the evaluation of
the expected value E[¢(X)]. Despite its apparent simplicity, the Monte Carlo
method can converge slowly. The optimization of Monte Carlo algorithms and
of random number generators have been the object of numerous studies which
are outside the scope of this text, see, e.g., Glasserman (2004), Korn et al.
(2010).
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Random samples for the solution of a stochastic differential equation of

the form
dXt = b(Xt)dt—}—a(Xt)de (221)

where (Wy)¢cr, is a standard Brownian motion, can be generated by time
discretization on {tg,t1,...,tx}. This can be applied in particular to option
pricing with local volatility, see § 9.3.

More precisely, the Euler discretization scheme for the stochastic differen-
tial equation (22.1) is given by
~ ~ th t
N _ y¥N k+1 k+1
XN =XV ftk b(X,)ds + Lk a(X,)dW,
~ XN 0K (i1 — t) + (XYW, — W)
= Ay t ) \Uk+1 — Lk tr tit1 te)»
where Wy, | — Wy, 2 N(0,tp41 —Wy,), k=0,1,...,N -1

The next ‘R code presents a numerical solution of the stochastic differential

equation
dSt = ,U,Stdt + G'StdBt (222)

which defines geometric Brownian motion (St):eR, -

1| N=2000; t <- 0:N; dt <- 1.0/N;mu=0.5; sigma=0.2; nsim <- 10; X <- matrix(0, nsim, N+1)

> | dB <- matrix(rnorm(nsim*N,mean=0,sd=sqrt(dt)), nsim, N+1)

for (i in 1:nsim){X[i,1]=1.0;

1 | for (§ in LN+D{X,jl=X[,j-1]4+mu*X[i,j-11*dt+sigma*X[i,j-11*dB[i,jl} }

plot(t*dt, rep(0, N+1), xlab = "Time", ylab = "Geometric Brownian motion", lwd=2, ylim =
c(min(X),max(X)), type = "', col = 0,las=1, cex.axis=1.5,cex.lab=1.5, xaxs="i', yaxs='i")

6 | for (i in 1:nsim){lines(t*dt, XI[i, ], lwd=2, type = "I", col = D}

22.2 Milshtein Discretization

In the Milshtein scheme we use (22.1) to expand a(X5) as

a’(XS) =~ a’(th) =+ a',(th)(XS - th)
a(th) + a,(th)(b(th)(s - tk) + a(th)(WS - Wtk))v

1

0 <t < s. As a consequence, we get
SN _ ON tht1 tht1
XN =X+ Lk b(X,)ds + Lk a(Xs)dW,

o tet1
~ X [, 0 ds + (X)) (Wey, = Wiy

t
! (X, )b( X, ) L:“ (s — ty)dW,
t
! (X )a(Xe,) [ (W = Wiy )W,

= tht1
~ X [, (X ds + a(X) (Wi, — W)
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tht1
(

a (XgJa(Xe,) [, (W = Wi )W,

k
Next, using It6’s formula we note that

i1

-t
(Wtk+1 7Wtk)2 = QJ k“(Ws*Wtk)dWS"‘J ds,
ty ty
hence
tht1 1
Jor OV = W )aW = 5 (Wagy = We)* = (B = 1)),
and

)A(t]ZH ~ )?tjz + f:“ b(Xs)ds + a(Xy,) Wiy, —Wa,.)
+%a,(th)a(th)((Wtk+l ~ W)~ (thr1 — 1)
= XN+ b(Xe, ) (b1 — t) + a(Xe, ) Wy, — Wey)
+%a,(th)a(th)((Wtk+l ~ W)~ (thi — 1)
As a consequence the Milshtein scheme is written as
Ry~ &Y+ (1 — ) +alRE) (W, — W)
50 ()N Wiy, = Wa)? = (11— t4)),
i.e. in the Milshtein scheme we take into account the “small” difference
Wiy = Wi )? = (b1 — t)

existing between (AW;)? and At. Taking (AW;)? equal to At brings us back
to the Euler scheme.

The next ‘R code presents a numerical solution of (22.2) using the Mil-
shtein scheme.

1 N=2000; t <- 0:N; dt <- 1.0/N;mu=0.5; sigma=0.2; nsim <- 10; X <- matrix(0, nsim, N+1)

> | dB <- matrix(rnorm(nsim*N,mean=0,sd=sqrt(dt)), nsim, N+1)

for (i in L:nsim){X[i,1]=1.0;

1+ | for (§ in LN+D{XI,jl=XI,j-1] +mu*X[i,j-11*dt +sigma*X[i,j-11*dBI[i,j]
+0.5*sigma”2*X[i,j-11*(dBli,jl"2-dt)}}

plot(t*dt, rep(0, N+1), xlab = "Time", ylab = "Geometric Brownian motion", lwd=2, ylim =
c(min(X),max(X)), type = "1", col = 0,las=1, cex.axis=1.5,cex.lab=1.5, xaxs="i', yaxs='i')

6 | for (i in 1:nsim){lines(t*dt, X[i, ], lwd=2, type = "1", col = )}

22.3 Discretized Heat Equation
Consider the heat equation
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0 = P00,
E(tvl)f IQ(tP'L) (223)

with initial condition
¢(0,2) = f(z)
on a compact time-space interval [0, 7] x [0, X].

The intervals [0,7] and [0, X] are respectively discretized according to
{to =0,t1,...,txy =T} and {z9 = 0,z1,...,2)y = X} with At = T/N and
Az = X /M, from which we construct a grid

(ti,a;) = (idt, jAz),  i=0,...,N, j=0,....M,
on [0,7] x [0, X].

Our goal is to solve the heat equation (22.3) with initial condition ¢(0, z),
x € [0,X], and lateral boundary conditions ¢(t,0), (¢, X), t € [0,7T], via a
discrete approximation

(#(tis ) )osi<N, o<j<m
of the solution to (22.3), by evaluating derivatives using finite differences.
Explicit scheme

Using the forward time difference approximation

A, (tiv1, m) — d(ti, a5)
8t (t“aj) - At

of the time derivative, and the related space difference approximations

0 ta)) — bt 1) O taji1) — otz
%(t,x1)2—¢( 23) Aﬁ( % 1), %(t,$j+l)§¢( xj+1)AI¢( )

and

e 1 (0¢ B(ti, zjv1) + o(ti, vj-1) — 20(ti, x5)

99
Sl )~ — [ 2ot mj41) — o (tay) ) =
8:)}2( 5) Az <8x( 1) 82:( 7%)) (Az)?
of the time and space derivatives, we discretize (22.3) as

P(tit1, ) = Ot x5) _ ¢t i) + S(ti, 1) — 20(ti, z5)

Al (B2)? - (224
Letting p = (At)/(Az)?, this yields
O(tiv1, ) = pp(ts, xjrr) + (1 —2p)o(ts, 25) + po(ti, zj-1),
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1<j<M-1,1<it<N, e

B(ti, z0)
0
Dipq = AD; +p : . i=0,1,...,N—1, (22.5)
0
o(ti, xar)
with
B(ti, x1)
@; = ; ., i=0,1,...,N,
B(ti,xar—1)
and
1-2p »p o - 0 0 0
p 1=2p0 p -+ 0 0 0
0 p 1=2p--- 0 0 0
A= . . .. f . .
0 0 0 1-2 p 0
0 0 0 p 1=2p p
0 0 0 0 p 1-2p
The vector
o(ti, z0) #(t:,0)
0 0
=l | i=01..N
0 0

é(ti, ar) o(ti, X)

in (22.5) can be given by the lateral boundary conditions ¢(¢,0) and ¢(¢, X).
From those boundary conditions and the initial data of

@ = :
¢(O¢ '/L‘Mfl)
(0, zpr)

we can apply (22.5) in order to solve (22.4) recursively for @, g, P3,..
see also Figure 22.1.

©

Implicit scheme

Using the backward time difference approximation
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¢, ot xy) — d(ti—1, ;)
7 o®) = At

of the time derivative, we discretize (22.3) as

Ot x5) — d(ti1,z5) St zj1) + o(ts, xj-1) — 20(ti, x5)
At = (2)?

(22.6)

and letting p = (At)/(Az)? we get

B(tim1,25) = —pd(ti, zj+1) + (1 +2p)¢(ti, x5) — pb(ti, Tj-1),

1<j<M-1,1<i<N,ie

o(ti, z0)
0
Pi_1=BP;+p : , i=12,...,N,
0
o(ti,zar)
with
142 —p 0 - 0 0 0
—p 1+2p0 —p -+ 0 0 0
0 —p 142 - 0 0 0
b= : : oo : :
0 0 0 1420 —p 0
0 0 0 -+ —p 1420 —p
0 0 0 -~ 0 —p 142

By inversion of the matrix B, ®; is given in terms of ®;_; as

B(ti, 20)
0

®; =B '®;_; — pB~? : , i=1,...,N,
0
(ti, xar)

which also allows for a recursive solution of (22.6), see also Figure 22.2.
22.4 Discretized Black-Scholes PDE

Consider the Black-Scholes PDE

o¢
at

0 1, 502
(t,z)+ rxa—i(t,x) + 5:102028742)(157 ), (22.7)

ro(t,x) =
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under the terminal condition ¢(7,z) = (v — K)¥, resp. ¢(T,z) = (K —2)T,
for a European call, resp. put, option. The constant volatility coefficient o
may also be replaced with a function o (¢, ) of the underlying asset price, in
the case local volatility models.

Note that in the solution of the Black-Scholes PDE, time is run backwards
as we start from a terminal condition ¢(7,x) at time 7. Thus here the ex-
plicit scheme uses backward differences while the implicit scheme uses forward
differences.

Explicit scheme

Using here the backward time difference approximation

0, Bt z;) — o(ti-1, 7))
i o) = At

of the time derivative, we discretize (22.7) as

B(ti, ;) — d(ti—1, ;) O(ti, wj+1) — O(tisxj-1)

ro(tiz;) = At +r 20
L o o¢(ti,zjr1) + ot xj—1) — 2¢(ti, z5)
“g? 2.
+27:]a YL , (22.8)

B(tic1,z5) = (0252 = 75)d(ti, 2j-1) At + ¢ (ti, 25) (1 — (0752 + r)At)
1
5(02j2 +75)d(ti, xjp1) AL,

1 < j < M — 1, where the lateral boundary conditions ¢(t;,0) and ¢(¢;, zpr)
are (approximately) given as follows.

FEuropean call options. We take the lateral boundary conditions
G(ti,w0) =0, and  ¢(ts,xpn) = (a2 —KefT(Tftl))-F =apy — Ke (Tt
i=0,1,..., N, provided that z); is sufficiently large.
FEuropean put options. We take the lateral boundary conditions
d(ti,m0) = (Ke™ T8 —30)" = Ke T8 and  ¢(ti,xpr) = 0,

i=20,1,..., N, with here zg = 0.
Given a terminal condition of the form

H(T,z;) = (z; — K)*, resp. ¢(T,z;) = (K —xj)*, j=1,...,.M—1,
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this allows us to solve (22.8) successively for

H(tn_1,75), d(tn—2,25), d(tn_3,7;),...,0(t1,75), ¢(to, ;).

The explicit finite difference method is nevertheless known to have a divergent
behaviour as time is run backwards, as illustrated in Figure 22.1.

’:’l 277>
52225 g2
557 h”'lo 4

2 0.7 - -
Time to maturity : - 10 Strike price
Fig. 22.1: Divergence of the explicit finite difference method.

Implicit scheme

Using the forward time difference approximation

¢ o(tivr,xj) — d(ti %)
a(tlvz)— At

of the time derivative, we discretize (22.7) as

O(tiv1, x5) — o(ti, z;) P(ti,xj1) — o(ti, zj-1)

ro(ti, xj) = Y +ra; Az (22.9)
+1 2 2¢(tu751+1)+¢(tu% 1) — 2¢(ti, ;)
2737 (b2)? ’

1<j<M-1,0<i<N—-1,1de

<

S(tisn ) = %(a] )t i) A+ Dt 1)) (1 + (0757 + r)At)

1
75(0 j +7])gb(ti,;rj+1)At,

1<j<M—1,1de.
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% (7' -0 ) ¢(f271'0)
0

D11 =B, + : o (22.10)
0
=3 (r(M = 1) + (M —1)%0?) ¢(t;, xar) At

i=0,1,...,N —1, with

1
Bjj1 =5 (ri—0o®?) At Bjj=1+0"At+rAt,

and
1

Bj,j+1 = —= (I]+CT j )At,
for j=1,2,...,M —1, and B(i,j) = 0 otherwise.

By inversion of the matrix B, ®; is given in terms of ®; 1 as

% (r — 02) O (ti, z0) At
0

®; =B & — B! : )
0
—3(r(M = 1) + (M = 1)%0?) ¢(t;, zar) At

i = 0,1,...,N — 1, where the lateral boundary conditions ¢(¢;,z) and
&(ti,xps) can be provided as in the case of the explicit scheme, allowing
us to solve (22.9) recursively for ¢(tn—1,;), d(tn—2,2;), d(tn—3,%;), .-

The implicit finite difference method is known to be more stable than the
explicit scheme, as illustrated in Figure 22.2, in which the discretization pa-
rameters have been taken to be the same as in Figure 22.1.

Time to maturity

Fig. 22.2: Stability of the implicit finite difference method.
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Exercises

Exercise 22.1 Show that when the terminal condition is a constant ¢ (7', z) =
¢ > 0 the implicit scheme (22.10) recovers the known solution ¢(s,z) =
ce "T=%) 5 [0,T).

Exercise 22.2 Let X; be the geometric Brownian motion given by the stochas-
tic differential equation
de, = T’Xtdt + O'Xf,th.

a) Compute the Euler discretization ()?L]Z>k:0 1w of (Xt)ier. -
b) Compute the Milshtein discretization (Xt]Z)k:o 1w Of (Xt)ier, -
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