Chapter 14
Optimal Stopping Theorem

Stopping times are random times whose value can be determined by the his-
torical behavior of a stochastic process modeling market data. This chapter
presents additional material on optimal stopping and martingales, for use in
the pricing and optimal exercise of American options in Chapter 15. Appli-
cations are given to hitting probabilities for Brownian motion.
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14.1 Filtrations and Information Flow

Let (Ft)ter, denote the filtration generated by a stochastic process (X¢)teR, -
In other words, F; denotes the collection of all events possibly generated by
{Xs : 0< s <t} up to time ¢t. Examples of such events include the event

{Xty a0, X¢y <a1, .., Xp, <ant

for ap,as,...,a, a given fixed sequence of real numbers and 0 < ¢t < --- <
t, < t, and F; is said to represent the information generated by (X) se[0,t]
up to time ¢ > 0.

By construction, (F)ier, is a non-decreasing family of o-algebras in the
sense that we have Fs C F; (information known at time s is contained in the
information known at time ¢) when 0 < s < ¢.

One refers sometimes to (F3);er, as the non-decreasing flow of informa-
tion generated by (X¢)teR, -
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14.2 Submartingales and Supermartingales

Let us recall the definition of martingale (cf. Definition 4.2), and introduce
in addition the definitions of supermartingale and submartingale.*

Definition 14.1. An integrable’ stochastic process (Zi)1er, is a martingale
(resp. a supermartingale, resp. a submartingale) with respect to (Fi)ier, if
it satisfies the property

Zs =E[Zy | Fsl, 0<s<t, (martingale)

resp.
Zs 2 E|Z¢ | Fsl, 0<s<t, (supermartingale)

resp.
Zs < E[Z: | F, 0<s<t. (submartingale)

Clearly, a stochastic process (Z;)er, is a martingale if and only if it is both
a supermartingale and a submartingale.

A particular property of martingales is that their expectation is constant over
time ¢t € Ry. In the next proposition we also check that supermartingales
have non-increasing expectation over time, while submartingales have a non-
decreasing expectation.

Proposition 14.2. Let (Z)icr, denote an adapted integrable process.

a) If (Zy)ier. is a supermartingale, we have

E(Zs] > E[Z4], 0<s<t. (supermartingale)
b) If (Zi)ter, is a submartingale, we have

E[Zs] < E[Z], 0<s<t. (submartingale)
¢) If (Zt)ier, be a martingale, we have

E[Z,] = E[Z], 0<s<t. (martingale)

Proof. The case where (Z;):cRr, is a martingale follows from the tower prop-
erty (A.33) of conditional expectations, which shows that

E[Z] = E[E[Z | 7)) = E[Z]), 0<s<t (14.1)

Regarding supermartingales, similarly to (14.1) we have

* “This obviously inappropriate nomenclature was chosen under the malign influence of
the noise level of radio’s SUPERman program, a favorite supper-time program of Doob’s
son during the writing of Doob (1953)”, cf. Doob (1984), historical notes, page 808.

t This condition means that E[|Z¢|] < oo for all ¢ > 0.
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E[Z:] = E[E[Z; | F§]] < E[Zs], 0<s<t.

The proof is similar in the submartingale case. O

Independent increments processes whose increments have negative expecta-
tion give examples of supermartingales. For example, if (Z;)ier, is such a
stochastic process, then we have

]E[Zt ‘ ]:S] :]E[Zs ‘ fs]"']E[Zt*Zs']:s}
=E[Zs | Fs]| + E[Z; — Z]
< E[Z, | F]
= Zs, 0<s<t.
Similarly, a stochastic process with independent increments which have pos-

itive expectation will be a submartingale. Brownian motion By + ut with
positive drift 1 > 0 is such an example, as in Figure 14.1 below.

14

T T T T y
Drifted Brownian Brownian motion
12 + Drift ut

Fig. 14.1: Drifted Brownian path.

The following example comes from gambling.
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Fig. 14.2: Evolution of the fortune of a poker player vs. number of games played.
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Definition 14.3. A function ¢ : R — R is said to be convex if

d(pr + qy) < po(x) + qo(y)

for any p,q € [0,1] such that p+q =1 and z,y € R.

o S

pr+qy Y

Fig. 14.3: Convex function.

Proposition 14.4. Jensen (1906) inequality. Jensen’s inequality states that
for any sufficiently integrable random variable X and convexr function ¢ :
R — R we have

P(E[X]) < E[p(X)].

Proof. See e.g. (3.7.1) in Hardy et al. (1988). We only consider the case where
X is a discrete random variable taking values in a finite set {x1, ...,z }, with
P(X = z;) = p;, i = 1,...,n, and show by induction on n > 1 that

¢(p1xl + p2ra+--- +pnxn) < P1¢(I1) +P2¢($2) +--- +pn¢(l‘n)’ (142)

z1,...,2n € R, for any sequence of coefficients p1,pa,...,pn = 0 such that
p1 +p2+---+pp = 1. The inequality (14.2) clearly holds for n = 1, and for
n = 2 it coincides with the convexity property of ¢, i.e.

d(p1e1 + par2) < prop(x1) + paod(xa), z1, T2 € R

Assuming that (14.2) holds for some n > 1 and taking p1,p2,...,pn+1 = 0
such that p; +pa+ -+ ppt1 =1 and 0 < pp41 < 1 and applying (14.2) at
the second order, we have

d(p1z1 +p2xa + - + Ppt1Zn+1)

p1x1 + p2ro + -+ pp
=¢ ((1 — Pn+1) 1 nen +pn+1xn+1>
— Pn+1
p1r1 +p2x2 + - + P
< (1_pn+1)¢< = f 2 & n) +pn+l¢(mn+l)
— Pn+1
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< (1= pns1) (pm(xl) +p2¢1>(f213n1- -+ ppd(an)

= p1¢($1) +p2¢(x2) + - +pn+1¢(xn+1)7

> + Pnt1 ¢($n+1 )

and we conclude by induction. g

A natural way to construct submartingales is to take convex functions of
martingales and to apply Jensen’s inequality Proposition 14.4.

Proposition 14.5. a) Given (M;);er, o martingale and ¢ : R — R a
convex function, the process (¢(My))ier, s a submartingale.

b) Given (M;)ier, o submartingale and ¢ : R — R a non-decreasing con-
vex function, the process (¢(My))ier, s a submartingale.

Proof. a) By Jensen’s inequality Proposition 14.4 we have
O(E[M, | Fy]) <E[6(M) | F], 0<s<t, (14.3)
which shows that
&(Ms) = ¢(E[My | Fs]) < E[p(My) | Fsl, 0<s <t

b) If ¢ is convex non-decreasing and (M;)cRr, is a submartingale, the above
rewrites as

$(M,) < S(E[M; | Fi]) <E[6(My) | ], 0<s<t,

showing that (¢(M¢))ier, is a submartingale. O

Similarly, (¢(M¢))ier, will be a supermartingale when (M;)eRr, is a mar-
tingale and the function ¢ is concave.

As a direct application of Proposition 14.5, the process (BtQ)tGIR+ is a
submartingale as ¢(z) = 22 is a convex function. Other examples of (super,
sub)-martingales include geometric Brownian motion

S = So erl+oBg—02l/27 t>0,
which is a martingale for » = 0, a supermartingale for » < 0, and a

submartingale for r > 0.

14.3 Optimal Stopping Theorem

Next, we turn to the definition of stopping time, which is based on a proba-
bility space (0, F,IP) and a filtration (F3)ier, C F.
Definition 14.6. An (F;)icRr, -stopping time is a random variable 7 : Q) —
Ry U {400} such that

(r>tyeR, t=0. (14.4)
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The meaning of Relation (14.4) is that the knowledge of the event {7 > ¢}
depends only on the information present in F; up to time ¢, i.e. on the
knowledge of (Xs)o<s<t-

In other words, an event occurs at a stopping time 7 if at any time ¢ it
can be decided whether the event has already occurred (7 < t) or not (7 > t)
based on the information F; generated by (X;)scr, up to time ¢.

For example, the day you bought your first car is a stopping time (one
can always answer the question “did I ever buy a car”), whereas the day you
will buy your last car may not be a stopping time (one may not be able to
answer the question “will I ever buy another car”).

Proposition 14.7. Every constant time is a stopping time. In addition, if
T and 0 are stopping times, then

i) the minimum 7 A6 := min(7,0) of T and 0 is also a stopping time,

ii) the mazimum 7V 0 := Max(7,0) of T and 0 is also a stopping time.

Proof. Point (i) is easily checked. Regarding (i7), we have
{TA0>t}={r>t and 0>t} ={r>t}n{d>t}eF, t=0.
On the other hand, we have
{rvo<ty={r<t and <t} ={r>t}Nn{0>t}°eF, t=0,
which implies

{rvo>t}={rVvo<t}eF, t>0.

Hitting times

Hitting times provide natural examples of stopping times. The hitting time
of level « by the process (X;);er, , defined as

7 =inf{t e Ry : Xy =z},
is a stopping time,* as we have (here in discrete time)

{mz >t} = {X; #z forall s €[0,t]}
={Xo#a}n{X1 #a}n---N{Xy #a} € F, teN.

* As a convention we let 7 = +o00 in case there exists no t > 0 such that X; = z.
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In gambling, a hitting time can be used as an exit strategy from the game.
For example, letting

Tey i=inf{t e Ry @ Xy =2 or Xy =y} (14.5)

defines a hitting time (hence a stopping time) which allows a gambler to exit
the game as soon as losses become equal to z = —10, or gains become equal
to y = +100, whichever comes first. Hitting times can be used to trigger for
“buy limit” or “sell stop” orders in finance.

However, not every R;-valued random variable is a stopping time. For
example the random time

T=inf<te€[0,7] : Xy = Sup X, g,
s€[0,T]

which represents the first time the process (Xt)te[o,T] reaches its maximum
over [0,T7, is not a stopping time with respect to the filtration generated by
(Xt)tefo,7]- Indeed, the information known at time ¢ € (0,7) is not sufficient
to determine whether {r > t}.

Stopped process

Given (Z;)er, a stochastic process and 7 : Q — R4 U {+o00} a stopping
time, the stopped process (Ziar)ier, is defined as

Zyift<r,
Zine =7,

min(t,7) —

Zoift >,
Using indicator functions, we may also write
Zine = Zilyery + Zrlysqy, t>0.

The following Figure 14.4 is an illustration of the path of a stopped process.
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Fig. 14.4: Stopped process.

Theorem 14.8 below is called the Stopping Time (or Optional Sampling, or
Optional Stopping) Theorem, it is due to the mathematician J.L. Doob (1910-
2004). It is also used in Exercise 14.6 below.

Theorem 14.8. Assume that (M;)er, s a martingale with respect to
(Ft)ters» and that 7 is an (Fy)ier, -stopping time. Then, the stopped pro-
cess (Minr)ier. 45 also a martingale with respect to (Fy)ier, -

Proof. We only give the proof in discrete time by applying the martingale
transform argument of Theorem 2.11. Writing the telescoping sum

n
My = Mo+ (M~ Mi_y),

=1
we have
TAN n
Mopn = Mo+ (My— My_y) = Mo+ Y Tyery (M — Mi_y),
=1 =1

and for k < n,
n
E[Mypn | Fil = E | Mo+ Ljery (M — My_y) ]:k]
=1

= Mo+ Y E[lje y (M, — Mi_y) | Fi)
=1

k
= My + Z]E[]l{zgr}(]\/[l - ]Wlfl) | ]:k]
=1

+ ) Bllgey (M — M) | Fi]
I=k+1
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k
Z My — M;_1)E[lgery | Fi

+ Z E[E[(M; — M;—1)1g<ry | Fioa] | Fil
I=k+1
k
= Mo+ (M= M_1)Tg<ry
=1

n
+ Y Ellgey E[(M - Mi_y) | Fioa] | Fi)
I=k+1 ~
k

= Mo+ (M= M_1)1i<ry

=1

TNk
= Mo+ (M — M_y)

=1
= M ak, k=0,1,...,n,

as by the martingale property of (M;);cN, we have

E[(M; — My_y) | Fia] = E[M; | Fry] = E[M;_y | Fi1]
=E[M; | Fia] - M
-0, I>1

Remarks.

a) More generally, if (My)cr. is a super (resp. sub)-martingale with respect
to (Ft)ter, , then the stopped process (Minr)ier. remains a super (resp.
sub)-martingale with respect to (Ft)ser., , see e.g. Exercise 14.6 below for
the case of submartingales in discrete time.

b

=

Since by Theorem 14.8 the stopped process (Mra¢)ier, is a martingale,
we find that its expected value E[Myn¢] is constant over time ¢ € Ry by
Proposition 14.2-c).

As a consequence, if (My)er, is an (F)¢er, -martingale and 7 is a stop-
ping time bounded by a constant 7' > 0, .e. 7 < T almost surely,” we
have

E[M:] = E[M;x7] = E[M-no] = E[Mo] = E[Mr]. (14.6)

7 < T almost surely” means P(r < T) =1, d.e. P(r > T) = 0.
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¢) From (14.6), if 7,v are two stopping times a.s. bounded by a constant
T > 0 and (My)ier, is a martingale, we have
E[Mo] = E[M,] = E[M,] = E[M]. (14.7)

d) If 7, v are two stopping times a.s. bounded by a constant 7' > 0 and such
that 7 < v a.s., then, by Theorem 14.8,

(i) when (M;)er. is a supermartingale, we have

E[Mo] > E[M,] > E[M,] > E[M], (14.8)
(ii) when (Mi)er, is a submartingale, we have

E[Mo] < E[M,] < E[M,] < E[M], (14.9)

see Exercise 14.6 below for a proof in discrete time.

Ny

In case 7 is finite with probability one (but not bounded by a constant),
we may also write

e

E[M;] = E[ lim Mn] = lim E[M;n] = E[Mo], (14.10)

provided that
M-t < C, a.s., t=0+. (14.11)

More generally, (14.10) holds provided that the limit and expectation signs
can be exchanged, and this can be done using e.g. the Dominated Conver-
gence Theorem. In some situations the exchange of limit and expectation
signs may not be valid.*

In case P(T = 4+00) > 0, (14.10) holds under the above conditions, pro-
vided that
My := lim M, (14.12)
t—o0

exists with probability one.

Relations (14.8), (14.9) and (14.7) can be extended to unbounded stop-
ping times along the same lines and conditions as (14.10), such as (14.11)
applied to both 7 and v. Dealing with unbounded stopping times can be
necessary in the case of hitting times.

f

N

In general, for all a.s. finite (bounded or unbounded) stopping times 7 it
remains true that

E[M;] = E[ lim M;n] < lim E[M;] < lim E[Mo] = E[Mo),
(14.13)

* Consider for example the sequence My = nl{x<1/n}, 7 > 1, where X >~ U(0,1] is a
uniformly distributed random variable on (0, 1].
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provided that (Mj):cr, is a nonnegative supermartingale, where we used
Fatou’s Lemma A.12.* As in (14.10), the limit (14.12) is required to exist
with probability one if P(1 = +o00) > 0.

=

g) As a counterexample to (14.7), the random time

7= inf{te (0,7] : M, = Sup Ms},
s€[0,T7]

which is not a stopping time, will satisfy
E[M;] > E[My],

although 7 < T" almost surely. Similarly,

7= inf{t c0,7] : M, = nt MS},

is not a stopping time and satisfies

E[M;] < E[My].
Martingales and stopping times as gambling strategies

When (My)e(o,7) is a martingale, e.g. a centered random walk with indepen-
dent increments, the message of the Stopping Time Theorem 14.8 is that the
expected gain of the exit strategy 7, of (14.5) remains zero on average since

E []M

T,y

| = E[My] =0,

if My = 0. Therefore, on average, this exit strategy does not increase the
average gain of the player. More precisely we have

0

My = E[M,,,,] = 2P(M.

To,y

=2)+yP(Mg,, = )

= —10 x P(M,, , = —10) + 100 x P(M,, , = 100),
which shows that
10 , 1
]P(]\Lw =-10) = I and ]P(]\/ITM =100) = L

provided that the relation P(M, , = x) +P(M,

Tzyy
below for further applications to Brownian motion.

= y) = 1 is satisfied, see

* E[limn—s oo Fn] < limp— o0 E[Fy] for any sequence (Fn)pen of nonnegative random
variables, provided that the limits exist.
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Fig. 14.5: Sample paths of a gambling process (Mn)neN-

In Table 14.1 we summarize some of the results obtained in this section for
bounded stopping times.

Bounded stopping times 7, v

supermartingale | E[M-] > E[M,] if 7 < v.

UWt)tE]R* martingale E[M:] = E[M,].

submartingale |E[M.] <E[M,] ifr <v.

Table 14.1: Martingales and stopping times.

In the sequel we note that, as an application of the Stopping Time Theo-
rem 14.8, a number of expectations can be computed in a simple and elegant
way.

14.4 Drifted Brownian Motion

Brownian motion hitting a barrier
Given a,b € R, a < b, let the hitting"® time 7,3 : (3 — R4 be defined by
Tap = inf{t >0 : By =a or By = b},

which is the hitting time of the boundary {a, b} of Brownian motion (B;).eR, ,
a<belR.

* Hitting times are stopping times.
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Fig. 14.6: Brownian motion hitting a barrier.

Recall that Brownian motion (B;)icr, is a martingale since it has indepen-
dent increments, and those increments are centered:

E[B;— Bs] =0, 0<s<t.
Consequently, (BTa,b/\t)tglRJr is still a martingale, and by (14.10) we have

E(B;,, | Bo=z| =E[By | Bp = z] =z,

Ta,b

as the exchange between limit and expectation in (14.10) can be justified
since
‘BU\T{LJ,‘ < MaX(|fl|a ‘bD7 t=0.

Hence we have

z=E[B;,, |Bo=x]=axP(B;,, =a| By=12)+bxP(B;,, =b|Bo=x),

P(Br,, =a| By = z) +]P(B‘ra,b =b|By=x)=1,
which yields
P(B,,,=b|Bo=12)=>—2  a<az<b
o b—a
and also shows that
b—x
]P(Bra,b:(ﬂBo:I):bia, z<b

Note that the above result and its proof actually apply to any continuous
martingale, and not only to Brownian motion.
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Drifted Brownian motion hitting a barrier

Next, let us turn to the case of drifted Brownian motion

Xt:I+Bt+p,t, t20.

05
t

Fig. 14.7: Drifted Brownian motion hitting a barrier.

In this case, the process (X¢)tcr, is no longer a martingale and in order to
use Theorem 14.8 we need to construct a martingale of a different type. Here
we note that the process

M= coBi=o/2 1>

)

is a martingale with respect to (F¢)ecr. . Indeed, we have
E[M; | F)] = B[e”P =7 /2 | F] = e7Bm/2 0 <5<,

cf. e.g. Example 3 page 266.

By Theorem 14.8, we know that the stopped process (Mr, ,at)ieRr, 18 a
martingale, hence its expected value is constant over time ¢ € R4 Propo-
sition 14.2-¢), and (14.10) yields

1= E[M] = E[M,,,],

as the exchange between limit and expectation in (14.10) can be justified
since

|Mipr, ,| < Max (elol e ¢ >0.
Next, we note that taking u = —0/2, i.e. 0 = —2, we have My = e =% Xt
and
eo‘Xg _ eoz+o’Bg+o‘ut — eaz+aBtfo'2t/2 — eo'z]v[t’
hence
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1 =E[M,,]
— e*O’fL‘IE[eUX‘rayb]
= P(X,  =a| Xo=12)+ "TP(X,, , =b| Xo = 2)
= o A IP(X, | =a| Xo=2)+ e 207P(X,,  =b| Xo =),

under the additional condition
P(X;,,=a|Xo=2)+P(X,,,=b|Xo=2)=1.

Finally, this gives

et _ eab 672‘“0 _ e*2lll’

P(Xr,, =a|Xo=2) = — 5 = oo (14.14a)
e—2pa _ o—2pw

P(X.,,=b|Xo=2)= P rra— (14.14b)

a < x < b, see Figure 14.8 for an illustration with a = 1, b = 2, x = 1.3,
=20, and (e 21 — ¢72HT) /(T2 _ ¢=21b) — (.7118437.

1| nsim <- 1000;a=1;b=2;x=1.3;mu=2.0;N=10001; T<-2.0; t <- 0:(N-1); dt <- T/N; prob=0; time=0;
dev.new(width=16,heigh ); for (i in 1:nsim){signal=0;colour="blue";Z <-
rnorm(N,mean=0,sd= sqrt(dt));

X[j-11+Z[jl+mux*dt

if (X[jl<=a && sign: "purple”;time=time+j}

5 | if (X[j]I>=Db && signal blue";prob=prob+1;time=time+j}}

plot(t, X, xlab = "t", ylab = "", type = "1", ylim = c(-0,3), col =
"blue",main=paste("Prob=",prob,"/",i,"=",round(prob/i, digits=5),"
Time=",round(time*dt, digits=3),"/",i,"=",round(time*dt/i, digits=5)), xaxs="i",

.8,cex.lab=1.8,cex.main=2)

7 | lines(t, x+muxt*dt, type = col orange",lwd=3);yticks<-c(0,a,x,b);

axis(side=2, at=yticks,labels = c(0,"a","x","b"), las = 2,cex.axis=1.8)

9 | xticks<-c(0,5000,10000); axis(side=1, at=xticks,labels = ¢(0,"0.5","1"), las = 1,cex.axis=1.8)

abline(h=x,lw=2); abline(h=a,col="purple",lwd=3);

abline(h=Db,col="blue",lwd=3) # Sys.sleep(0.5)

readline(prompt = "Pause. Press <Enter> to continue...")}

15 | (exp(-2*xmux*a)-exp(-2*¥mu*x))/(exp(-2*mux*a)-exp(-2*mu*b))

(b*(exp(-2*mux*a)-exp(-2*muxx))+a*(exp(-2¥mu*x)-exp(-2*muxb))
-x*(exp(-2*mux*a)-exp(-2*mux*b)))/mu/ (exp(-2*mu*a)-exp(-2*xmuxb))

yaxs="i", xaxt="n", yaxt="n",cex.axis=
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Prob=34/44=0.77273
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Fig. 14.8: Hitting probabilities of drifted Brownian motion.*

Escape to infinity

Letting b tend to +oo in the above equalities shows by (14.14a)-(14.14b) that
the probability P(7, = +00) of escape to +oo of Brownian motion started
from z € (a,00) is equal to

1-P(Xspo=a|Xo=a)=1—c 2050, ;>0
P(7y = 400) =
0, p<0,
i.e.
P(Xr, . =a|Xo=2) = e 2001 <1, >0,
P(r, < +00) = (14.15)
1, pn<0.

(14.16)

Similarly, letting a tend to —oo shows that the probability P(7, = +00) of
escape to —oo of Brownian motion started from x € (—o0,b) is equal to

1-P(X,_ _,=b|Xo=a)=1-e 250 p<o,
P(7, = +00) =
0, p=0,

* The animation works in Acrobat Reader on the entire pdf file.
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P(X, ,=b|Xo=2)= e 2@-br 1 <o,
IP(ry < +o0) = ' (14.17)
1, p=0.

Mean hitting times for Brownian motion

The martingale method also allows us to compute the expected time E[7, ],
after rechecking that

t
Bfft:2fOBSst, t>0,

is also a martingale. Indeed, we have

E[B} —t| Fy| = E[(Bs + (B = By))> —t | ]
= E[B? + (B, — Bs)? +2B(B;, — By) — t | Fi
=E[B2—s| Fs|— (t —s) + E[(B; — Bs)? | Fs] + 2E[Bs(B; — Bs) | Fs]
= B2 —s5—(t—s) +E[(B: — Bs)? | Fs| + 2BsE[B; — Bs | Fs]
= B2 —s—(t—s)+E[(B;— Bs)* + 2BsE[B, — B
=B?-5, 0<s<t
Consequently the stopped process (BZLL WAL~ Tab A t)ter, is still a martingale
by Theorem 14.8 hence the expectation ]E[BZ{L WAt — Tab A t] is constant over
time ¢ € Ry, hence by (14.10) we get*
2?2 =E[B3 - 0| By = z]
=E[B},, —Tap | Bo = 7]
=E[B},, | Bo =]~ Elr, | Bo = 2]
=bP(B,,, =b| Bo=1)+a’P(B,,, =a| By =x)—E[r,y | Bo = ],

Ta,b Ta,b

i.e.
E[r,p | Bo =] = bQ]P(BTa_b =b|By==x)+ a2]P(BTayb =a| By =2)—4?

9T —a ob—a 5
7b7b_a+a b—a
=(z—a)(b—2), a<z<b

Mean hitting time for drifted Brownian motion

Finally we show how to recover the value of the mean hitting time E[r,, |
Xo = z] of drifted Brownian motion X; = x + By + ut. As above, the process

* Here we note that it can be showed that E[r, 3] < oo in order to apply (14.10).
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Xt — pt is a martingale the stopped process (Xr, ja¢t — (Tap At)t)teRr . is still
a martingale by Theorem 14.8. Hence the expectation E[Xr, ,at — (Tap At) ]
is constant over time t > 0.

Since the stopped process (X'ra,b/\t — (Tap A t)/t) is a martingale, we

have

teR

r = E[XTayb — HTab | Xo = 1‘]7

which gives

T = IE[XTa,b — HTab ‘ Xo = x]
= IE[XTM | Xo =] — pE[r,, | Xo = ]
=0P(X,,, =b| Xo=2)+aP(X,,, =a| Xo=1)— plE[rg | Xo = ],

i.e. by (14.14a),

pE[ap | Xo = 2] = P (X,,, =b| Xo=2) +aP(X;,, =a| Xo=2) =

ef2p,a _ 672;11 672;1,1 _ 672ub

=b a -
e—2ua _ o—2ub + e—2ua _ o—2pb

b(072,ua _ 072;1,1) + a(072,uz _ 072;1,6) _ x(072,ua _ 072;&))
e—2ua _ o—2ub ’

hence

b(efmm _ 672“1) + a(e’QWE _ 672,ub) _ I(eiQ‘m _ 672,ub)

E[Ta,b | Xo= I] = (e,zua — e,gub)u )

a < x < b, see the code of page 509 for an illustration.

Table 14.2 presents a summary of the families of martingales used in this
chapter.

Probabiliti
robabiiies Non drifted Drifted
Problem
Hitting probability P(Xr, , = a,b) By e Bi=o’t/2
Mean hitting time E[r, 3] B —t Xt — put
Table 14.2: List of martingales.
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Exercises

Exercise 14.1  Let (By)icr, be a standard Brownian motion started at 0,
Le.l?o =0.

a) Is the process t — (2 — B)™ a submartingale, a martingale or a su-
permartingale?

Is the process (er )teRr. a submartingale, a martingale, or a supermartingale?
Consider the random time v defined by

b
c

NN

v:=inf{t € Ry : By = By},

which represents the first intersection time of the curves (Bj);er, and
(Bat)ter, -
Is v a stopping time?

d) Consider the random time 7 defined by

=

ri=inf{te Ry : PtV =045t}

which represents the first time geometric Brownian motion eBt—%/2
the straight line ¢ — o + Bt. Is 7 a stopping time?
If 7 is a stopping time, compute E[7] by the Doob Stopping Time Theo-

rem 14.8 in each of the following two cases:
i) a>1and <0,
ii) e <1land f>0.

Crosses

Ny

e

Exercise 14.2  Stopping times. Let (B)er, be a standard Brownian motion
started at 0.

a) Consider the random time v defined by
v:=inf{t e Ry : B; = B},

which represents the first time Brownian motion By hits the level By. Is
v a stopping time?

b) Consider the random time 7 defined by

=

7 :=inf {t eRy ePr = oze_t/2},
which represents the first time the exponential of Brownian motion By
crosses the path of ¢ — ae /2, where a > 1.
Is 7 a stopping time? If 7 is a stopping time, compute E[e~"| by applying
the Stopping Time Theorem 14.8.
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c¢) Consider the random time 7 defined by
ri=inf{t e Ry : B} =1+at},
which represents the first time the process (B?)tE]R , crosses the straight
line t — 1+ at, with a < 1.

Is 7 a stopping time? If 7 is a stopping time, compute E[7] by the Doob
Stopping Time Theorem 14.8.

Exercise 14.3  Consider a standard Brownian motion (B¢)icr. started at
By =0, and let
TL :inf{te]R+ : By :L}

denote the first hitting time of the level L > 0 by (By)ieR, -

a) Compute the Laplace transform E[e™""L] of 7, for all r > 0

Hint: Use the Stopping Time Theorem 14.8 and the fact that (eth’”)
is a martingale when r > 0.

b) Find the optimal level stopping strategy depending on the value of r > 0
for the maximization problem

teR,

SupE[e ™"~ B, ].
L>0

Exercise 14.4  Consider (By)icr, & Brownian motion started at By = x €
la,b] with a < b, and let

7'::inf{t€IRJr : Bi=a or Bt:b}

denote the first exit time of (By)¢er, from the interval [a, b].

a) Let f be a C? function on R. Show that the process X; := f(By) —
1 rt

3 IO f"(Bs)ds is a martingale.

Assume that f(z) solves the differential equation f”(z) = —2 with bound-
ary conditions f(a) = f(b) = 0. Using the Doob Stopping Time Theorem,
show that f(z) =E[r | By = z], = € [a,}].

¢) Find the solution f(x) of the equation f’(z) = —2 with f(a) = f(b) = 0.
d) Find the value of E[r | By = z].

b

=

Exercise 14.5  Consider a standard Brownian motion (By)icr, started at
By =0, and let

T:=inf{t e Ry : By =a+ ft}
denote the first hitting time of the straight line ¢ — o+ 8t by (Bt)er,,
where a, 8 € R.
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a) Compute the Laplace transform E[e™""] of 7 for all 7 > 0 and «a > 0.

b) Compute the Laplace transform E[e™"7| of 7 for all r > 0 and a < 0.
Hint. Use the stopping time theorem and the fact that (e"B“”%/Q)
a martingale for all o € R.

ter; S

Exercise 14.6 (Doob-Meyer decomposition in discrete time). Let (Mp)nen
be a discrete-time submartingale with respect to a filtration (Fy,)nen, with
Fo1={0,Q}.

a) Show that there exists two processes (Ny,)neN and (Ap)nen such that

i) (Nn)nen is a martingale with respect to (Fp)neNs,
ii) (An)neN is non-decreasing, i.e. A, < Apt1 a.s., n € N,
iii) (An)neN is predictable in the sense that A, is J,,—i-measurable,

n € N, and
iv) My = Ny + An, n € N.
Hint: Let Ag := 0,
An+1 = An +]E[]Mn+1 - ]\/[n ‘ ]:n]> n = 07

and define (N, )neN in such a way that it satisfies the four required prop-
erties.

Show that for all bounded stopping times ¢ and 7 such that o < 7 a.s.,
we have

=3
=

E[M,] < E[M].
Hint: Use the Stopping Time Theorem 14.8 for martingales and (14.7).
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