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ABSTRACT. We use a white noise approach to Malliavin calculus to prove the following white noise

generalization of the Clark-Haussmann-Ocone formula

F(ω) = E[F]+
∫ T

0
E[DtF|Ft]�W(t)dt

Here E[F] denotes the generalized expectation, DtF(ω) = dF
dω is the (generalized) Malliavin

derivative,� is the Wick product and W(t) is 1-dimensional Gaussian white noise. The formula

holds for all f ∈ G∗ ⊃ L2(µ), where G∗ is a space of stochastic distributions and µ is the

white noise probability measure. We also establish similar results for multidimensional Gaussian

white noise, for multidimensional Poissonian white noise and for combined Gaussian and Poissonian

noise. Finally we give an application to mathematical finance: We compute the replicating portfolio

for a European call option in a Poissonian Black & Scholes type market.

Journal of Economic Literature index numbers: G12

Mathematics Subject Classification (MSC): 60H40, 60G20

1. Introduction

Let Bt(ω) = B(t,ω); t ≥ 0,ω ∈ Ω be a 1-dimensional Wiener process (Brownian motion) on
a probability space (Ω,F , P) such that B(0,ω) = 0 a.s. P . For t ≥ 0 let Ft be the σ -algebra
generated by {B(s, ·); s ≤ t}. Fix T > 0. The Clark-Haussmann-Ocone (CHO) theorem states
that if F = F(ω) ∈ L2(P) is FT -measurable and F ∈ D1,2 (see definitions below), then

F(ω) = E[F]+
∫ T

0
E[DtF|Ft](ω)dBt(ω) (1.1)

where DtF = dF
dω(t) denotes the Malliavin derivative of F at t. This result and its general-

izations have important applications in economics, where (basically) E[DtF|Ft] represents
the replicating portfolio of a given T -claim F . (See, e.g., [K-O], [Ø])

Usually this result is presented and proved in the context of analysis on the Wiener space
Ω = C0([0, T ]), the space of all real continuous functions on [0, T ] starting at 0. Then
one can identify each Wiener process path B(·,ω) with one element ω(·) ∈ Ω, which
is a computational advantage. It is in this setting that the Malliavin derivative and its
properties are usually studied. See, e.g., [N], [U]. However, the drawback with this setting
is that the Malliavin derivative only exists for F ∈ D1,2. This excludes many interesting
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applications. For example, in mathematical finance one is interested in computing the
replicating portfolios of a given T -claim F . If, say, the claim is a digital option of the form

F(ω) = X[K,∞)(BT (ω)) =
{

1 if BT (ω) ≥ K
0 if BT (ω) < K

(1.2)

then DtF does not exist and formula (1.1) cannot be applied. The purpose of this paper is
to present a new proof of the Clark-Haussmann-Ocone formula in the setting of white noise
analysis. One of the advantages with this approach is that it allows a generalization of the
Clark-Haussmann-Ocone formula which is valid for all FT -measurable F ∈ G∗, a space
of stochastic distributions which contains L2(µ), where µ is the white noise probability
measure (µ corresponds to P in the Wiener space setting). The generalization has the form
(See Theorem 3.15)

F(ω) = E[F]+
∫ T

0
E[DtF|Ft]�Wtdt (1.3)

where � denotes the Wick product and Wt ∈ (S)∗ is white noise. E[F] is the generalized
expectation of F ∈ G∗, E[DtF|Ft] is the generalized expectation and the integral on the
right hand side is an (S)∗-valued (Bochner) integral. In view of the identity

∫ T
0
Y(t,ω)δB(t) =

∫ T
0
Y(t,ω)�Wtdt (1.4)

valid for all Skorohod integrable processes Y(t,ω), we see that (1.3) is indeed a general-
ization of (1.1). In fact, if F ∈ L2(µ) then (1.3) simplifies to

F(ω) = E[F]+
∫ T

0
E[DtF|Ft]dB(t) (1.5)

where DtF ∈ G∗, E[DtF|Ft] ∈ L2(µ) for a.a. t and

E
[ ∫ T

0
E[DtF|Ft]2dt

]
<∞ (Theorem 3.11) (1.6)

We emphasize that in the Wiener space setting another generalization of (1.1) has been
obtained by S. Ustunel [U, Theorem 1 p.44]. His generalization is valid for all F ∈ D−∞,
the Meyer-Watanabe distributions. Since D−∞⊂6=G∗, our result is more general. Moreover,
our approach is entirely different. Recently other approaches to the Malliavin calculus and
the Clark-Haussmann-Ocone theorem have been given by F. E. Benth [B], M. de Faria, M. J.
Oliveira & L. Streit [dO-S], and G. Våge [V].

Our white noise setup can be easily modified to cover more general situations. This is
demonstrated in Sections 4-6. In Section 4 we prove the following multidimensional version
of the generalized Clark-Haussmann-Ocone theorem:

Let B(t,ω) := (B1(t,ω1), . . . , Bm(t,ωm));ω = (ω1, . . . ,ωm) ∈ Ω be m-dimensional Brow-
nian motion with filtration F (m)T . Then if F ∈ (G∗)m is F (m)T -measurable, we have

F(ω) = E[F]+
∫ T

0



m∑

j=1

E
[
∂F
∂ωj

(t,ω)
∣∣∣F (m)T

]
�Wj(t,ωj)


dt (1.7)

where we have used the notation
(
∂F
∂ω1
, . . . , ∂F∂ωm

)
for the Malliavin gradient of F at t (The-

orem 4.2).
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If we replace the Gaussian white noise probability measure µ by the Poissonian white noise
probability measure ν (on the same underlying space S′(R)), then we obtain a similar theory
where Gaussian white noiseW(t) is replaced by Poissonian white noise V(t) and Brownian
motion B(t) is replaced by compensated Poisson processQ(t). The spacesG∗ = G∗(ν) can
be defined in a similar way as for the Gaussian case and the Malliavin gradient too. Thus
we obtain the following generalized Clark-Haussmann-Ocone theorem for the compensated
Poisson process:

If F ∈ G∗(νm) is measurable with respect to the filtration H (m)
t of the m-dimensional

compensated Poisson process Q(t), then

F(ω) = E[F]+
∫ T

0



m∑

j=1

E
[
∂F
∂ωj

(t,ω)
∣∣∣H (m)

T

]
� Vj(t,ωj)


dt (1.8)

This result is proved in Section 5 (See Theorem 5.3). We also point out how the above
theory can be modified to cover the case with combinations of Gaussian and Poissonian
noises. Finally, in Section 6 we apply our results to compute the replicating portfolios for
the European call option in a Poisson Black and Scholes type market: Consider a market
X(t) = (A(t), S(t)) consisting of two investment possibilities:

i) a bank account, where the price A(t) at time t is given by

dA(t) = ρ(t)A(t)dt ; A(0) = 1 (1.9)

ii) a stock, where the price S(t) at time t is given by

dS(t) = µ(t)S(t)dt + σ(t)S(t)dQ(t) ; S(0) = x > 0 (1.10)

where ρ(t), µ(t), and σ(t) are deterministic functions in L2[0, T ] (T > 0 constant), σ(t) ≥ ε
for some ε > 0, and where Q(t) = P(t) − t is the compensated Poisson process. Let
(ξ(t,ω), η(t,ω)) denote the portfolio, i.e., ξ(t), η(t) gives the number of units of invest-
ments #1, #2, respectively, held by an agent at time t.

Consider u(t) = µ(t)−ρ(t)
σ(t) , and find a new measure ν̃ such that Q̃(t) := ∫ t0 u(s)ds +Q(t) is

a compensated Poisson process with respect to ν̃ . We will prove the following theorem.

THEOREM 6.1

The price V(0) of a European call option with payoff F(ω) = (S(T)−K)+ in the Poissonian
market defined by (1.9), (1.10) and satisfying u(t) ≤ 1 − ε1 for some ε1 > 0, is given by

V(0) = e−
∫ T
0 ρ(s)dsEν̃[F]. Moreover, the replicating portfolio for this claim is given by

η(t) = 1
σ(t)S(t)

e−
∫ T
t ρ(s)dsEν̃[(σ(t)Yy(T − t)− (K − Yy(T − t))+)

·X[K/(1+σ(t)),∞)(Yy(T − t))]y=S(t)
(1.11)

where

Yy(t) = y exp

[∫ t
0

ln[1+ σ(s)]dQ̃(s)+
∫ t

0
(µ(s)− σ(s)+ ln[1+ σ(s)](1−u(s)))ds

]

(1.12)
and

ξ(t) = V(t)− η(t)S(t)
A(t)

(1.13)
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2. Background from white noise theory

In this section we briefly recall some of the basic concepts and results from Gaussian
white noise theory. Our presentation and notation will follow that of [H-Ø-U-Z] closely.
More information about white noise analysis can be found in [H-K-P-S].

Let Ω = S′(R) be the space of tempered distributions on the set R of real numbers and let
µ be the Gaussian white noise probability measure on Ω defined (in virtue of the Bochner-
Minlos theorem) by the property

∫

Ω
ei<ω,φ>dµ(ω) = e− 1

2 ||φ||2 (2.1)

for all φ ∈ S(R) (the Schwartz space of rapidly decreasing smooth functions on R), where
||φ||2 = ∫

Rφ2(x)dx and < ω,φ > denotes the action of ω ∈ S′(R) on φ. (S′(R) is the
dual of S(R)). Note that if ω ∈ L2(R), then < ω,φ >= ∫

Rω(x)φ(x)dx. From (2.1) we
deduce that

E[< ·,φ >] = 0 and E[< ·,φ >2] = ||φ||2 ; φ ∈ S(R) (2.2)

where E = Eµ denotes expectation with respect to µ. This isometry allows us to de-
fine a Brownian motion B(t) = B(t,ω) as the continuous version of B̃(t) = B̃(t,ω) =
< ω,X[0,t](·) > (which exist in L2(µ)) where

X[0,t](s) =



1 if 0 ≤ s ≤ t
−1 if −t ≤ s ≤ 0
0 otherwise

(2.3)

Then < ω,ψ >= ∫
Rψ(t)dB(t) for all ψ ∈ L2(R). We let Ft denote the σ algebra gener-

ated by {B(s, ·)}0≤s≤t . If f(t1, . . . , tn) ∈ L̂2(Rn), i.e., fn is symmetric and ||fn||2L2(Rn) =∫
Rn f 2

n(t1, . . . , tn)dt1 · · ·dtn <∞, then we can define the iterated Itô integral

∫

Rn
fndB⊗n := n!

∫∞
−∞

(∫ tn
−∞
· · ·

(∫ t2
−∞
f(t1, . . . , tn)dB(t1)

)
· · ·

)
dB(tn) (2.4)

In the following we let

hn(x) = (−1)nex
2/2 dn

dxn
(
e−x

2/2
)

; n = 0,1,2, . . . (2.5)

be the Hermite polynomials and we let {ξn}∞n=1 be the basis of L2(R) consisting of the
Hermite functions

ξn(x) = π−
1
4 ((n− 1)!)−

1
2 e−x

2/2hn−1(
√

2x) ; n = 1,2, . . . (2.6)

Several parts of the theory can be carried out without the explicit use of this particular
basis. In some cases, however, the choice of an explicit basis is important. For example,
explicit estimates of ξn(t) are needed to deduce that the Gaussian white noise W(t, ·)
defined in (3.12) belongs to the space (S)∗ of Hida distributions.

If f : Rn → R and g : Rm → R are two functions, we let f ⊗ g : Rm+n → R, resp. f ⊗̂g :
Rm+n → R, be the tensor product, resp. symmetric tensor product of f and g (see [H-Ø-U-Z,
Section 2.2]). Similarly we let f⊗n = f ⊗ · · · ⊗ f (n times) be the tensor powers of f . The
set of multi-indices α = (α1, . . . , αm) of nonnegative integers is denoted by I = (NN

0 )c .
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Here N = {1,2, . . .} is the set of natural numbers and N0 = N∪ {0}. If z = (z1, z2, . . .) is a
sequence of numbers or functions, we use the multi-index notation

zα = zα1
1 z

α2
2 · · ·zαnn if α = (α1, . . . , αm) ∈ I

We list some of the basic results we need:

THEOREM 2.1

(Itô 1951 [I]) Suppose ψ1, . . . ,ψn are orthonormal functions in L2(R). Then for all multi-
indices α = (α1, . . . , αn) ∈ I , we have

∫

R|α|
ψ⊗̂α(x)dB⊗|α|(x) = hα1(< ω,ψ1 >) · · ·hαn(< ω,ψn >)

COROLLARY 2.2

∫

R|α|
ξ⊗̂α(x)dB⊗|α|(x) = Hα(ω)

where Hα(ω) = hα1(< ω,ξ1 >) · · ·hαn(< ω,ξn >),α = (α1, . . . , αn) ∈ I .
COROLLARY 2.3

Let � denote the Wick product, defined by
(
Hα �Hβ

)
(ω) = Hα+β(ω) ; α,β ∈ I

and extended linearly ([HØUZ, Def.2.4.1]). Then if fn ∈ L̂2(Rn), gn ∈ L̂2(Rm), we have
(∑
n

∫

Rn
fndB⊗n

)
�
(∑
n

∫

Rn
gndB⊗n

)
=
∑
m,n

∫

Rm+n
fn⊗̂gmdB⊗(m+n)

PROOF

∫

R|α|
ξ⊗̂αdB⊗|α| �

∫

R|β|
ξ⊗̂βdB⊗|β| = Hα �Hβ = Hα+β

=
∫

R|α+β|
ξ⊗̂(α+β)dB⊗|α+β| =

∫

R|α+β|
ξ⊗̂α⊗̂ξ⊗̂βdB⊗|α+β|

using Corollary 2.2.

�

COROLLARY 2.4

< ω,φ >�n= ||φ||nhn
(
<ω,φ>
||φ||

)
, where < ω,φ >�n=< ω,φ > �· · ·� < ω,φ > (n times)

PROOF

< ω,φ >�n=
(∫

R
φdB

)�n =
∫

Rn
φ⊗ndB⊗n

=||φ||n
∫

Rn

( φ
||φ||

)⊗n
dB⊗n = ||φ||nhn

(< ω,φ >
||φ||

)

by Corollary 2.2.

�

Recall that

E
[ ∫

R
u(s,ω)dB(s)|Ft

]
=
∫ t

0
u(s,ω)dB(s)

From this we deduce that (see [HØUZ,p 47])
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LEMMA 2.5

E
[ ∫

Rn
fndB⊗n|Ft

]
=
∫

Rn
fnX[0,t]ndB⊗n

STOCHASTIC TEST FUNCTIONS AND STOCHASTIC DISTRIBUTIONS

The following spaces of stochastic test functions, G = G(µ), and stochastic distributions
G∗ = G∗(µ), have been studied by J. Potthoff and M. Timpel. See [P-T] and the references
therein.

DEFINITION 2.6

(i) Let k ∈ N. We say that f(ω) =∑∞n=0

∫
Rn fndB⊗n belongs to the space Gk(µ) if

||f ||2Gk :=
∞∑

n=0

n!||fn||2L2(Rn)e
2kn <∞ (2.7)

We define
G(µ) = G =

⋂

k∈N
Gk

and equip G with the projective topology.

(ii) We say that a formal expansion

G =
∞∑

n=0

∫

Rn
gndB⊗n

belongs to the space G−q(µ) (q ∈ N) if

||G||2G−q :=
∞∑

n=0

n!||fn||2L2(Rn)e
−2qn <∞ (2.8)

We define
G∗(µ) = G∗ =

⋃

q∈N
G−q

and equip G∗ with the inductive topology. Note that G∗ is the dual of G, with action

< G,f >=
∞∑

n=0

n!
∫

Rn
fn(x)gn(x)dx (2.9)

if G ∈ G∗ and f ∈ G is as above. Also note that the connection between the expansion

G(ω) =
∞∑

n=0

∫

Rn
gndB⊗n (2.10)

and the Hermite expansion
G(ω) =

∑
α
cαHα(ω) (2.11)

is given by
gn(x) =

∑

|α|=n
cαξ⊗̂α(x) ; n = 0,1,2, . . . (2.12)
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(see [HØUZ, (2,2.33)]). Since this gives

||
∫

Rn
gndB⊗n||2L2(µ) = n!||gn||2L2(Rn) =

∑

|α|=n
c2
αα! (2.13)

it follows that we can express the Gr -norm of G in terms of the Hermite expansion as
follows:

||G||2Gr =
∞∑

n=0

( ∑

|α|=n
c2
αα!

)
e2r n ; r ∈ Z (2.14)

Two important properties of these spaces are the following (see [P-T] for a proof):

f ,g ∈ G ⇒ f � g ∈ G (2.15)

and
f ,g ∈ G∗ ⇒ f � g ∈ G∗ (2.16)

We also recall the Hida stochastic test function space (S) and the Hida stochastic distribution
space (S)∗ as follows:

For a formal expansion f(ω) =∑α∈I cαHα(ω) define the norm

||f ||20,k :=
∑

α∈I
c2
αα!(2N)kα for k ∈ Z (the integers) (2.17)

where (2N)kα = (2 · 1)kα1(2 · 2)kα2 · · · (2m)kαm if α = (α1, . . . , αm). Let

(S)0,k := {f ; ||f ||0,k <∞} (2.18)

and define
(S) :=

⋂

k∈N
(S)0,k (2.19)

with projective topology, and
(S)∗ :=

⋃

q∈N
(S)0,−q (2.20)

with inductive topology. Note that

(S) ⊂ G ⊂ L2(µ) ⊂ G∗ ⊂ (S)∗

For more information about these and related spaces see [H-K-P-S] and [H-Ø-U-Z]. We now
extend the concept of conditional expectation to G∗. This has been done in a different
context by Benth and Potthoff [B-P].

DEFINITION 2.7

Let F = ∑∞n=0

∫
Rn fndB⊗n ∈ G∗. Then the conditional expectation of F with respect to Ft

is defined by

E[F|Ft] =
∞∑

n=0

∫

Rn
fn · X[0,t]ndB⊗n (2.21)

Note that this coincides with the usual conditional expectation if F ∈ L2(µ). Also note that

||E[F|Ft]||Gr ≤ ||F||Gr for all r ∈ Z (2.22)
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In particular
E[F|Ft] ∈ G∗ for all t (2.23)

LEMMA 2.8

Let F,G ∈ G∗. Then
E[F �G|Ft] = E[F|Ft]� E[G|Ft]

PROOF

We may assume, without loss of generality, that F = ∫Rn fndB⊗n =
∑
|α|=n cα

∫
Rn ξ⊗̂αdB⊗n

and similarly with G. Then Corollary 2.3 and Definition 2.7 give

E[F �G|Ft] = E
[ ∫

Rm+n
fn⊗̂gmdB⊗(m+n)|Ft

]

=
∫

Rm+n
fn⊗̂gm · X[0,t]m+ndB⊗(m+n)

=
∫

Rm+n
fn · X[0,t]n⊗̂gm · X[0,t]mdB⊗(m+n)

=E[F|Ft]� E[G|Ft]

�

From now on we will use the following notation:

As before let ξ1, ξ2, . . . be the Hermite functions, and put

Xi = Xi(ω) =< ω,ξi >=
∫

R
ξi(s)dB(s) ; i = 1,2, . . . (2.24)

and

X(t)i (ω) =
∫ t

0
ξi(s)dB(s) ; i = 1,2, . . . (2.25)

and
X = (X1, X2, . . .), X(t) = (X(t)1 , X

(t)
2 , . . .)

Note that with this notation we have

X�α(ω) = (X�α1
1 � . . .�X�αmm )(ω) = Hα(ω) if α = (α1, . . . , αm) (2.26)

for all multi-indices α.

COROLLARY 2.9

If F =∑α cαX�α ∈ G∗, then

E[F|Ft] =
∑
α
cα(X(t))�α

PROOF

We know that E[Xi|Ft] = X(t)i . Now apply Lemma 2.8.

�
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DEFINITION 2.10

We say that F ∈ G∗ is FT -measurable if

E[F|FT ] = F

COROLLARY 2.11

F ∈ G∗ is FT -measurable if and only if F can be written

F =
∑
α
cα(X(T))�α (convergence in G∗)

for some numbers cα.

REMARK

A general discussion of G and G∗ and the related spaces Gβ and G−β can be found in
[G-K-S].

3. The 1-dimensional case

Let us first recall the definition of a directional derivative:

DEFINITION 3.1

Let F : S′(R) → R be a given function and let γ ∈ S′. Then we say that F has a directional
derivative in the direction γ if

DγF(ω) := lim
ε→0

1
ε
(F(ω+ εγ)− F(ω)) (3.1)

exists in(S)∗. If this is the case, we call DγF the directional (or Gateaux) derivative of F in
the direction γ.

EXAMPLE 3.2

Let F(ω) = ∫Rφ(t)dB(t) =< ω,φ > for some φ ∈ L2(R). Then, if γ ∈ L2(R), we have

DγF(ω) = lim
ε→0

1
ε
(< ω+ εγ,φ > − < ω,φ >) =< γ,φ >=

∫

R
γ(t)φ(t)dt (3.2)

PROOF

By linearity we have < ω+ εγ,φ >=< ω,φ > +ε < γ,φ >. Hence

1
ε
(< ω+ εγ,φ > − < ω,φ >) =< γ,φ >

�

Motivated by this example we make the following definitions:

DEFINITION 3.3

A function Z(t) : R→ (S)∗ is (S)∗-integrable if

< Z(t), f >∈ L1(R) for all f ∈ (S) (3.3)

Then the (S)∗-integral of Z(t), denoted by
∫
R Z(t)dt, is the unique (S)∗-element such that

<
∫

R
Z(t)dt, f >=

∫

R
< Z(t), f > dt ; f ∈ (S) (3.4)

9
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It is a consequence of Proposition 8.1 in [H-K-P-S] that (3.4) defines
∫
R Z(t)dt as an element

of (S)∗.

DEFINITION 3.4

We say that F : S′(R)→ R is differentiable if there exists a map K : R→ (S)∗ such that

K(t,ω)γ(t) is (S)∗-integrable

and

DγF(ω) =
∫

R
K(t,ω)γ(t)dt for all γ ∈ L2(R) (3.5)

In this case we put

DtF(ω) := dF
dω

(t,ω) := K(t,ω) ; t ∈ R (3.6)

The set of all differentiable F : S′ → R is denoted by D.

EXAMPLE 3.5

If F(ω) =< ω,φ > as in Example 3.2, then we see by (3.2) that F is differentiable and

DtF(ω) = φ(t) (3.7)

If
P(x) =

∑
α
cαxα ; x ∈ RN, cα ∈ R (3.8)

is a polynomial, we define its Wick version at X = (X1, . . . , Xm) by

P�(X) =
∑
α
cαX�α (3.9)

Such (finite) sums are called (stochastic) polynomials.

LEMMA 3.6 (THE CHAIN RULE I)

Let P(x) = ∑
α cαxα be a polynomial in n variables x = (x1, x2, . . . , xn) ∈ Rn. Then

P(X) ∈ D, P�(X) ∈ D and

DtP(X) =
n∑

i=1

∂P
∂xi
(X1, . . . , Xn)ξi(t) =

∑
α
cα
∑

i
αiXα−ε

(i)
ξi(t) (3.10)

and

DtP�(X) =
n∑

i=1

∂P
∂xi

�
(X1, . . . , Xn)ξi(t) =

∑
α
cα
∑

i
αiX�(α−ε

(i))ξi(t) (3.11)

Here and in the following, ε(i) = (0,0, . . . ,1) is the i’th unit vector (with 1 on entry i).

PROOF

Put F(ω) = P(X(ω)) and choose γ ∈ L2(R). Then by the classical chain rule we have

1
ε
(F(ω+ εγ)− F(ω)) = 1

ε
(P(X(ω+ εγ))− P(X(ω)))

=1
ε
(P(X(ω)+ ε < γ, ξi >)− P(X(ω)))

→
n∑

i=1

∂P
∂xi
(X(ω)) < γ, ξi > in L2(µ), as ε → 0

10
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since
Eµ[|X(ω)|N] <∞ for all N ∈ N

We conclude that

DγF(ω) =
∫

R



n∑

i=1

∂P
∂xi
(X(ω)) · ξi(t)


γ(t)dt

Similarly, let G(ω) = P�(X) = X�α(ω) for some α ∈ I , and choose γ ∈ L2(R). Then

1
ε
(G(ω+ εγ)−G(ω)) = 1

ε
(X�α(ω+ εγ)−X�α(ω))

=1
ε
(Hα(ω+ εγ)−Hα(ω)) = 1

ε


∏

i
hαi(< ω+ εγ, ξi >)−

∏

i
hαi(< ω,ξi >)




ε→0
−→ ∑

i
h′αi(< ω,ξi >)

∏

j:j 6=i
hαj(< ω,ξj >)· < γ, ξi >

=
∑

i
αihαi−1(< ω,ξi >)

∏

j:j 6=i
hαj(< ω,ξj >)· < γ, ξi >

=
∑

i
αiX�(α−ε

(i))(ω) < γ, ξi >,

where we have used the well known property

h′m(x) =mhm−1(x); m = 1,2, . . .

for Hermite polynomials.

�

Let

W(t,ω) =
∞∑

i=1

ξi(t)Hε(i)(ω) (3.12)

be Gaussian white noise. We have W(t, ·) ∈ (S)∗ for all t and

∫ T
0
X(t,ω)δB(t) =

∫ T
0
X(t,ω)�W(t,ω)dt (integration in (S)∗) (3.13)

for all Skorohod integrable processes X(t). See [HØUZ, Theorem 2.5.9] and the references
therein. Note that if Xj is as in (2.24), then

t , Xj(t)

is differentiable in (S)∗ and

d
dt

(∫ t
0
ξj(s)dB(s)

)
= d
dt

(∫ t
0
ξj(s)W(s)ds

)
= ξj(t)W(t) ∈ (S)∗

By induction this gives

LEMMA 3.7 (THE CHAIN RULE II)

Let
P(x) =

∑
α
cαxα

11
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be a polynomial in Rn. Let

Xj =
∫

R
ξj(s)dB(s)

be as in (2.24). Then

d
dt
P�(X(t)) =

n∑

j=1

(
∂P
∂xj

)�
(X(t))� ξj(t)W(t)

LEMMA 3.8 (THE CLARK-OCONE FORMULA FOR POLYNOMIALS)

Let F(ω) be FT -measurable and suppose F(ω) = P�(X) for some polynomial P(x) =∑
α cαxα, X = (X1, . . . , Xn) with Xj =< ω,ξj > as in (3.9). Then

(i) F(ω) = P�(X(T)) where X(T)j =< ω,ξj · X[0,T ] >
and

(ii) F(ω) = E[F]+ ∫ T0 E[DtF|Ft]dB(t)
PROOF

We have F(ω) = E[F|FT ] = P�(X(T)) by Corollary 2.9. Hence by Lemma 3.6 and Lemma
3.7

∫ T
0
E[DtF|Ft]dB(t) =

∫ T
0
E
[ n∑

i=1

(
∂P
∂xi

)�
(X)ξi(t)|Ft

]
dB(t)

=
∫ T

0

n∑

i=1

(
∂P
∂xi

)�
(X(t))ξi(t)�W(t)dt

=
∫ T

0

d
dt
P�(X(t))dt =

∣∣∣T
0
P�(X(t)) = P�(X(T))− P�(X(0))

=F − P�(0) = F − E[F]
�

We proceed to consider a Clark-Haussmann-Ocone formula for the space L2(µ). Suppose
that F(ω) =∑α cαHα(ω) ∈ G∗. Then as noted in (2.26), we may write

F(ω) =
∑
α
cαX�α(ω)

Hence F is a limit in G∗ of stochastic polynomials. So in view of Lemma 3.6, it is natural
to make the following definition:

DEFINITION 3.9

Let F(ω) =∑α cαHα(ω) ∈ G∗. Then we define the stochastic derivative of F at t by

DtF(ω) := dF
dω

(t,ω)

:=
∑
α
cα
∑

i
αiHα−ε(i)(ω) · ξi(t)

=
∑

β

(∑

i
cβ+ε(i)(βi + 1)ξi(t)

)
Hβ(ω)

(3.14)

12
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REMARK

The stochastic derivative is also called the Hida derivative or - in the context of the Wiener
space - the Malliavin derivative.

The following result is crucial:

LEMMA 3.10

a) Suppose F ∈ G∗. Then DtF ∈ G∗ for a.a. t ∈ R.

b) Suppose F, Fm ∈ G∗ for all m ∈ N and

Fm → F in G∗

Then there exists a subsequence {Fmk}∞k=1 such that

DtFmk → DtF in G∗, for a.a. t > 0

PROOF

a) Suppose F(ω) =∑α cαHα(ω) ∈ G∗. Then

DtF(ω) =
∑
α
cα
∑

i
αiHα−ε(i)(ω) · ξi(t)

=
∑

β

(∑

i
cβ+ε(i)(βi + 1)ξi(t)

)
Hβ(ω) =:

∑

β
gβ(t)Hβ(ω)

where
gβ(t) =

∑

i
cβ+ε(i)(βi + 1)ξi(t)

Choose q <∞ s.t. ||F||2G−q :=∑m
∑
|α|=m c2

αα!e−2qm <∞ (see (2.8)). We will prove that

||DtF||2G−q−1
:=
∑
n

( ∑

|β|=n
g2
ββ!

)
e−(q+1)n <∞ for a.a. t

Note that
∫

R
g2
β(t)dt =

∫

R

(∑

i
cβ+ε(i)(βi + 1)ξi(t)

)2
dt =

∑

i
c2
β+ε(i)(βi + 1)2

So ∑

|β|=n

(∫

R
g2
βdt

)
β! =

∑

|β|=n

(∑

i
c2
β+ε(i)(βi + 1)(β+ ε(i))!

)

≤
∑

|β|=n
(n+ 1)

∑

i
c2
β+ε(i)(βi + 1)(β+ ε(i))! ≤ (n+ 1)

∑

|α|=|β|+1

c2
αα!

Hence using the fact that (n+ 1)e−n ≤ 1 for all n, we get
∫

R
||DtF||2G−q−1

dt =
∫

R

∑
n

( ∑

|β|=n
g2
ββ!

)
e−2(q+1)ndt

≤
∑
n
(n+ 1)

( ∑

|α|=|β|+1

c2
αα!

)
e−2(q+1)n

≤
∑
n

( ∑

|α|=|β|+1

c2
αα!

)
e−2qn ≤ ||F||2G−q <∞

(3.15)
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Therefore
||DtF||2G−q−1

<∞ for a.a. t

So
DtF ∈ G−q−1 ⊂ G∗ for a.a. t

b) It suffices to prove that if Gm → 0 in G−q, then there exist a subsequence {Gmk}∞k=1 such
that DtGmk → 0 in G∗ as k → ∞, for a.a. t. By (3.15) we see that ||DtGm||G−q−1 → 0 in
L2(R). So there exist a subsequence {||DtGmk||G−q−1}∞k=1 such that

||DtGmk||G−q−1 → 0 for a.a. t as k→∞ (3.16)

Hence DtGmk → 0 in G∗ for a.a. t as k→∞. The last part follows from (2.22).

�

THEOREM 3.11(THE CLARK-HAUSSMANN-OCONE THEOREM FOR L2(µ))
Let λ denote Lebesgue measure on R. Let F(ω) ∈ L2(µ) be FT -measurable. Then

(t,ω), E[DtF|Ft](ω) ∈ L2(λ× µ)

and

F(ω) = E[F]+
∫ T

0
E[DtF|Ft]dB(t)

PROOF

Let F(ω) =∑α∈I cαHα(ω) be the chaos expansion of F and put

Fn(ω) =
∑

α∈In
cαHα(ω) =

∑

α∈In
CαX�α

where In = {α ∈ I ; |α| ≤ n & length (α) ≤ n}. Then by Lemma 3.8, we have

Fn(ω) = E[Fn]+
∫ T

0
E[DtFn|Ft]dB(t) for all n (3.17)

By the Itô representation theorem we know that there is a unique u(t,ω) which is Ft-
adapted and such that

E
[ ∫ T

0
u2(t,ω)dt

]
<∞

and such that

F(ω) = E[F]+
∫ T

0
u(t,ω)dB(t) (3.18)

Since Fn → F in L2(µ), we conclude that

E
[ ∫ T

0
(E[DtFn|Ft]−u(t,ω))2 dt

]

=E[(Fn − F − E[Fn]+ E[F])2]→ 0 as n→∞

So
E[DtFn|Ft]→ u(t,ω) in L2(λ× µ)

14
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On the other hand, by Lemma 3.10 b), we know that, by taking a subsequence,

E[DtFn|Ft]→ E[DtF|Ft] in G∗ for a.a. t

By taking another subsequence, we obtain that

E[DtFn|Ft]→ u(t,ω) in L2(µ) for a.a. t

We conclude that
u(t,ω) = E[DtF|Ft] for a.a. t

and the proof is complete.

�

We proceed to prove a Clark-Haussmann-Ocone theorem for G∗. First we establish some
auxiliary results:

LEMMA 3.12

Let F ∈ G−q ⊂ (S)∗ and f ∈ (S). Then, with ||f ||0,q̂ as in (2.17),

| < F, f > | ≤ ||F||G−q · ||f ||0,q̂ ; q̂ = 2q
ln 2

PROOF

Suppose F(ω =∑α aαHα(ω), f(ω =
∑
β aβHβ(ω). Then

| < F, f > | = |
∑
α
aαbαα!|

=|
∑
m

( ∑

|α|=m
aαbαα!

)
| ≤

∑
m

( ∑

|α|=m
a2
αα!

) 1
2
( ∑

|α|=m
b2
αα!

) 1
2

≤
(∑
m

( ∑

|α|=m
a2
αα!

)
e−2qm

) 1
2
(∑
m

( ∑

|α|=m
b2
αα!

)
e2qm

) 1
2

≤||F||G−q
(∑
α
bαα!(2N)q̂α

) 1
2 = ||F||G−q · ||f ||0,q̂

�

LEMMA 3.13

Let F ∈ G, f ∈ (S). Then ∫

R
< E[DtF|Ft], f >2 dt <∞

PROOF

By Lemma 3.12 and (3.15), we have
∫

R
< E[DtF|Ft], f >2 dt ≤

∫

R
||E[DtF|Ft]||2G−p ||f ||20,p̂dt

≤||f ||20,p̂
∫

R
||DtF||2G−pdt <∞ for some p ∈ N

(3.19)

�
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LEMMA 3.14

Suppose Fn, F ∈ G∗ and Fn → F in (S)∗ as n→∞. Then, as n→∞
∫ T

0
E[DtFn|Ft]�W(t)dt →

∫ T
0
E[DtF|Ft]�W(t)dt in (S)∗ (3.20)

PROOF

Note that both integrals in (3.20) exist by Lemma 3.13. Moreover, by (3.19) and (3.15) we
also get for f ∈ (S), for some p ∈ N

| <
∫ T

0
E[DtFn|Ft]�W(t)dt −

∫ T
0
E[DtF|Ft]�W(t)dt, f > |

=
∫ T

0
| < E[Dt(Fn − F)|Ft], f > |dt ≤

√
T ||f ||0,p̂

(∫ T
0
||Dt(Fn − F)||2G−pdt

) 1
2

≤
√
T ||f ||0,p̂||Fn − F||G−p+1 → 0 as n→∞

Since this holds for all f ∈ (S), (3.20) follows.

�

THEOREM 3.15 (THE CLARK-HAUSSMANN-OCONE THEOREM FOR G∗)

Let F(ω) ∈ G∗ be FT -measurable. Then

DtF ∈ G∗ and E[DtF|Ft] ∈ G∗ for a.a. t

E[DtF|Ft]�W(t) is integrable in (S)∗ and

F(ω) = E[F]+
∫ T

0
E[DtF|Ft]�W(t)dt (3.21)

where E[F] denotes the generalized expectation of F .

PROOF

Let Fn(ω) =
∑
α∈In cαHα(ω) be as in the proof of Theorem 3.11. Then by Lemma 3.8, we

have

Fn(ω) = E[Fn]+
∫ T

0
E[DtFn|Ft]�W(t)dt

for all n. Therefore

F(ω) = E[F]+ lim
n→∞

∫ T
0
E[DtFn|Ft]�W(t)dt

The limit must exist in G∗ and hence in (S)∗. The result then follows from Lemma 3.14.

�

EXAMPLE 3.16

Let φ : [0, T ] → R be a deterministic function such that ||φ||2[0,T ] := ∫ T
0 φ2(s)ds < ∞.

Define

Y(t) =
∫ t

0
φ(s)dBs , 0 ≤ t ≤ T (3.22)

16
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Then the Donsker delta function δY(T)(·) : R→ G∗, see [A-Ø-U], is given by the expression

δY(T)(y) = 1√
2π||φ||2[0,T ]

· exp�

−(y − Y(T))

�2

2||φ||2[0,T ]


 (3.23)

In this case the generalized expectation is given by

E[δY(T)(y)] = 1√
2π||φ||2[0,T ]

· exp


− y2

2||φ||2[0,T ]


 (3.24)

and from the chain rule we get

E[DtδY(T)(y)|Ft]

= 1√
2π||φ||2[0,T ]

· exp�

−(y − Y(t))

�2

2||φ||2[0,T ]


� y − Y(t)||φ||2[0,T ]

�φ(t) (3.25)

Using (3.24) and (3.25) in (3.21), we get a Clark-Haussmann-Ocone formula for this par-
ticular Donsker delta function. Moreover, the formula can be integrated to get explicit
formulas for T -claims of the form f(Y(T)) where f : R → R is bounded and measurable,
see the results in [A-Ø-U].

4. The multidimensional Gaussian case

The framework for multidimensional Gaussian white noise theory is based on the following
construction:

Let µ be the Gaussian white noise probability measure on S′(R), as defined in Section 2.
Fix a natural number m and put

Ω := S′(R)× · · · × S′(R) (m factors)

and
µm = µ × · · · × µ (m factors) (4.1)

For ω = (ω1, . . . ,ωm) ∈ Ω and φ = (φ1, . . . ,φm) ∈ S := S(R)× · · · × S(R) we put

< ω,φ >=
m∑

i=1

< ωi,φi > (4.2)

Then we see that ∫

Ω
ei<ω,φ>dµm(ω) = e−

1
2 ||φ||2 (4.3)

where ||φ||2 =∑mi=1 ||φi||2L2(R) if φ = (φ1, . . . ,φm) ∈ S. As in the case m = 1, we get that

B̃(t,ω) = (B̃1(t,ω1), . . . , B̃m(t,ωm)) = (< ω1,X[0,t] >, . . . , < ωm,X[0,t] >)

has a continuous version B(t,ω), which will be an m-dimensional Brownian motion on
R. Let Im = I × · · · × I (m factors) be the set of all m-tuples Γ = (γ(1), . . . , γ(m)) of
multi-indices γ(j) ∈ I . For Γ ∈ Im define

HΓ = H(m)Γ (ω) =
m∏

i=1

Hγ(i) (4.4)

17
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Then the family {HΓ}Γ∈Im constitutes an orthogonal basis for L2(µm) and

||HΓ ||2L2(µm) = Γ ! = γ(1)! · · ·γ(m)! (4.5)

(see [HØUZ, Theorem 2.2.3]). We now proceed to define the spaces G and G∗ using HΓ :

If G(ω) =∑Γ∈Im cΓHΓ (ω) and r ∈ Z, define

||G||2Gr = ||G||2Gr (µm) :=
∞∑

n=0

( ∑

|Γ |=n
c2
Γ Γ !
)
e2r n (4.6)

and
Gr = Gr (µm) = {G ; ||G||Gr <∞} (4.7)

Then put

G = G(µm) =
⋂

r∈N
Gr with projective topology (4.8)

and
G∗ = G∗(µm) =

⋃

r∈N
G−r with inductive topology (4.9)

The Hida spaces (S) = (S)m and (S)∗ = (S)∗m are defined similarly. The Wick product is
defined by

( ∑

Γ∈Im
aΓHΓ

)
�
( ∑

Λ∈Im
bΛHΛ

)
=
∑

Γ ,Λ
aΓbΛHΓ+Λ (4.10)

One verifies that (2.15) and (2.16) still holds in this setting. The multidimensional Gaussian
white noise is defined by

W(t,ω) = (W1(t,ω1), . . . ,Wm(t,ωm)) (4.11)

where

Wj(t,ωj) =
∞∑

k=0

ξk(t)Hε(k)(ωj) (4.12)

(similar to (3.12). The directional derivative of F : Ω→ R in the direction γ = (γ1, . . . , γm) ∈
(L2(R))m is defined by

DγF(ω) = lim
ε→0

1
ε
(F(ω+ εγ)− F(ω)) (limit in (S)∗m) (4.13)

We say that F : Ω→ R is differentiable if there exists a map K = (K1, . . . , Km) : R→ ((S)∗)m
such that

DγF(ω) =
∫

R
K(t,ω) · γ(t)dt for all γ ∈ (L2(R))m (4.14)

where K(t,ω) · γ(t) =∑mj=1Kj(t,ω)γj(t). If this is the case, we put

∂F
∂ωi

(t,ω) = Ki(t,ω) ; 1 ≤ i ≤m (4.15)

and we call the vector

K(t,ω) :=
( ∂F
∂ω1

(t,ω), . . . ,
∂F
∂ωm

(t,ω)
)

(4.16)
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the stochastic gradient of F (at t). The reader can easily verify that in this modified setting
the proofs in the 1-dimensional case carries over to the multidimensional case with only
minor modifications. Thus we obtain (compare with Theorem 3.11 and Theorem 3.15):

THEOREM 4.1 (THE CLARK-HAUSSMANN-OCONE FORMULA FOR L2(µm))

Let F(ω) ∈ L2(µm) be measurable with respect to the σ -algebra F (m)T which is generated
by {Bi(s,ω)}0≤s≤T ,1≤i≤m. Then

∂F
∂ωj

(t,ω) ∈ G∗(µm) and E[
∂F
∂ωi

(t,ω)|F (m)t ] ∈ L2(µm)

for a.a. t, 1 ≤ j ≤m. Moreover,

E
[ ∫ T

0

( m∑

j=1

E[
∂F
∂ωi

(t,ω)|F (m)t ]2
)
dt
]
<∞

and we have

F(ω) = Eµm[F]+
∫ T

0

m∑

j=1

E[
∂F
∂ωi

(t,ω)|F (m)t ]dBj(t,ωj)

THEOREM 4.2 (THE CLARK-HAUSSMANN-OCONE FORMULA FOR G∗(µm))
Let F(ω) ∈ G∗(µm) be F (m)T -measurable. Then

∂F
∂ωj

(t,ω) ∈ G∗(µm) and E[
∂F
∂ωi

(t,ω)|F (m)t ] ∈ G∗(µm)

for a.a. t, 1 ≤ j ≤m. E[ ∂F∂ωi (t,ω)|F
(m)
t ] is integrable in (S)∗(µm) and

F(ω) = Eµm[F]+
∫ T

0

( m∑

j=1

E[
∂F
∂ωi

(t,ω)|F (m)t ]�Wj(t,ωj)
)
dt

5. The Poissonian case

The white noise machinery can also be adapted to the Poissonian case. To achieve this we
replace the measure µ defined by (2.1) by the Poissonian white noise probability measure
ν defined on S′(R) by

∫

S′(R)
ei<ω,φ>dν(ω) = exp

[ ∫

R

(
eiφ(x) − 1

)
dx

]
;φ ∈ S(R) (5.1)

Then we obtain a Poisson process P(t,ω) as the right-continuous version of

P̃ (t,ω) :=< ω,X[0,t](·) > (5.2)

This gives

< ω,φ >=
∫

R
φ(x)dP(x) ; S(R)

If we define
Q(t,ω) = P(t,ω)− t ; t ∈ R
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(the compensated Poisson process), then we obtain that any F ∈ L2(ν) can be represented
as a sum of iterated integrals with respect to Q:

F(ω) =
∞∑

n=0

∫

Rn
gn(x)dQ⊗n(x) (5.3)

where gn ∈ L̂2(Rn) for all n. Moreover,

||F||2L2(ν) =
∞∑

n=0

n!||gn||2L2(Rn) (5.4)

There is also a basis of polynomials analogous to the Hermite functionals Hα(ω) in the
Gaussian case. These are called the Charlier polynomials and denoted by Cα(ω); α ∈ I .
The first Charlier polynomials are

C0(ω) = 1, Cε(j)(ω) =< ω,ξj > −ξj (5.5)

(where ξj =
∫
R ξj(t)dt),

Cε(i)+ε(j)(ω) =< ω,ξi >< ω,ξj > − < ω,ξiξj > − < ω,ξi > ξj− < ω,ξj > ξi−ξiξj (5.6)

We have
Eν[CαCβ] = α!δα,β

We refer to [B-G], [H-Ø-U-Z], [H-Ø], [IY] and the references therein for more information. We
now proceed as in the Gaussian case to define the Poissonian versions (S)ν ,G(ν),G∗(ν),
and (S)∗ν of the stochastic test function and distribution spaces (S),G,G∗, and (S)∗ we
defined in (2.19), (2.20), (2.7), and (2.8). For example, the Poissonian Hida test function
space (S)ν consists of all expansions

F(ω) =
∑

α∈I
aαCα(ω)

such that
||F||2ν ;0,k :=

∑

α∈I
a2
αα!(2N)kα <∞ (5.7)

for all k ∈ N. The Poissonian Wick product �̂ is defined on the Charlier polynomials by

(Cα�̂Cβ)(ω)) = Cα+β(ω) ; α,β ∈ I (5.8)

and extended linearly to (S)∗ν . As in the Gaussian case, we get that all the four spaces
(S)ν ,G(ν),G∗(ν), and (S)∗ν are closed under Wick products and that the Wick product is a
commutative, associative and distributive (over addition) binary operation on these spaces.
In spite of the many similarities, there are important distinctions between the Gaussian
and the Poissonian case. For example, in the Gaussian case we have seen that with our
definition (3.1), (3.5) of directional derivative Dγ and Malliavin derivative Dt , we have both
the ordinary chain rule (5.9) and the Wick chain rule (5.10)/(5.11):

Dt(< ω,ξi >n) = n < ω,ξi >n−1 ξi(t) (5.9)

and
Dt(< ω,ξi >�n) = n < ω,ξi >�(n−1) ξi(t) (5.10)

i.e.,
Dt(Hnε(i)(ω)) = nH(n−1)ε(i)(ω)ξi(t) (5.11)
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See Lemma 3.6.

If we maintain our definitions (3.1),(3.5) in the Poissonian case, then as before we get that
the ordinary chain rule (5.9) holds. However, the Wick chain rule will fail. To see this,
consider the following example:

EXAMPLE 5.1

Let F(ω) =< ω,ξi >�̂2. Then by (5.5) and (5.6)

F(ω) = (Cε(i)(ω)+ ξi)�̂2 = C2ε(i)(ω)+ 2Cε(i)(ω)ξi + ξ
2
i =< ω,ξi >2 − < ω,ξ2

i > (5.12)

Therefore, by (5.9),

Dt(< ω,ξi >�̂2) = 2 < ω,ξi > ξi(t)− ξi(t)2 6= 2 < ω,ξi > ξi(t) (5.13)

Equivalently, using (5.5),

Dt
(
C2ε(i)(ω)

) = 2Cε(i)(ω)ξi(t)− ξ2
i (t) 6= 2Cε(i)(ω)ξi(t) (5.14)

The reader may find these results contradictory in view of the following “argument”

“ lim
ε→0

1
ε

(
< ω+ εγ, ξi >�̂2 − < ω,ξi >�̂2

)

= lim
ε→0

1
ε

(
(< ω,ξi > +ε < γ, ξi >)�̂2− < ω,ξi >�̂2

)

= lim
ε→0

2 < ω,ξi >< γ, ξi > +ε < γ, ξi >2= 2 < ω,ξi >< γ, ξi > ”

(5.15)

which - if it were correct - would imply that

“Dt
(
< ω,ξi >�̂2

)
= 2 < ω,ξi >< γ, ξi > ” (5.16)

which seemingly contradicts (5.13). However, there is a flaw in the argument leading to
(5.16), because if F(ω) =< ω,ξi >�̂2, then by (5.12)

< ω+ εγ, ξi >�̂2= F(ω+ εγ) =< ω+ εγ, ξi >2 − < ω+ εγ, ξ2
i >

= < ω,ξi >2 +2ε < ω,ξi >< γ, ξi > +ε2 < γ, ξi >2 − < ω,ξ2
i > −ε < γ, ξ2

i >

= < ω,ξi >�̂2 +2ε < ω,ξi >< γ, ξi > +ε2 < γ, ξi >2 −ε < γ, ξ2
i >

= (< ω,ξi > +ε < γ, ξi >)�̂2 − ε < γ, ξ2
i > 6= (< ω,ξi > +ε < γ, ξi >)�̂2

(5.17)

which shows that the equality (5.15) is false.

Since it is the Wick chain rule and not the ordinary chain rule that is needed in our proof of
the Clark-Haussmann-Ocone formula, we must in the Poissonian case abandon the Malli-
avin derivative Dt based on the directional derivative Dγ in the definitions (3.1), (3.5) and
replace Dt by the stochastic derivative D̂t defined analogously to (3.14):

DEFINITION 5.2

Let F(ω) =∑α∈I aαCα(ω) ∈ G∗(ν). Then we define the stochastic derivative of F at t by

D̂tF(ω) = d̂F
dω

(t,ω) =
∑
α
cα
∑

i
aαiCα−ε(i)(ω)ξi(t) (5.18)
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Note that with this definition the ordinary chain rule does not hold. For example, from
(5.12) and the Wick chain rule, we get

D̂t
(
< ω,ξi >2

)
= D̂t

(
< ω,ξi >�̂2 + < ω,ξ2

i >
)
= 2 < ω,ξi > ξi(t)+ ξ2

i (t) (5.19)

More precisely, D̂ is a finite difference operator, cf. Th. 6.5 of [IY], and (I.12) in [D-K-W]. In
particular, from Prop. 1 of [N-V] we have

D̂tF(ω) = F(ω+ δt)− F(ω), a.a. t,ω

if F is in the L2 domain of D̂, where δt ∈ S′(R) is the Dirac measure at t.

The Poissonian white noise is defined by

V(t,ω) =
∞∑

j=1

ξj(t)Cε(j)(ω)

We see that V(t, ·) ∈ (S)∗ν for all t and as in the Gaussian case we get

∫ T
0
Y(t,ω)δQ(t,ω) =

∫ T
0
Y(t,ω)�̂V(t,ω)dt (5.20)

for all Q-Skorohod integrable Y(t,ω). With these definitions the proofs of Section 3 carry
over to the Poissonian case. We omit the details.

In the multidimensional Poissonian case we put

Ω = S′(R)× · · · × S′(R) (k factors)

and
νk = ν × · · · × ν (k factors)

and proceed as in Section 4. Again one can verify that the proofs of Section 3 carry over
also to the Poissonian case. Again we omit the details. The results are:

THEOREM 5.3 (THE CLARK-HAUSSMANN-OCONE FORMULA FOR L2(νk) and G∗(νk))
Interpreted within the framework of D̂t and �̂, the Clark-Haussmann-Ocone formula applies
for L2(νk) and G∗(νk).
REMARK

Other approaches to stochastic calculus/Malliavin calculus for jump processes can be
found in [B-C], [B-G-J], and [E-T]. In [P], the CHO formula has been expressed using both the
finite difference operator and the derivation with respect to jump times of [C-P].

Similarly to obtain a white noise theory for the case withm Gaussian noises and k Poisso-
nian noises, we consider the measure

Θ = Θm,k = µm × νk

on
Ω = S′(R)× · · · × S′(R) (m+ k factors)

By considering appropriate tensor products of the Hermite polynomials Hα and the Char-
lier polynomials Cβ, we obtain an orthonormal basis for L2(Θm,k) just as explained in the
beginning of Section 4. See [H-Ø] for more information about this construction. We en-
courage the reader to (once again) verify that the proofs of Sections 3 and 4 carry over.
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THEOREM 5.4 (THE CLARK-HAUSSMANN-OCONE FORMULA FOR THE SPACES
L2(µm × νk) and G∗(µm × νk))
Interpreted within the framework of D̂t and �̂, the Clark-Haussmann-Ocone formula applies
for L2(µm × νk) and G∗(µm × νk).
6. Application to mathematical finance: Hedging in a Poissonian market

As an application of the results above, consider a market X(t) = (A(t), S(t)) consisting of
two investment possibilities:

(i) a bank account, where the price A(t) at time t is given by

dA(t) = ρ(t)A(t)dt ; A(0) = 1 (6.1)

(ii) a stock, where the price S(t) at time t is given by

dS(t) = µ(t)S(t)dt + σ(t)S(t)dQ(t) ; S(0) = x > 0 (6.2)

where ρ(t), µ(t), and σ(t) are deterministic functions in L2[0, T ] (T > 0 constant), σ(t) ≥ ε
for some ε > 0. As before Q(t) = P(t) − t is the compensated Poisson process. It is well
known (see, e.g., [HØ, Example 2.2]) that the solution of (6.2) is given by

S(t) = x exp

[∫ t
0

ln[1+ σ(s)]dQ(s)+
∫ t

0
(µ(s)− σ(s)+ ln[1+ σ(s)])ds

]
(6.3)

Let (ξ(t,ω), η(t,ω)) be a portfolio, i.e., ξ(t), η(t) gives the number of units of investments
#1, #2, respectively, held by an agent at time t. The total value V(t) at time t of such a
portfolio is then given by

V(t) = ξ(t)A(t)+ η(t)S(t) (6.4)

Assume that the portfolio is self-financing, in the sense that

dV(t) = ξ(t)dA(t)+ η(t)dS(t) (6.5)

From (6.4) we get

ξ(t) = V(t)− η(t)S(t)
A(t)

(6.6)

which substituted in (6.5) gives

dV(t) = ρ(t)V(t)dt + σ(t)η(t)S(t)
(
µ(t)− ρ(t)
σ(t)

dt + dQ(t)
)

(6.7)

Define

u(t) = µ(t)− ρ(t)
σ(t)

(6.8)

Suppose
u(t) ≤ 1− ε1 for some ε1 > 0 (6.9)

Then by the Girsanov theorem for the compensated Poisson process (see [B-V-W]), we get:
If we define the measure ν̃ onHT by

dν̃(ω) = ZT (ω)dv(ω),

where

ZT (ω) = exp�
[
−
∫ T

0
u(t)dQ(t)

]
= exp

[∫ T
0

ln[1−u(t)]dP(s)+
∫ T

0
u(t)dt

]
(6.10)
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(see, e.g., [HØ,(2.43)]), then the process

Q̃(t,ω) :=
∫ t

0
u(s)ds +Q(t,ω) (6.11)

is a compensated Poisson process with respect to the measure ν̃ . Substituting (6.11) into
(6.7), we get

dV(t) = ρ(t)V(t)dt + σ(t)η(t)S(t)dQ̃(t)
or

e−
∫ T
0 ρ(s)dsV(T) = V(0)+

∫ T
0
e−

∫ t
0 ρ(s)dsσ(t)η(t)S(t)dQ̃(t) (6.12)

Suppose we want to hedge a given HT -measurable claim F(ω) ≥ 0. Then we seek V(0)
and η(t) such that V(T) = F a.s., i.e.,

e−
∫ T
0 ρ(s)dsF(ω) = V(0)+

∫ T
0
e−

∫ t
0 ρ(s)dsσ(t)η(t)S(t)dQ̃(t) (6.13)

Define
G(ω) = e−

∫ T
0 ρ(s)dsF(ω)

If G ∈ L2(ν̃), then by Theorem 5.1 applied to ν̃ we get (with D̃t denoting the stochastic
derivative w.r.t. ν̃)

G(ω) = Eν̃[G]+
∫ T

0
Eν̃[D̃tG|Ht]dQ̃(t) (6.14)

(Observe thatQ(t) and Q̃(t) generate the same filtrationHt = H̃t). Comparing (6.13) with
(6.14), we get, by uniqueness,

V(0) = e−
∫ T
0 ρ(s)dsEν̃[F] (the price of the claim F) (6.15)

and
η(t) = e−

∫ T
t ρ(s)dsσ(t)−1S(t)−1Eν̃[D̃tF|Ht] (6.16)

As an example, consider the European call option, i.e.,

F(ω) = (S(T)−K)+ (6.17)

where K > 0 is some constant (the exercise price). We may write

F(ω) = f(S(T)) where f(x) = (x −K)+ ; x > 0

From Prop. 1 of [N-V] we have

D̃tF(ω) = F(ω+ δt)− F(ω) = (S(T)(ω+ δt)−K)+ − (S(T)(ω)−K)+ (6.18)

By (6.3) and (6.11) we have

S(T) = x exp

[∫ T
0

ln[1+ σ(t)]dQ̃(t)+
∫ T

0
(µ(t)− σ(t)+ ln[1+ σ(t)](1−u(t)))dt

]

(6.19)
hence

S(T)(ω+ δt) = (1+ σ(t))S(T)(ω) (6.20)
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Combining this with (6.18), we get for 0 ≤ t ≤ T

D̃tF = ((1+ σ(t))S(T)−K)X[K/(1+σ(t)),K](S(T))+ σ(t)S(T)X[K,∞)(S(T))
=σ(t)S(T)X[K/(1+σ(t)),∞)(S(T))+ (S(T)−K)X[K/(1+σ(t)),K](S(T))
=σ(t)S(T)X[K/(1+σ(t)),∞)(S(T))− (K − S(T))+X[K/(1+σ(t)),∞)(S(T))
=(σ(t)S(T)− (K − S(T))+)X[K/(1+σ(t)),∞)(S(T)),

(6.21)

and

Eν̃[D̃tF|Ht] = Eν̃[(σ(t)S(T)− (K − S(T))+)X[K/(1+σ(t)),∞)(S(T))|Ht]. (6.22)

By the Markov property of the process S(t) with respect to ν̃ (see (6.19)), we see that

Eν̃[(σ(t)S(T)− (K − S(T))+)X[K/(1+σ(t)),∞)(S(T))|Ht]
=Eν̃[(σ(t)Yy(T − t)− (K − Yy(T − t))+)X[K/(1+σ(t)),∞)(Yy(T − t))]y=S(t), (6.23)

where Yy(t) is the process defined by

dYy(t) = Yy(t)((µ(t)−u(t) ln[1+ σ(t)])dt + σ(t)dQ̃(t)) ; Yy(0) = y (6.24)

i.e.

Yy(t) = y exp

[∫ t
0

ln[1+ σ(s)]dQ̃(s)+
∫ t

0
(µ(s)− σ(s)+ ln[1+ σ(s)](1−u(s)))ds

]

(6.25)
Since the law of Q̃(t) is known, we can also write down an explicit formula for the expres-
sion (6.22). We summarize what we have found in the following

THEOREM 6.1

The price V(0) of a European call option with payoff

F(ω) = (S(T)−K)+

in the Poissonian market defined by (6.1), (6.2) and satisfying (6.9), is given by (6.15). More-
over, the replicating portfolio ξ(t), η(t) for this claim is given by (6.6) and

η(t) = 1
σ(t)S(t)

e−
∫ T
t ρ(s)dsEν̃[(σ(t)Yy(T − t)− (K − Yy(T − t))+)

·X[K/(1+σ(t)),∞)(Yy(T − t))]y=S(t)
(6.26)

with Yy(t) given by (6.25).

REMARK

The formula (6.15) for the price V(0) is well-known. However, the hedging formula (6.25)
appears to be new. Note that the alternative approach often used to compute hedging
strategies (the PDE approach) seems difficult to apply here because it involves the calcula-
tion of

∂f
∂x
(T − t, x)

where f(T − t, x) is the price at time T − t if S(t) = x. One can express f in terms of
an expectation with respect to ν and this leads to a series expansion for f . This series,
however, cannot be differentiated term by term. Pricing in models described by pure jumps
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([Aa], [Ac]) and possibly also jumps and diffusions ([Ab]) is treated in many papers, see e.g.,
[Aa], [Ab] and [Ac] with references therein. To our knowledge no such paper to date solves
the question of finding replicating portfolios.
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