
Chapter 21
Pricing and Hedging in Jump Models

This chapter considers the pricing and hedging of financial derivatives us-
ing discontinuous processes that can model sharp movements in asset prices.
Unlike in the case of continuous asset price modeling, the uniqueness of risk-
neutral probability measures can be lost and, as a consequence, the computa-
tion of perfect replicating hedging strategies may not be possible in general.

21.1 Fitting the Distribution of Market Returns . . . . . . 755
21.2 Risk-Neutral Probability Measures . . . . . . . . . . . . . . 764
21.3 Pricing in Jump Models . . . . . . . . . . . . . . . . . . . . . . . . 765
21.4 Exponential Lévy Models . . . . . . . . . . . . . . . . . . . . . . . 767
21.5 Black-Scholes PDE with Jumps . . . . . . . . . . . . . . . . . 770
21.6 Mean-Variance Hedging with Jumps. . . . . . . . . . . . . 773
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 777

21.1 Fitting the Distribution of Market Returns

The modeling of risky asset by stochastic processes with continuous paths,
based on Brownian motions, suffers from several defects. First, the path con-
tinuity assumption does not seem reasonable in view of the possibility of
sudden price variations (jumps) resulting of market crashes, gaps or opening
jumps, see e.g. Chapter 1 of Cont and Tankov (2004). Secondly, the modeling
of risky asset prices by Brownian motion relies on the use of the Gaussian dis-
tribution which tends to underestimate the probabilities of extreme events.

The following scripts allow us to fetch DJI and STI index data using Quant-
mod. The command diff(log(stock)) computes log-returns

d logSt ≃ logSt+dt − logSt = log St+dt
St

, t ⩾ 0,
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with dt = 1/365, which are modeled by the stochastic differential equation

d logSt = σdBt + rdt− σ2

2 dt

satisfied by geometric Brownian motion St = S0 eσBt+rt−σ2t/2, t ⩾ 0.

1 install.packages("quantmod");library(quantmod)
getSymbols("^STI",from="1990-01-03",to="2015-01-03",src="yahoo");stock=Ad(`STI`);

3 getSymbols("^DJI",from="1990-01-03",to=Sys.Date(),src="yahoo");stock=Ad(`DJI`);
stock.rtn=diff(log(stock));returns <- as.vector(stock.rtn)

5 m=mean(returns,na.rm=TRUE);s=sd(returns,na.rm=TRUE);times=index(stock.rtn)
n = sum(is.na(returns))+sum(!is.na(returns));x=seq(1,n);y=rnorm(n,mean=m,sd=s)

7 plot(times,returns,pch=19,xaxs="i",cex=0.03,col="blue", ylab="", xlab="", main = '')
segments(x0 = times, x1 = times, y0 = 0, y1 = returns,col="blue")

9 points(times,y,pch=19,cex=0.3,col="red")
abline(h = m+3*s, col="black", lwd =1);abline(h = m, col="black", lwd =1);abline(h = m-3*s,

col="black", lwd =1)
11 length(returns[abs(returns-m)>3*s])/length(stock.rtn)

length(y[abs(y-m)>3*s])/length(y);2*(1-pnorm(3*s,0,s))

The next Figures 21.1-21.6 illustrate the mismatch between the distribu-
tional properties of market log-returns vs. standardized Gaussian returns,
which tend to underestimate the probabilities of extreme events. Note that
when X ≃ N (0,σ2), 99.73% of samples of X are falling within the interval
[−3σ,+3σ], i.e. P(|X| ⩽ 3σ) = 0.9973002.
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Fig. 21.1: Market returns vs. normalized Gaussian returns.

1 stock.ecdf=ecdf(as.vector(stock.rtn));x <- seq(-0.25, 0.25, length=100);px <- pnorm((x-m)/s)
2 plot(stock.ecdf, xlab = 'Sample Quantiles', col="blue",ylab = '', main = '')

lines(x, px, type="l", lty=2, col="red",xlab="x value",ylab="Probability", main="")
4 legend("topleft", legend=c("Empirical CDF", "Gaussian CDF"),col=c("blue", "red"), lty=1:2,

cex=0.8)
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Fig. 21.2: Empirical vs. Gaussian CDF.

The following Quantile-Quantile graph is plotting the normalized empirical
quantiles against the standard Gaussian quantiles, and is obtained with the
qqnorm(returns) command.
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Fig. 21.3: Quantile-Quantile plot.

1 ks.test(y,"pnorm",mean=m,sd=s)
2 ks.test(returns,"pnorm",mean=m,sd=s)

The Kolmogorov-Smirnov test clearly rejects the null (normality) hypothesis
of market returns.

One-sample Kolmogorov-Smirnov test

data: returns
D = 0.075577, p-value < 2.2e-16
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alternative hypothesis: two-sided

This mismatch can be further illustrated by the empirical probability density
plot in Figure 21.4, which is obtained from the following code.

1 x <- seq(-0.1, 0.1, length=100);qx <- dnorm(x,mean=m,sd=s)
2 returns.dens=density(stock.rtn,na.rm=TRUE)

dev.new(width=10, height=5)
4 plot(returns.dens, xlim=c(-0.1,0.1),xlab = 'x', lwd=3, col="red",ylab = '', main = '',panel.first

= abline(h = 0, col='grey', lwd =0.2), las=1, cex.axis=1.2, cex.lab=1.3)
lines(x, qx, type="l", lty=2, lwd=3, col="blue",xlab="x value",ylab="Density", main="")

6 legend("topleft", legend=c("Empirical density", "Gaussian density"),col=c("red", "blue"),
lty=1:2, cex=1.2)
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Fig. 21.4: Empirical density vs. normalized Gaussian density.

The next code and graph present a comparison of market prices to a cali-
brated lognormal distribution.

1 x <- seq(0, max(stock), length=100);qx <- dlnorm(x,mean=mean(log(stock)), sd=sd(log(stock)))
stock.dens=density(stock,na.rm=TRUE);dev.new(width=10, height=5)

3 plot(stock.dens, xlab = 'x', lwd=3, col="red",ylab = '', main = '',panel.first = abline(h = 0,
col='grey', lwd =0.2), las=1, cex.axis=1, cex.lab=1, xaxs='i', yaxs='i')

lines(x, qx, type="l", lty=2, lwd=3, col="blue",xlab="x value",ylab="Density", main="")
5 legend("topright", legend=c("Empirical density", "Lognormal density"),col=c("red", "blue"),

lty=1:2, cex=1.2)
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Fig. 21.5: Empirical density vs. normalized lognormal density.

Power tail distributions

We note that the empirical density has significantly higher kurtosis (lep-
tokurtic distribution) and non zero skewness in comparison with the Gaus-
sian probability density. On the other hand, power tail probability densities
of the form φ(x) ≃ Cα/xα, x → ∞, can provide a better fit of empirical
probability density functions, as shown in Figure 21.6.
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Fig. 21.6: Empirical density vs. power density.

The above fitting of empirical probability density function is using a power
probability density function defined by a rational fraction obtained by the
following script.
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1 install.packages("pracma")
library(pracma); x <- seq(-0.25, 0.25, length=1000)

3 returns.dens=density(returns,na.rm=TRUE, from = -0.1, to = 0.1, n = 1000)
a<-rationalfit(returns.dens$x, returns.dens$y, d1=2, d2=2)

5 dev.new(width=10, height=5)
plot(returns.dens$x, returns.dens$y, lwd=3, type = "l",xlab = 'x', col="red",ylab = '', main =

'', panel.first = abline(h = 0, col='grey', lwd =0.2),las=1, cex.axis=1, cex.lab=1,
xaxs='i', yaxs='i')

7 lines(x,(a$p1[3]+a$p1[2]*x+a$p1[1]*x^2)/(a$p2[3]+a$p2[2]*x+a$p2[1]*x^2), type="l", lty=2,
lwd=3, col="blue",xlab="x value",ylab="Density", main="")

legend("topright", legend=c("Empirical density", "Power density"),col=c("red", "blue"), lty=1:2,
cex=1.2)

The output of the rationalfit command is
$p1
[1] -0.184717249 -0.001591433 0.001385017

$p2
[1] 1.000000e+00 -6.460948e-04 1.314672e-05

which yields a rational fraction of the form

x 7→ 0.001385017 − 0.001591433 × x− 0.184717249 × x2

1.314672 10−5 − 6.460948 10−4 × x+ x2

≃ −0.184717249 − 0.001591433
x

+
0.001385017

x2 ,

which approximates the empirical probability density function of DJI returns
in the least squares sense.
A solution to this tail problem is to use stochastic processes with jumps, that
will account for sudden variations of the asset prices. On the other hand,
such jump models are generally based on the Poisson distribution which has
a slower tail decay than the Gaussian distribution. This allows one to assign
higher probabilities to extreme events, resulting in a more realistic modeling
of asset prices. Stable distributions with parameter α ∈ (0, 2) provide typical
examples of probability laws with power tails, as their probability density
functions behave asymptotically as x 7→ Cα/|x|1+α when x → ±∞, see
Figure 20.12 for stable processes.

Edgeworth and Gram-Charlier expansions

Let
φ(x) :=

1√
2π

e−x2/2, x ∈ R,

denote the standard normal density function, and let

Φ(x) :=
w x

−∞
φ(y)dy, x ∈ R,

denote the standard normal cumulative distribution function. Let also
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Hn(x) :=
(−1)n
φ(x)

∂nφ

∂xn
(x), x ∈ R,

denote the Hermite polynomial of degree n, with H0(x) = 1.

Given X a random variable, the sequence (κXn )n⩾1 of cumulants of X has
been introduced in Thiele (1899). In what follows we will use the Moment
Generating Function (MGF) of the random variable X, defined as

MX (t) := E
[
etX
]
= 1 +

∑
n⩾1

tn

n!
E[Xn], t ∈ R. (21.1)

Definition 21.1. The cumulants of a random variable X are defined to be
the coefficients (κXn )n⩾1 appearing in the series expansion

log
(
E
[
etX
])

= log

1 +
∑
n⩾1

tn

n!
E[Xn]

 =
∑
n⩾1

κXn
tn

n!
, t ∈ R, (21.2)

of the logarithmic moment generating function (log-MGF) of X.

The cumulants of X were originally called “semi-invariants” due to the prop-
erty κX+Y

n = κXn + κYn , n ⩾ 1, when X and Y are independent random
variables. Indeed, in this case we have∑

n⩾1
κX+Y
n

tn

n!
= log

(
E
[
et(X+Y )

])
= log

(
E
[
etX
]
E
[
etY
])

= log E
[
etX
]
+ log E

[
etY
]

=
∑
n⩾1

κXn
tn

n!
+
∑
n⩾1

κYn
tn

n!

=
∑
n⩾1

(
κXn + κYn

) tn
n!

, t ∈ R,

showing that κX+Y
n = κXn + κYn , n ⩾ 1.

a) First moment and cumulant. Taking n = 1 and π = {1}, we find κX1 =
E[X ].

b) Variance and second cumulant. We have

κX2 = E
[
X2]− (E[X ])2 = E

[
(X − E[X ])2],

and
√
κX2 is the standard deviation of X.

c) The third cumulant of X is given as the third central moment
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κX3 = E[(X − E[X ])3],

and the coefficient

κX3
(κX2 )3/2 =

E
[
(X − E[X ])3]

(E[(X − E[X ])2])3/2

is the skewness of X.
d) Similarly, we have

κX4 = E
[
(X − E[X ])4]− 3(κX2 )2

= E
[
(X − E[X ])4]− 3

(
E
[
(X − E[X ])2])2,

and the excess kurtosis of X is defined as

κX4
(κX2 )2 =

E[(X − E[X ])4]

(E[(X − E[X ])2])2 − 3.

The next proposition summarizes the Gram-Charlier expansion method to
obtain series expansion of a probability density function, see Gram (1883),
Charlier (1914) and § 17.6 of Cramér (1946).

Proposition 21.2. (Proposition 2.1 in Tanaka et al. (2010)) The Gram-
Charlier expansion of the continuous probability density function ϕX (x) of a
random variable X is given by

ϕX (x) =
1√
κX2

φ

x− κX1√
κX2

+
1√
κX2

∞∑
n=3

cnHn

x− κX1√
κX2

φ

x− κX1√
κX2

 ,

where c0 = 1, c1 = c2 = 0, and the sequence (cn)n⩾3 is given from the
cumulants (κXn )n⩾1 of X as

cn =
1

(κX2 )n/2

[n/3]∑
m=1

∑
l1+···+lm=n
l1,...,lm⩾3

κXl1 · · ·κXlm
m!l1! · · · lm!

, n ⩾ 3.

The coefficients c3 and c4 can be expressed from the skewness κX3 /(κX2 )3/2

and the excess kurtosis κX4 /(κX2 )2 as

c3 =
κX3

3!(κX2 )3/2 and c4 =
κX4

4!(κX2 )2 .

a) The first-order expansion
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ϕ
(1)
X (x) =

1√
κX2

φ

x− κX1√
κX2


corresponds to normal moment matching approximation.

b) The third-order expansion is given by

ϕ
(3)
X (x) =

1√
κX2

φ

x− κX1√
κX2

1 + c3H3

x− κX1√
κX2


c) The fourth-order expansion is given by

ϕ
(4)
X (x) =

1√
κX2

φ

x− κX1√
κX2

1 + c3H3

x− κX1√
κX2

+ c4H4

x− κX1√
κX2

 .

The next code presents a fit of first to fourth order Gram-Charlier density
approximations to the empirical distribution of asset returns.

1 install.packages("SimMultiCorrData");install.packages("PDQutils")
2 library(SimMultiCorrData);library(PDQutils)

x <- seq(-0.25, 0.25, length=1000);dev.new(width=10, height=5)
4 plot(returns.dens$x, returns.dens$y, xlim=c(-0.1,0.1), xlab = 'x', type = 'l', lwd=3,

col="red",ylab = '', main = '',panel.first = abline(h = 0, col='grey', lwd =0.2),las=1,
cex.axis=1, cex.lab=1,xaxs='i', yaxs='i')

lines(x, qx, type="l", lty=2, lwd=3, col="blue")
6 m<-calc_moments(returns[!is.na(returns)])

cumulants<-c(m[1],m[2]**2);d2 <- dapx_edgeworth(x, cumulants)
8 lines(x, d2, type="l", lty=2, lwd=3, col="blue")

cumulants<-c(m[1],m[2]**2,m[3]*m[2]**3);d3 <- dapx_edgeworth(x, cumulants)
10 lines(x, d3, type="l", lty=2, lwd=3, col="green")

cumulants<-c(m[1],m[2]**2,0.5*m[3]*m[2]**3,0.2*m[4]*m[2]**4)
12 d4 <- dapx_edgeworth(x, cumulants);lines(x, d4, type="l", lty=2, lwd=3, col="purple")

legend("topleft", legend=c("Empirical density", "Gaussian density", "Third order
Gram-Charlier", "Fourth order Gram-Charlier"),col=c("red", "blue", "green", "purple"),
lty=1:2,cex=1.2)

14 grid()
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Fig. 21.7: Gram-Charlier expansions

21.2 Risk-Neutral Probability Measures

Consider an asset price process modeled by the equation,

dSt = µStdt+ σStdBt + St-dYt, (21.3)

where (Yt)t∈R+ is the compound Poisson process defined in Section 20.2, with
jump size distribution ν(dx) under Pν . The equation (21.3) has for solution

St = S0 exp
(
µt+ σBt − σ2

2 t

) Nt∏
k=1

(1 + Zk), (21.4)

t ⩾ 0. An important issue for non-arbitrage pricing is to determine a risk-
neutral probability measure (or martingale measure) P∗ under which the
discounted asset price process (S̃t)t∈R+ := ( e−rtSt)t∈R+ is a martingale, and
this goal can be achieved using the Girsanov Theorem for jump processes, cf.
Section 20.5. Similarly to Lemma 5.13, we have the following result.

Lemma 21.3. Discounting lemma. The discounted asset price process

S̃t := e−rtSt, t ⩾ 0,

satisfies the equation

dS̃t = (µ− r)S̃tdt+ σS̃tdBt + S̃t-dYt. (21.5)

In addition, Equation 21.5 can be rewritten as

dS̃t = (µ− r+ λ̃Eν̃ [Z] − σu)S̃tdt+ σS̃t(dBt + udt) + S̃t-(dYt − λ̃Eν̃ [Z]dt),

764 "

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


Notes on Stochastic Finance

for any u ∈ R. When the drift parameter u, the intensity λ̃ > 0 and the jump
size distribution ν̃ are chosen to satisfy the condition

µ− r+ λ̃Eν̃ [Z] − σu = 0 (21.6)

with σu+ r− µ > 0, then

λ̃ =
σu+ r− µ

Eν̃ [Z]
> 0,

and the Girsanov Theorem 20.21 for jump processes shows that

dBt + udt+ dYt − λ̃Eν̃ [Z]dt

is a martingale under the probability measure P̃u,λ̃,ν̃ defined in Theo-
rem 20.21. As a consequence, the discounted price process (S̃t)t∈R+ =

( e−rtSt)t∈R+ becomes a martingale is a martingale under P̃u,λ̃,ν̃ .

In this setting, the non-uniqueness of the risk-neutral probability measure
P̃u,λ̃,ν̃ is apparent since additional degrees of freedom are involved in the
choices of u, λ and the measure ν̃, whereas in the continuous case the choice
of u = (µ− r)/σ in (7.14) was unique.

21.3 Pricing in Jump Models

Recall that a market is without arbitrage if and only it admits at least one
risk-neutral probability measure.

Consider the probability measure P̃u,λ̃,ν̃ constructed in Theorem 20.21,
under which the discounted asset price process

dS̃t = σS̃tdB̂t + S̃t-(dYt − λ̃Eν [Z]dt),

is a martingale, and B̂t = Bt + ut is a standard Brownian motion under
P̃u,λ̃,ν̃ . Then, the arbitrage-free price of a claim with payoff C is given by

e−(T−t)rEu,λ̃,ν̃ [C | Ft] (21.7)

under P̃u,λ̃,ν̃ .

Clearly the price (21.7) of C is no longer unique in the presence of jumps
due to an infinity of possible choices of parameters u, λ̃, ν̃ satisfying the mar-
tingale condition (21.6), and such a market is not complete, except if either
λ̃ = λ = 0, or (σ = 0 and ν̃ = ν = δ1).

Various techniques can be used for the selection of a risk-neutral proba-
bility measure, such as the determination of a minimal entropy risk-neutral
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probability measure P̃u,λ̃,ν̃ that minimizes the Kullback-Leibler relative en-
tropy

Q 7→ I(Q, P) := E

[
dQ

dP
log dQ

dP

]
among the probability measures Q equivalent to P.

Pricing vanilla options

The price of a vanilla option with payoff of the form ϕ(ST ) on the underlying
asset ST can be written from (21.7) as

e−(T−t)rEu,λ̃,ν̃ [ϕ(ST ) | Ft], (21.8)

where the expectation can be computed as

Eu,λ̃,ν̃
[
ϕ(ST )

∣∣∣Ft

]
= Eu,λ̃,ν̃

[
ϕ

(
S0 exp

(
µT + σBT − σ2

2 T

) NT∏
k=1

(1 + Zk)

) ∣∣∣∣Ft

]

= Eu,λ̃,ν̃

[
ϕ

(
St exp

(
(T − t)µ + (BT − Bt)σ − σ2

2 (T − t)

) NT∏
k=Nt+1

(1 + Zk)

) ∣∣∣∣Ft

]

= Eu,λ̃,ν̃

[
ϕ

(
x exp

(
(T − t)µ + (BT − Bt)σ − σ2

2 (T − t)

) NT∏
k=Nt+1

(1 + Zk)

)]
x=St

=
∑
n⩾0

Pu,λ̃,ν̃ (NT − Nt = n)

Eu,λ̃,ν̃

[
ϕ

(
x e(T −t)µ+(BT −Bt)σ−(T −t)σ2/2

NT∏
k=Nt+1

(1 + Zk)

) ∣∣∣NT − Nt = n

]
x=St

= e−(T −t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!

×Eu,λ̃,ν̃

[
ϕ

(
x e(T −t)µ+(BT −Bt)σ−(T −t)σ2/2

n∏
k=1

(1 + Zk)

)]
x=St

= e−λ̃(T −t)
∑
n⩾0

(λ̃(T − t))n

n!

w ∞

−∞
· · ·

w ∞

−∞︸ ︷︷ ︸
n times

Eu,λ̃,ν̃

[
ϕ

(
x e(T −t)µ+(BT −Bt)σ−(T −t)σ2/2

n∏
k=1

(1 + zk)

)]
x=St

ν̃(dz1) · · · ν̃(dzn),

hence the price of the vanilla option with payoff ϕ(ST ) is given by
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e−(T−t)rEu,λ̃,ν̃ [ϕ(ST ) | Ft]

=
1√

2(T − t)π
e−(r+λ̃)(T−t)

∑
n⩾0

(λ̃(T − t))n

n!

w ∞

−∞
· · ·

w ∞

−∞︸ ︷︷ ︸
n+1 times

ϕ

(
St e(T−t)µ+σx−(T−t)σ2/2

n∏
k=1

(1 + zk)

)
e−x2/(2(T−t))ν̃(dz1) · · · ν̃(dzn)dx.

21.4 Exponential Lévy Models

Instead of modeling the asset price (St)t∈R+ through a stochastic exponential
(21.4) solution of the stochastic differential equation with jumps of the form
(21.3), we may consider an exponential price process of the form

St := S0 eµt+σBt+Yt

= S0 exp
(
µt+ σBt +

Nt∑
k=1

Zk

)

= S0 eµt+σBt

Nt∏
k=1

eZk

= S0 eµt+σBt
∏

0⩽s⩽t
e∆Yt , t ⩾ 0,

from Relation (20.9), i.e. ∆Yt = ZNt ∆Nt. The process (St)t∈R+ is equiva-
lently given by the log-return dynamics

d logSt = µdt+ σdBt + dYt, t ⩾ 0.

In the exponential Lévy model we also have

St = S0 e(µ+σ2/2)t+σBt−σ2t/2+Yt

and the process St satisfies the stochastic differential equation

dSt =

(
µ+

σ2

2

)
Stdt+ σStdBt + St-( e∆Yt − 1)dNt

=

(
µ+

σ2

2

)
Stdt+ σStdBt + St-( eZNt − 1)dNt,

hence the process St has jumps of size ST -
k
( eZk − 1), k ⩾ 1, and (21.6) reads

" 767

This version: January 10, 2024
https://personal.ntu.edu.sg/nprivault/indext.html

https://personal.ntu.edu.sg/nprivault/indext.html


N. Privault

µ+
σ2

2 − r = σu− λ̃Eν̃ [ eZ − 1].

Under this condition we can choose a risk-neutral probability measure P̃u,λ̃,ν̃
under which ( e−rtSt)t∈R+ is a martingale, and the expected value

e−(T−t)rEu,λ̃,ν̃ [ϕ(ST ) | Ft]

represents a (non-unique) arbitrage-free price at time t ∈ [0,T ] for the con-
tingent claim with payoff ϕ(ST ).

This arbitrage-free price can be expressed as

e−(T−t)rEu,λ̃,ν̃
[
ϕ(ST )

∣∣Ft] = e−(T−t)rEu,λ̃,ν̃
[
ϕ(S0 eµT+σBT +YT )

∣∣Ft]
= e−(T−t)rEu,λ̃,ν̃

[
ϕ(St e(T−t)µ+(BT −Bt)σ+YT −Yt)

∣∣Ft]
= e−(T−t)rEu,λ̃,ν̃

[
ϕ(x e(T−t)µ+(BT −Bt)σ+YT −Yt)

]
x=St

= e−(T−t)rEu,λ̃,ν̃

ϕ
x exp

(T − t)µ+ (BT −Bt)σ+

NT∑
k=Nt+1

Zk


x=St

= e−(T−t)r−(T−t)λ̃

×
∑
n⩾0

(λ̃(T − t))n

n!
Eu,λ̃,ν̃

[
ϕ

(
x e(T−t)µ+(BT −Bt)σ exp

(
n∑
k=1

Zk

))]
x=St

.

Merton (1976) model

We assume that (Zk)k⩾1 is a family of independent identically distributed
Gaussian N (δ, η2) random variables under P̃u,λ̃,ν̃ with

µ+
σ2

2 − r = σu− λ̃Eν̃ [ eZ − 1] = σu− λ̃( eδ+η2/2 − 1),

as in (21.6), hence by the Girsanov Theorem 20.21 for jump processes, Bt +
ut+ Yt − λ̃Eν̃ [ eZ − 1]t is a martingale and Bt + ut is a standard Brownian
motion under P̃u,λ̃,ν̃ . For simplicity we choose u = 0, which yields

µ = r− σ2

2 − λ̃( eδ+η2/2 − 1).

Proposition 21.4. The price of the European call option in the Merton
model is given by

e−(T−t)rEλ̃,ν̃ [(ST −K)+ | Ft]
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= e−λ̃ eδ+η2/2(T−t)
∑
n⩾0

(λ̃ eδ+nη2/2(T − t))n

n!

×Bl
(
St,κ,σ2 + nη2/(T − t), r+ n

δ + η2/2
T − t

− λ̃( eδ+η2/2 − 1),T − t

)
,

0 ⩽ t ⩽ T .

Proof. We have

e−(T−t)rEλ̃,ν̃ [ϕ(ST ) | Ft]

= e−(T−t)r−(T−t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!

×Eλ̃,ν̃

[
ϕ

(
x e(T−t)µ+(BT −Bt)σ exp

(
n∑
k=1

Zk

))]
x=St

= e−(T−t)r−(T−t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!
E
[
ϕ(x e(T−t)µ+nδ+Xn)

]
x=St

= e−(T−t)r−(T−t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!

w ∞

−∞
ϕ
(
St e(T−t)µ+nδ+y) e−y2/(2((T−t)σ2+nη2))√

4((T − t)σ2 + nη2)π
dy,

where

Xn := (BT −Bt)σ+
n∑
k=1

(Zk − δ) ≃ N (0, (T − t)σ2 + nη2), n ⩾ 0,

is a centered Gaussian random variable with variance

v2
n := (T − t)σ2 +

n∑
k=1

VarZk = (T − t)σ2 + nη2.

Hence when ϕ(x) = (x−κ)+ is the payoff function of a European call option,
using the relation

Bl
(
x,κ, v2

n/τ , r, τ
)
= e−rτE

[(
x eXn−v2

n/2+rτ −K
)+]

we get

e−(T−t)r−(T−t)λ̃Eλ̃,ν̃ [(ST − κ)+ | Ft]

= e−(T−t)r−(T−t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!
E
[(
x e(T−t)µ+nδ+Xn − κ

)+]
x=St
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= e−(T−t)r−(T−t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!

×E
[(
x e(r−σ2/2−λ̃( eδ+η2/2−1))(T−t)+nδ+Xn − κ

)+]
x=St

= e−(T−t)r−(T−t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!

×E
[(
x enδ+nη2/2−λ̃( eδ+η2/2−1)(T−t)+Xn−v2)n/2+(T−t)r − κ

)+]
x=St

= e−(T−t)λ̃
∑
n⩾0

((T − t)λ̃)n

n!

×Bl
(
St enδ+nη2/2−λ̃( eδ+η2/2−1)(T−t),κ,σ2 + nη2/(T − t), r,T − t

)
.

We may also write

e−(T−t)r−(T−t)λ̃Eλ̃,ν̃ [(ST − κ)+ | Ft]

= e−(T−t)λ̃
∑
n⩾0

(
(T − t)λ̃

)n
n!

enδ+nη2/2−λ̃( eδ+η2/2−1)(T−t)

×Bl
(
St,κ e−nδ−nη2/2+λ̃( eδ+η2/2−1)(T−t),σ2 + nη2/(T − t), r,T − t

)
= e−λ̃ eδ+η2/2(T−t)

∑
n⩾0

(λ̃ eδ+nη2/2(T − t))n

n!

×Bl
(
St,κ,σ2 + nη2/(T − t), r+ n

δ + η2/2
T − t

− λ̃( eδ+η2/2 − 1),T − t

)
.

□

21.5 Black-Scholes PDE with Jumps

In this section, we consider the asset price process (St)t∈R+ modeled by the
equation (21.3), i.e.

dSt = µStdt+ σStdBt + St-dYt, (21.9)

where (Yt)t∈R+ is a compound Poisson process with jump size distribution
ν(dx). Recall that by the Markov property of (St)t∈R+ , the price (21.8) at
time t of the option with payoff ϕ(ST ) can be written as a function f(t,St)
of t and St, i.e.

f(t,St) = e−(T−t)rEu,λ̃,ν̃ [ϕ(ST ) | Ft] = e−(T−t)rEu,λ̃,ν̃ [ϕ(ST ) | St],
(21.10)
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with the terminal condition f(T ,x) = ϕ(x). In addition, the process

t 7→ e(T−t)rf(t,St)

is a martingale under P̃u,λ̃,ν̃ by the same argument as in (7.1).

In the next proposition we derive a Partial Integro-Differential Equation
(PIDE) for the function (t,x) 7→ f(t,x).

Proposition 21.5. The price f(t,St) of the vanilla option with payoff func-
tion ϕ in the model (21.9) satisfies the Partial Integro-Differential Equation
(PIDE)

rf(t,x) = ∂f

∂t
(t,x) + rx

∂f

∂x
(t,x) + σ2

2 x2 ∂
2f

∂x2 (t,x)

+λ̃
w ∞

−∞

(
f(t,x(1 + y)) − f(t,x) − yx

∂f

∂x
(t,x)

)
ν̃(dy),

(21.11)

under the terminal condition f(T ,x) = ϕ(x).

Proof. We have

dSt = rStdt+ σStdB̂t + St-(dYt − λ̃Eν̃ [Z]dt), (21.12)

where B̂t = Bt + ut is a standard Brownian motion under P̃u,λ̃,ν̃ . Next, by
the Itô formula with jumps (20.23), we have

df(t,St)

=
∂f

∂t
(t,St)dt+ rSt

∂f

∂x
(t,St)dt+ σSt

∂f

∂x
(t,St)dB̂t +

σ2

2 S2
t
∂2f

∂x2 (t,St)dt

− λ̃Eν̃ [Z]St
∂f

∂x
(t,St)dt+ (f(t,St-(1 + ZNt)) − f(t,St-))dNt

= σSt
∂f

∂x
(t,St)dB̂t + (f(t,St-(1 + ZNt)) − f(t,St-))dNt

− λ̃Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=Stdt

+

(
∂f

∂t
(t,St) + rSt

∂f

∂x
(t,St) +

σ2

2 S2
t
∂2f

∂x2 (t,St)
)
dt

+

(
λ̃Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=St − λ̃Eν̃ [Z]St

∂f

∂x
(t,St)

)
dt.

Based on the discounted portfolio value differential

d( e−rtf(t,St))
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= e−rtσSt
∂f

∂x
(t,St)dB̂t

+ e−rt (f(t,St-(1 + ZNt)) − f(t,St-))dNt − λ̃Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=Stdt
)

+ e−rt
(

−rf(t,St) +
∂f

∂t
(t,St) + rSt

∂f

∂x
(t,St) +

σ2

2 S2
t
∂2f

∂x2 (t,St)
)
dt

(21.13)

+ e−rt
(
λ̃Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=St − λ̃Eν̃ [Z]St

∂f

∂x
(t,St)

)
dt,

(21.14)

obtained from the Itô Table 20.1 with jumps, and the facts that

• the Brownian motion (B̂t)t∈R+ is a martingale under P̃u,λ̃,ν̃ ,

• by the smoothing lemma Proposition 20.11, the process given by the dif-
ferential

(f(t,St-(1+ZNt))−f(t,St-))dNt− λ̃Eν̃ [(f(t,x(1+Z))−f(t,x))]x=Stdt,

is a martingale under P̃u,λ̃,ν̃ , see also (20.22),

• the discounted portfolio value process t 7→ e−rtf(t,St), is also a martingale
under the risk-neutral probability measure P̃u,λ̃,ν̃ ,

we conclude to the vanishing of the terms (21.13)-(21.14) above, i.e.

−rf(t,St) +
∂f

∂t
(t,St) + rSt

∂f

∂x
(t,St) +

σ2

2 S2
t
∂2f

∂x2 (t,St)

+λ̃Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=St − λ̃Eν̃ [Z]St
∂f

∂x
(t,St) = 0,

or

∂f

∂t
(t,x) + rx

∂f

∂x
(t,x) + σ2

2 x2 ∂
2f

∂x2 (t,x)

+λ̃
w ∞

−∞
(f(t,x(1 + y)) − f(t,x))ν̃(dy) − λ̃x

∂f

∂x
(t,x)

w ∞

−∞
yν̃(dy) = rf(t,x),

which leads to the Partial Integro-Differential Equation (21.11). □

A major technical difficulty when solving the PIDE (21.11) numerically is
that the operator

f 7→
w ∞

−∞

(
f(t,x(1 + y)) − f(t,x) − yx

∂f

∂x
(t,x)

)
ν̃(dy)

is nonlocal, therefore adding significant difficulties to the application of stan-
dard discretization schemes, cf. e.g. Section 22.4.
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In addition, we have shown that the change df(t,St) in the portfolio value
(21.10) is given by

df(t,St) = σSt
∂f

∂x
(t,St)dB̂t + rf(t,St)dt (21.15)

+(f(t,St-(1 + ZNt)) − f(t,St-))dNt − λ̃Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=Stdt.

Fixed jump size

In the case of Poisson jumps with fixed size a, i.e. when Yt = aNt and
ν(dx) = δa(dx), the PIDE (21.11) reads

rf(t,x) = ∂f

∂t
(t,x) + rx

∂f

∂x
(t,x) + σ2

2 x2 ∂
2f

∂x2 (t,x)

+λ̃

(
f(t,x(1 + a)) − f(t,x) − ax

∂f

∂x
(t,x)

)
,

and we have

df(t,St) = σSt
∂f

∂x
(t,St)dB̂t + rf(t,St)dt

+(f(t,St-(1 + a)) − f(t,St-))dNt − λ̃(f(t,St(1 + a)) − f(t,St))dt.

21.6 Mean-Variance Hedging with Jumps

Consider a portfolio valued

Vt := ηtAt + ξtSt = ηt ert + ξtSt

at time t ∈ R+, and satisfying the self-financing condition (5.3), i.e.

dVt = ηtdAt + ξtdSt = rηt ertdt+ ξtdSt.

Assuming that the portfolio value takes the form Vt = f(t,St) at all times
t ∈ [0,T ], by (21.12) we have

dVt = df(t,St)
= rηt ertdt+ ξtdSt

= rηt ertdt+ ξt(rStdt+ σStdB̂t + St-(dYt − λ̃Eν̃ [Z]dt))

= rVtdt+ σξtStdB̂t + ξtSt-(dYt − λ̃Eν̃ [Z]dt)

= rf(t,St)dt+ σξtStdB̂t + ξtSt-(dYt − λ̃Eν̃ [Z]dt), (21.16)

has to match
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df(t,St) = rf(t,St)dt+ σSt
∂f

∂x
(t,St)dB̂t (21.17)

+ (f(t,St-(1 + ZNt)) − f(t,St-))dNt − λ̃Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=Stdt,

which is obtained from (21.15).

In such a situation we say that the claim payoff C can be exactly replicated.

Exact replication is possible in essentially only two situations:

(i) Continuous market, λ = λ̃ = 0. In this case we find the usual Black-
Scholes Delta:

ξt =
∂f

∂x
(t,St). (21.18)

(ii) Poisson jump market, σ = 0 and Yt = aNt, ν(dx) = δa(dx). In this
case, by matching (21.16) to (21.17) we find

ξt =
1
aSt-

(f(t,St-(1 + a)) − f(t,St-)). (21.19)

Note that in the limit a → 0 this expression recovers the Black-Scholes
Delta formula (21.18).

When Conditions (i) or (ii) above are not satisfied, exact replication is not
possible, and this results into an hedging error given from (21.16) and (21.17)
by

VT − ϕ(ST ) = VT − f(T ,ST )

= V0 +
w T

0
dVt − f(0,S0) −

w T
0
df(t,St)

= V0 − f(0,S0) + σ
w T

0
St

(
ξt − ∂f

∂x
(t,St)

)
dB̂t

+
w T

0
ξtSt-(ZNtdNt − λ̃Eν̃ [Z]dt)

−
w T

0
(f(t,St-(1 + ZNt)) − f(t,St-))dNt

+λ̃
w T

0
Eν̃ [(f(t,x(1 + Z)) − f(t,x))]x=Stdt.

Fixed jump size

Proposition 21.6. Assume that Yt = aNt, i.e. ν(dx) = δa(dx). The mean-
square hedging error is minimized by

V0 = f(0,S0) = e−rTEu,λ̃,ν̃ [ϕ(ST )],
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and

ξt =
σ2

σ2 + a2λ̃

∂f

∂x
(t,St-) +

a2λ̃

σ2 + a2λ̃
× f(t,St-(1 + a)) − f(t,St-)

aSt-
,

(21.20)

t ∈ [0,T ].
Proof. We have

VT − f(T ,ST ) = V0 − f(0,S0) + σ
w T

0
St-

(
ξt − ∂f

∂x
(t,St-)

)
dB̂t

−
w T

0
(f(t,St-(1 + a)) − f(t,St-) − aξtSt-)(dNt − λ̃dt),

hence the mean-square hedging error is given by

Eu,λ̃
[(
VT − f(T ,ST )

)2]
= (V0 − f(0,S0))

2 + σ2Eu,λ̃

[(w T
0
St-

(
ξt − ∂f

∂x
(t,St-)

)
dB̂t

)2
]

+Eu,λ̃

[(w T
0
(f(t,St-(1 + a)) − f(t,St-) − aξtSt-)(dNt − λ̃dt)

)2
]

= (V0 − f(0,S0))
2 + σ2Eu,λ̃

[
w T

0
S2
t-

(
ξt − ∂f

∂x
(t,St-)

)2
dt

]

+λ̃Eu,λ̃

[w T
0

(
(f(t,St-(1 + a)) − f(t,St-) − aξtSt-)

)2
dt

]
,

where we applied the Itô isometry (20.20). Clearly, the initial portfolio value
V0 minimizing the above quantity is

V0 = f(0,S0) = e−rTEu,λ̃,ν̃ [ϕ(ST )].

Next, let us find the optimal portfolio strategy (ξt)t∈[0,T ] minimizing the
remaining hedging error

Eu,λ̃

[
w T

0

(
σ2S2

t-

(
ξt − ∂f

∂x
(t,St-)

)2
+ λ̃

(
(f(t,St-(1 + a)) − f(t,St-) − aξtSt-)

)2)
dt

]
.

For all t ∈ (0,T ], the almost-sure minimum of

ξt 7→ σ2S2
t-

(
ξt − ∂f

∂x
(t,St-)

)2
+ λ̃

(
(f(t,St-(1 + a)) − f(t,St-) − aξtSt-)

)2
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is given by differentiation with respect to ξt, as the solution of

2σ2S2
t-

(
ξt − ∂f

∂x
(t,St-)

)
−2aλ̃St- ((f(t,St-(1 + a)) − f(t,St-) − aξtSt-)) = 0,

i.e.

ξt =
σ2

σ2 + a2λ̃

∂f

∂x
(t,St-) +

a2λ̃

σ2 + a2λ̃
× f(t,St-(1 + a)) − f(t,St-)

aSt-
,

t ∈ (0,T ]. □

When hedging only the risk generated by the Brownian part, we let

ξt =
∂f

∂x
(t,St-)

as in the Black-Scholes model, and in this case the hedging error due to the
presence of jumps becomes

Eu,λ̃
[(
VT −f(T ,ST )

)2]
= λ̃Eu,λ̃

[w T
0

(
(f(t,St-(1 + a)) − f(t,St-) − aξtSt-)

)2
dt

]
,

t ∈ (0,T ]. We note that the optimal strategy (21.20) is a weighted average of
the Brownian and jump hedging strategies (21.18) and (21.19) according to
the respective variance parameters σ2 and a2λ̃ of the continuous and jump
components.

Clearly, if aλ̃ = 0 we get

ξt =
∂f

∂x
(t,St-), t ∈ (0,T ],

which is the Black-Scholes perfect replication strategy, and when σ = 0 we
recover

ξt =
f(t, (1 + a)St-) − f(t,St-)

aSt-
, t ∈ (0,T ].

which is (21.19). See § 10.4.2 of Cont and Tankov (2004) for mean-variance
hedging in exponential Lévy model, and § 12.6 of Di Nunno et al. (2009) for
mean-variance hedging by the Malliavin calculus.

Note that the fact that perfect replication is not possible in a jump-
diffusion model can be interpreted as a more realistic feature of the model,
as perfect replication is not possible in the real world.

See Jeanblanc and Privault (2002) for an example of a complete market
model with jumps, in which continuous and jump noise are mutually exclud-
ing each other over time.
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In Table 21.1 we summarize the properties of geometric Brownian motion
vs. jump-diffusion models in terms of asset price and market behaviors.

Properties
Model Geometric Brownian motion Jump-diffusion model Real world

Discontinuous asset prices ✗ ✓ ✓
Fat tailed market returns ✗ ✓ ✓
Complete market ✓ ✗ ✗
Unique prices and risk-neutral measure ✓ ✗ ✗

Table 21.1: Market models and their properties.

Exercises

Exercise 21.1 Consider a standard Poisson process (Nt)t∈R+ with inten-
sity λ > 0 under a probability measure P. Let (St)t∈R+ be defined by the
stochastic differential equation

dSt = rStdt+ ηSt-(dNt − αdt),

where η > 0.

a) Find the value of α ∈ R such that the discounted process ( e−rtSt)t∈R+

is a martingale under P.
b) Compute the price at time t ∈ [0,T ] of a power option with payoff |ST |2

at maturity T .

Exercise 21.2 Consider a long forward contract with payoff ST −K on a
jump diffusion risky asset price process (St)t∈R+ given by

dSt = µStdt+ σStdBt + St-dYt.

a) Show that the forward claim admits a unique arbitrage-free price to be
computed in a market with risk-free rate r > 0.

b) Show that the forward claim admits an exact replicating portfolio strategy
based on the two assets St and ert.

c) Recover portfolio strategy of Question (b) using the optimal portfolio
strategy formula (21.20).

Exercise 21.3 Consider (Bt)t∈R+ a standard Brownian motion and (Nt)t∈R+

a standard Poisson process with intensity λ > 0, independent of (Bt)t∈R+ ,
under a probability measure P∗. Let (St)t∈R+ be defined by the stochastic
differential equation

dSt = µStdt+ ηSt-dNt + σStdBt. (21.21)
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a) Solve the equation (21.21).
b) We assume that µ, η and the risk-free rate r > 0 are chosen such that the

discounted process ( e−rtSt)t∈R+ is a martingale under P∗. What relation
does this impose on µ, η, λ and r?

c) Under the relation of Question (b), compute the price at time t ∈ [0,T ]
of a European call option on ST with strike price κ and maturity T , using
a series expansion of Black-Scholes functions.

Exercise 21.4 Consider (Nt)t∈R+ a standard Poisson process with inten-
sity λ > 0 under a probability measure P. Let (St)t∈R+ be defined by the
stochastic differential equation

dSt = rStdt+ YNtSt-dNt,

where (Yk)k⩾1 is an i.i.d. sequence of uniformly distributed random variables
on [−1, 1].

a) Show that the discounted process ( e−rtSt)t∈R+ is a martingale under P.
b) Compute the price at time 0 of a European call option on ST with strike

price κ and maturity T , using a series of multiple integrals.

Exercise 21.5 Consider a standard Poisson process (Nt)t∈R+ with inten-
sity λ > 0 under a probability measure P. Let (St)t∈R+ be defined by the
stochastic differential equation

dSt = rStdt+ YNtSt-(dNt − αdt),

where (Yk)k⩾1 is an i.i.d. sequence of uniformly distributed random variables
on [0, 1].

a) Find the value of α ∈ R such that the discounted process ( e−rtSt)t∈R+

is a martingale under P.
b) Compute the price at time t ∈ [0,T ] of the long forward contract with

maturity T and payoff ST − κ.

Exercise 21.6 Consider (Nt)t∈R+ a standard Poisson process with intensity
λ > 0 under a risk-neutral probability measure P∗. Let (St)t∈R+ be defined
by the stochastic differential equation

dSt = rStdt+ αSt-(dNt − λdt), (21.22)

where α > 0. Consider a portfolio with value

Vt = ηt ert + ξtSt

at time t ∈ [0,T ], and satisfying the self-financing condition
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dVt = rηt ertdt+ ξtdSt.

We assume that the portfolio hedges a claim payoff C = ϕ(ST ), and that
its value can be written as a function Vt = f(t,St) of t and St for all times
t ∈ [0,T ].

a) Solve the stochastic differential equation (21.22).
b) Price the claim C = ϕ(ST ) at time t ∈ [0,T ] using a series expansion.
c) Show that under self-financing, the variation dVt of the portfolio value Vt

satisfies
dVt = rf(t,St)dt+ αξtSt-(dNt − λdt). (21.23)

d) Show that the claim payoff C = ϕ(ST ) can be exactly replicated by the
delta hedging strategy

ξt =
1

αSt-
(f(t,St-(1 + α)) − f(t,St-)).

Exercise 21.7 Pricing by the Esscher transform (Gerber and Shiu (1994)).
Consider a compound Poisson process (Yt)t∈[0,T ] with E

[
eθ(Yt−Ys)

]
= e(t−s)m(θ),

0 ⩽ s ⩽ t, with m(θ) a function of θ ∈ R, and the asset price process
St := ert+Yt , t ∈ [0,T ]. Given θ ∈ R, let

Nt :=
eθYt

E
[
eθYt

] = eθYt−tm(θ) = Sθt e−rθt−tm(θ),

and consider the probability measure Pθ defined as

dPθ
|Ft

dP|Ft

:=
NT
Nt

= e(YT −Yt)θ−(T−t)m(θ), 0 ⩽ t ⩽ T .

a) Check that (Nt)t∈R+ is a martingale under P.
b) Find a condition on θ such that the discounted price process ( e−rtSt)t∈[0,T ] =(

eYt
)
t∈[0,T ] is a martingale under Pθ.

c) Price the European call option with payoff (ST −K)+ by taking Pθ as
risk-neutral probability measure.
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