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Abstract The main goal of this paper is to provide an algorithm for the random
sampling of Butcher trees appearing in the numerical solution of ordinary differential
equations (ODEs). This algorithm complements and simplifies a recent approach to
the probabilistic representation of ODE solutions, by removing the need to generate
random branching times. The random sampling of trees is compared to the finite
order truncation of Butcher series in numerical experiments.
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1 Introduction

Butcher series [1], [2] are used to represent the solutions of ordinary differential
equations (ODEs) by combining rooted tree enumeration with Taylor expansions,
see e.g. Chapters 4-6 of [10], and [11] and references therein for applications to
geometric numerical integration. Given 𝑓 : R𝑑 → R𝑑 a smooth function and 𝑡0 < 𝑇 ,
consider the 𝑑-dimensional autonomous ODE problem{

¤𝑥(𝑡) = 𝑓 (𝑥(𝑡)), 𝑡 ∈ (𝑡0, 𝑇],
𝑥(𝑡0) = 𝑥0 ∈ R𝑑 .

(1)

If the solution 𝑥(𝑡) is sufficiently smooth at 𝑡 = 𝑡0, Taylor’s expansion yields
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𝑥(𝑡) = 𝑥0 + (𝑡 − 𝑡0) 𝑓 (𝑥(𝑡0)) +
∞∑︁
𝑘=2

(𝑡 − 𝑡0)𝑘
𝑘!

𝑑𝑘−1

𝑑𝑠𝑘−1 𝑓 (𝑥(𝑠)) |𝑠=𝑡0 , (2)

for small time 𝑡 − 𝑡0. The series (2) can be rewritten using the “elementary differen-
tials”

𝑓 , ∇ 𝑓 ( 𝑓 ), ∇2 𝑓 ( 𝑓 , 𝑓 ), ∇ 𝑓 (∇ 𝑓 ( 𝑓 )), . . . ,

as the expansion

𝑥(𝑡) = 𝑥0 + (𝑡 − 𝑡0) 𝑓 (𝑥0) +
(𝑡 − 𝑡0)2

2
(
∇ 𝑓 ( 𝑓 )

)
(𝑥0) (3)

+ (𝑡 − 𝑡0)3

6
(
∇2 𝑓 ( 𝑓 , 𝑓 ) + ∇ 𝑓 (∇ 𝑓 ( 𝑓 ))

)
(𝑥0) + · · · ,

which is known to admit a graph-theoretical expression as the Butcher series

𝑥(𝑡) =
∑︁
𝜏

(𝑡 − 𝑡0) |𝜏 |
𝜏!𝜎(𝜏) 𝐹 (𝜏) (𝑥0), (4)

over rooted trees 𝜏, where 𝐹 (𝜏) represents elementary differentials, and 𝜎(𝜏), 𝜏!
respectively represent the symmetry and factorial of the tree 𝜏, see Section 2 for
definitions. The series (4) can be used to estimate ODE solutions by expanding 𝑥(𝑡)
into a sum over trees up to a finite order. However, the generation of high order trees
is computationally expensive.

In this paper, we consider the numerical estimation of the series (4) using Monte
Carlo generation of random trees and branching processes, which are classical prob-
abilistic tools that have been the object of extensive studies, see for example [23],
[24]. Although Monte Carlo estimators cannot compete with classical Runge-Kutta
schemes, they represent an alternative to the truncation of series, and they allow
for estimates whose precision improves when the number of iterations increases.
This approach is also motivated by related constructions extending the use of the
Feynman-Kac formula to the numerical estimation of the solutions of fully nonlin-
ear partial differential equations by stochastic branching mechanisms and stochastic
cascades, see [22], [15], [19], [17], [6], [7], [13], [8], [9], [20].

Here, in comparison with [20], we present a direct and simpler approach to the
random generation of Butcher trees that does not require the use of random branching
times. From a simulation point of view, this amounts to estimating (4) as an expected
value, by generating random trees T having a conditional probability distribution of
the form

P(T = 𝜏 | |T | = 𝑛) = 𝑐𝑛

𝜏!𝜎(𝜏)
over rooted trees 𝜏 of size |𝜏 | = 𝑛 ≥ 0, and (𝑐𝑛)𝑛≥0 is a sequence of positive
numbers. More precisely, we construct a random tree T whose size complies with a
probability distribution (𝑝𝑛)𝑛≥0 on N, such that the solution of the ODE (1) admits
the following probabilistic representation:
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𝑥(𝑡) = E
[
(𝑡 − 𝑡0) | T |𝐹 (T )(𝑥0)

( |T | ∨ 1)𝑝 | T |

]
, (5)

see Theorem 1. The Monte Carlo implementation of (5) allows us to estimate 𝑥(𝑡)
at a given 𝑡 > 𝑡0 within a (possibly finite) time interval. A major difference with
the expansion (4) is that the Monte Carlo method proceeds iteratively by randomly
sampling trees of arbitrary orders, therefore avoiding the evaluation of (4) at a fixed
order. In comparison to the probabilistic representation of ODE solutions proposed
in [21], the present algorithm does not require the generation of sequences of random
branching times.

In Section 5 we extend our approach to semilinear ODEs of the form{
¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑓 (𝑥(𝑡)), 𝑡 ∈ (𝑡0, 𝑇],
𝑥(𝑡0) = 𝑥0 ∈ R𝑑 ,

where 𝐴 is a linear operator on R𝑑 . Here, tree sizes are generated with the Poisson
distribution of mean 𝑡 > 0, and the impact of the operator 𝐴 is taken into account via
an independent continuous-time Markov chain with generator 𝐴. In this case, our
approach extends the construction presented in [6] for linear PDEs, by replacing the
use of linear chains (or paths) with general random trees in the setting of nonlinear
ODEs. This construction can also be seen as a randomization of exponential Butcher
series, see [14], [18].

Numerical examples are presented in Section 6, using Mathematica, by comparing
the Monte Carlo evaluation of (5) to the truncation

𝑥(𝑡) =
∑︁
𝜏∈T
|𝜏 |≤𝑛

(𝑡 − 𝑡0) |𝜏 |
𝜏!𝜎(𝜏) 𝐹 (𝜏) (𝑥0), 𝑡 > 𝑡0, (6)

of (8) at different orders 𝑛 ≥ 1. The Mathematica codes presented in this paper are
available at

https://github.com/nprivaul/mc-odes/blob/main/mc-odes.nb
We refer the reader to [16] for a complete implementation of Butcher series compu-
tations in Julia.

We proceed as follows. In Section 2 we review the construction of Butcher
trees for the representation of ODE solutions. Section 3 reviews and proves addi-
tional statements needed for labelled trees. In Section 4 we present the algorithm
for the random generation of Butcher trees by the random attachment of vertices.
Section 5 deals with semilinear ODEs using Poisson distributed tree sizes and a
continuous-time Markov chain. Numerical examples are presented in Section 6, and
multidimensional versions of the codes are listed in Section 7.

https://github.com/nprivaul/mc-odes/blob/main/mc-odes.nb
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2 Butcher trees

In this section we review the construction of Butcher trees for the series representation
(3) of the solution of the ODE (1). A rooted tree 𝜏 = (𝑉, 𝐸, •) is a nonempty set 𝑉 of
vertices and a set of edges 𝐸 between some of the pairs of vertices, with a specific
vertex called the root and denoted by “•”, such that the graph (𝑉, 𝐸) is connected
with no loops. We denote by “∅” and “•” the empty tree and the single node tree,
respectively. The next definition uses the 𝐵+ operation, see [3, pages 44-45], namely
if 𝜏1, . . . , 𝜏𝑚 are trees, then [𝜏1, . . . , 𝜏𝑚] denotes the tree 𝜏 formed by introducing
a new vertex, which becomes the root of 𝜏, and 𝑚 new edges from the root of 𝜏 to
each of the roots of 𝜏𝑖 , 𝑖 = 1, 2, . . . , 𝑚. We also use the notation

[𝜏𝑘1
1 , . . . , 𝜏𝑘𝑛𝑛 ] = [𝜏1, . . . , 𝜏1︸     ︷︷     ︸

𝑘1 terms

, . . . , 𝜏𝑛, . . . , 𝜏𝑛︸      ︷︷      ︸
𝑘𝑛 terms

], 𝑘1, . . . , 𝑘𝑛 ∈ N.

Definition 1 [11, Definition III.1.1]. The set of rooted trees is denoted by T, and
can be defined as the closure of ∅ and • under the 𝐵+ operation, i.e.:

(i) ∅ ∈ T, • ∈ T,
(ii) [𝜏1, . . . , 𝜏𝑚] ∈ T if 𝜏1, . . . , 𝜏𝑚 ∈ T.

The size (or order) of 𝜏 ∈ T is defined as the number of its vertices, and denoted by
|𝜏 |. In particular, we have |∅| = 0 and | • | = 1. For 𝑛 ≥ 0, we denote by T𝑛 the subset
of trees of order 𝑛 in T, and for 𝑎1, . . . , 𝑎𝑚 ∈ R𝑑 we let

∇𝑚 𝑓 (𝑎1, . . . , 𝑎𝑚) :=

(
𝑑∑︁

𝑖1 ,...,𝑖𝑚=1

𝜕𝑚 𝑓

𝜕𝑥𝑖1 · · · 𝜕𝑥𝑖𝑚
𝑎1,𝑖1 · · · 𝑎𝑚,𝑖𝑚

)
𝑗=1,...,𝑑

.

Definition 2 [11, Definition III.1.2]. The elementary differential of 𝑓 ∈ C∞ (R𝑑 ,R𝑑)
is the mapping 𝐹 : T → C∞ (R𝑑 ,R𝑑) defined recursively by

(i) 𝐹 (∅) = Id, 𝐹 (•) = 𝑓 ,
(ii) 𝐹 (𝜏) = ∇𝑚 𝑓 (𝐹 (𝜏1), . . . , 𝐹 (𝜏𝑚)) for 𝜏 = [𝜏1, . . . , 𝜏𝑚].

The pair (𝜏, 𝐹 (𝜏)) is called a Butcher tree, and the map 𝐹 can be used to express any
of the terms involving 𝑓 in the series (3). Indeed, when |𝜏 | = 𝑛, 𝐹 (𝜏) takes the form

𝑛∏
𝑖=1

∇𝑚𝑖 𝑓 = ∇𝑚1 𝑓 (∇𝑚2 𝑓 (· · · ), . . . , . . . (. . . , 𝑓 ) · · · ), (7)

for some integer sequence (𝑚𝑖)𝑖=1,...,𝑛 such that 𝑚𝑛 = 0 and 𝑚1 + · · · + 𝑚𝑛 = 𝑛 − 1.

Given a tree 𝜏 ∈ T, the map 𝐹 provides a way to encode each vertex of 𝜏 using
𝑓 or its derivatives: each vertex with no descendants is coded by 𝑓 , and the vertices
with 𝑚 descendants are coded by ∇𝑚 𝑓 , for 𝑚 ≥ 1. In order to characterize the
coefficients of (3), we need two functionals defined on trees.
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Definition 3 a) [2, Section 304], [3, Section 2.5]. The symmetry 𝜎 of a tree is
defined recursively by

(i) 𝜎(∅) = 1, 𝜎(•) = 1,
(ii) 𝜎( [𝜏𝑘1

1 , . . . , 𝜏
𝑘𝑚
𝑚 ]) = ∏𝑚

𝑖=1 𝑘𝑖!𝜎(𝜏𝑖)𝑘𝑖 for 𝜏1, . . . , 𝜏𝑚 distinct and 𝑘1, . . . , 𝑘𝑚 ∈
N.

b) The factorial (or density) 𝜏! of a tree 𝜏 is defined by

(i) ∅! = 1, • ! = 1,
(ii) 𝜏! = |𝜏 |∏𝑚

𝑖=1 𝜏𝑖! for 𝜏 = [𝜏1, . . . , 𝜏𝑚].

Using the above formalism, we obtain the following result.

Proposition 1. [3, Definition 3.4B, Theorem 3.5C]. The series (3) can be rewritten
as the Butcher series

𝑥(𝑡) =
∑︁
𝜏∈T

(𝑡 − 𝑡0) |𝜏 |
𝜏!𝜎(𝜏) 𝐹 (𝜏) (𝑥0), 𝑡 > 𝑡0. (8)

The computation of the Taylor expansion (2) can be implemented in the following
Mathematica code, by noting that in order to calculate the term of order 𝑘 ≥ 2 in the
Taylor expansion (2), the quantity 𝑥(𝑠) in 𝑓 (𝑥(𝑠)) can be replaced with its expansion
until the order 𝑘 − 1, as the (𝑘 − 1)-𝑡ℎ derivative 𝑑𝑘−1/𝑑𝑠𝑘−1 of (𝑠 − 𝑡0)𝑙 vanishes
at 𝑠 = 𝑡0 when 𝑙 ≥ 𝑘 .

Taylor[f_, t_, x0__, t0_, k_] := (d = Length[x0];
g[x_] := x0 + f[x0]*(x - t0); h = Array[hh, d];
For[j = 2, j <= k, j++, For[i = 1, i <= d, i++,
h[[i]][z_] = g[x][[i]] + (z - t0)ˆj/j!*D[f[g[s]][[i]], {s, j - 1}] /. {s ->

t0};]; v = {};
For[i = 1, i <= d, i++, v = Append[v, h[[i]][x]]]; g[x_] = v];
Return[g[t]])
f[x__] := {f1[x[[1]], x[[2]]], f2[x[[1]], x[[2]]]}
Taylor[f, t, {x1, x2}, 0, 2]

with sample output{
x1 + 𝑡f1(x1, x2) + 1

2
𝑡2

(
f1(0,1) (x1, x2)f2(x1, x2) + f1(x1, x2)f1(1,0) (x1, x2)

)
,

x2 + 𝑡f2(x1, x2) + 1
2
𝑡2

(
f1(x1, x2)f2(1,0) (x1, x2) + f2(x1, x2)f2(0,1) (x1, x2)

)}
for 𝑘 = 2, 𝑑 = 2, and 𝑡0 = 0. Instead of the above code, we will use the following
implementation of the truncated Butcher series (6) up to any tree order 𝑛 ≥ 1 in case
𝑑 = 1, which also prints out the corresponding trees.

B[f_, t_, x0_, t0_, n_] := (If[n == 0, Return[x0],
If[n == 1, Return[x0 + (t - t0)*f[x0]],
sample = x0 + (t - t0)*f[x0]; g = Graph[{1 -> 2}];
g = Graph[g, VertexLabels -> {1 -> D[f[ y], y]}];
g = Graph[g, VertexLabels -> {2 -> f[y]}]; m = 1;
sample = sample + 1/2*(t - t0)ˆVertexCount[g]*
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Product[ff[[2]] , {ff, List @@@ PropertyValue[g, VertexLabels]}] /. {y -> x0};
list = {g};
While[m <= (n - 2), temp = list; list = {};
Do[l = VertexCount[g];
For[j = 1, j <= l, j++, gg = VertexAdd[g, {l + 1}];
gg = Graph[gg, VertexLabels -> {l + 1 -> f[ y]}];
lab = Sort[List @@@ PropertyValue[gg, VertexLabels]][[j]][[2]];
gg = Graph[gg, VertexLabels -> {j -> D[lab, y]}];
gg = EdgeAdd[gg, j -> l + 1]; Print[gg];
sample = sample + (t - t0)ˆ(l + 1)/(l + 1)!*
Product[ff[[2]] , {ff, List @@@ PropertyValue[gg, VertexLabels]}] /. {y ->

x0};
list = Append[list, gg]], {g, temp}]; m = m + 1];

Return[sample]]]);

For example, the command B[f,t,x0,t0,4] produces the scalar output
x0 + f(x0) (t − t0) + 1

2
f(x0) (t − t0)2f′ (x0)

+ 1
6

f(x0)2 (t − t0)3f′′ (x0) + 1
6

f(x0) (t − t0)3f′ (x0)2

+ 1
24

f(x0) (t − t0)4f′ (x0)3 + 1
24

f(x0)3f(3) (x0) (t − t0)4 + 1
6

f(x0)2 (t − t0)4f′ (x0)f′′ (x0)

and enumerates the trees appearing in the series (8).

f
′′(y )

f (y ) f (y )

f
′(y ) f

′(y ) f (y )

f
(3)(y )

f (y ) f (y ) f (y )

f
′(y ) f

′(y ) f
′(y ) f (y )

f
′′(y )

f (y ) f
′(y )

f (y )

f
′′(y )

f
′(y ) f (y )

f (y )

f
′′(y )

f
′(y )

f (y )

f (y )

f
′(y )

f
′′(y )

f (y ) f (y )

Fig. 1: Generation of Butcher trees.

Figure 1 prints directed rooted trees of orders 3 and 4, each with a natural orientation
away from the root. In addition to the result of Proposition 1, the derivatives of the
Butcher series (8) can be written using the elementary differentials 𝐹 introduced in
Definition 2, as in the following lemma.

Lemma 1 [3, Lemma 3.5B] We have

𝑥 (𝑛) (𝑡) =
∑︁
𝜏∈T𝑛

𝛼(𝜏)𝐹 (𝜏) (𝑥(𝑡)), 𝑛 ≥ 1, (9)
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where
𝛼(𝜏) :=

|𝜏 |!
𝜏!𝜎(𝜏) , 𝜏 ∈ T. (10)

Proof. For completeness, we give a proof of (9) by induction using the Faà di Bruno
formula [5, Theorem 2.1], which states that for a smooth function 𝑔 : R𝑑 → R𝑑′ ,
the derivatives of 𝑦(𝑡) = 𝑔(𝑥(𝑡)) are given by, for each 𝑛 ≥ 1,

𝑦 (𝑛) (𝑡) (11)

=
∑︁

𝑘1 ,...,𝑘𝑛≥0∑𝑛
𝑖=1 𝑖𝑘𝑖=𝑛

𝑛!∏𝑛
𝑖=1 𝑘𝑖!(𝑖!)𝑘𝑖

∇𝑘1+···+𝑘𝑛𝑔(𝑥(𝑡))
(
¤𝑥(𝑡), . . . , ¤𝑥(𝑡)︸           ︷︷           ︸

𝑘1 terms

, . . . , 𝑥 (𝑛) (𝑡), . . . , 𝑥 (𝑛) (𝑡)︸                   ︷︷                   ︸
𝑘𝑛 terms

)
,

where the summation is taken over all different nonnegative solutions (𝑘1, . . . , 𝑘𝑛)
of the linear Diophantine equation

∑𝑛
𝑖=1 𝑖𝑘𝑖 = 𝑛. Now we prove (9). We start with

𝑛 = 1, for which the result holds. Assume that the result is true for lower orders than
𝑛. Then we apply Faà di Bruno’s formula (11) to derive

𝑥 (𝑛) (𝑡) = [ 𝑓 (𝑥)] (𝑛−1) (𝑡)

=
∑︁

𝑘1 ,...,𝑘𝑛−1≥0∑𝑛−1
𝑖=1 𝑖𝑘𝑖=𝑛−1

(𝑛 − 1)!∏𝑛−1
𝑖=1 𝑘𝑖!(𝑖!)𝑘𝑖

∑︁
𝜏𝑖

𝑛−1∏
𝑖=1

(
𝑖!

𝜏𝑖!𝜎(𝜏𝑖)

) 𝑘𝑖
∇𝑘1+···+𝑘𝑛−1 𝑓

(
𝐹 (𝜏1)𝑘1 , . . . , 𝐹 (𝜏𝑛−1)𝑘𝑛−1

)
(𝑥(𝑡))

=
∑︁

𝑘1 ,...,𝑘𝑛−1≥0∑𝑛−1
𝑖=1 𝑖𝑘𝑖=𝑛−1

𝑛!
∇𝑘1+···+𝑘𝑛−1 𝑓

(
𝐹 (𝜏1)𝑘1 , . . . , 𝐹 (𝜏𝑛−1)𝑘𝑛−1

)
(𝑥(𝑡))(

𝑛
∏𝑛−1

𝑖=1 (𝜏𝑖!)𝑘𝑖
) (∏𝑛−1

𝑖=1 𝑘𝑖!𝜎(𝜏𝑖)𝑘𝑖
)
]

=
∑︁
𝜏∈T𝑛

𝑛!
𝜏!𝜎(𝜏) 𝐹 (𝜏) (𝑥(𝑡)),

where in the first line, the first summation is taken over all nonnegative integers
(𝑘𝑖)𝑖=1,...,𝑛−1 satisfying

∑𝑛−1
𝑖=1 𝑖𝑘𝑖 = 𝑛 − 1, the second summation is taken over

all trees (𝜏𝑖)𝑖=1,...,𝑛−1 with |𝜏𝑖 | = 𝑖; in the last line 𝜏 = [𝜏𝑘1
1 , . . . , 𝜏

𝑘𝑛−1
𝑛−1 ] so that

|𝜏 | = 1 + ∑𝑛−1
𝑖=1 𝑖𝑘𝑖 = 𝑛. ⊓⊔

The next lemma presents a tree expansion for 𝑔(𝑥(𝑡)), with 𝑔 ∈ C∞ (R𝑑 ,R𝑑′ ), 𝑑, 𝑑′ ≥
1. For this purpose, we consider the elementary differential 𝐹𝑔 : T → C∞ (R𝑑 ,R𝑑′ )
of 𝑔 defined by

𝐹𝑔 (∅) := Id, 𝐹𝑔 (•) := 𝑔, and 𝐹𝑔 (𝜏) := ∇𝑚𝑔(𝐹 (𝜏1), . . . , 𝐹 (𝜏𝑚)), 𝜏 = [𝜏1, . . . , 𝜏𝑚],
(12)

with ∇0𝑔 = 𝑔 and 0! = 1.

Lemma 2 Let 𝑔 ∈ C∞ (R𝑑 ,R𝑑′ ). We have
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𝑔(𝑥(𝑡)) =
∑︁

𝜏∈T\{∅}

(𝑡 − 𝑡0) |𝜏 |−1

( |𝜏 | − 1)! 𝛼(𝜏)𝐹𝑔 (𝜏) (𝑥0). (13)

Proof. Letting 𝑥(𝑡) = (𝑥𝑖 (𝑡))1≤𝑖≤𝑑 , 𝑥0 = (𝑥𝑖 (0))1≤𝑖≤𝑑 , and denoting by (𝑥(𝑡) −
𝑥0)⊗𝑚 the matrix

(
(𝑥𝑖1 (𝑡) − 𝑥𝑖1 (0)), . . . , (𝑥𝑖𝑚 (𝑡) − 𝑥𝑖𝑚 (0))

)
1≤𝑖1 ,...,𝑖𝑚≤𝑑 , by (8) and

Definition 3 we have

𝑔(𝑥(𝑡)) =
∞∑︁

𝑚=0

1
𝑚!

∇𝑚𝑔(𝑥0)
(
(𝑥(𝑡) − 𝑥0)⊗𝑚

)
=

∞∑︁
𝑚=0

1
𝑚!

∑︁
𝜏1 ,...𝜏𝑚∈T\{∅}

(𝑡 − 𝑡0) |𝜏1 |+...+|𝜏𝑚 |∏𝑚
𝑖=1 (𝜏𝑖!𝜎(𝜏𝑖))

∇𝑚𝑔 (𝐹 (𝜏1) , . . . , 𝐹 (𝜏𝑚)) (𝑥0)

=

∞∑︁
𝑚=0

∑︁
𝜏1 ,...𝜏𝑚∈T\{∅}

|𝜏 |∏ 𝑗 𝑘 𝑗 !
𝑚!𝜏!𝜎(𝜏) (𝑡 − 𝑡0) |𝜏 |−1∇𝑚𝑔 (𝐹 (𝜏1) , . . . , 𝐹 (𝜏𝑚)) (𝑥0),

where the indexes 𝑘1, 𝑘2, . . . count equal trees among 𝜏1, . . . , 𝜏𝑚. From the fact that
there are

( 𝑚
𝑘1 ,𝑘2 ,...

)
possibilities for writing the tree 𝜏 in the form [𝜏1, . . . , 𝜏𝑚], it then

follows that

𝑔(𝑥(𝑡)) =
∑︁

𝜏∈T\{∅}
|𝜏 | (𝑡 − 𝑡0) |𝜏 |−1

𝜏!𝜎(𝜏) ∇𝑚𝑔 (𝐹 (𝜏1) , . . . , 𝐹 (𝜏𝑚)) (𝑥0)

=
∑︁

𝜏∈T\{∅}

(𝑡 − 𝑡0) |𝜏 |−1

( |𝜏 | − 1)! 𝛼(𝜏)∇𝑚𝑔 (𝐹 (𝜏1) , . . . , 𝐹 (𝜏𝑚)) (𝑥0),

where 𝛼(𝜏) is defined in (10). Then, we get (13). ⊓⊔

In particular, when 𝑔 is the function 𝑓 in ODE (1), then 𝐹 𝑓 = 𝐹 and

𝑓 (𝑥(𝑡)) =
∑︁

𝜏∈T\{∅}

(𝑡 − 𝑡0) |𝜏 |−1

( |𝜏 | − 1)! 𝛼(𝜏)𝐹 (𝜏) (𝑥0),

which in turn proves that the Butcher series (8) solves (1).

3 Labelled trees

Our random generation of Butcher trees will use labelled trees, which provide a
combinatorial interpretation of the coefficients appearing in (8). By convention, the
empty tree ∅ is labelled by 0 and the root of any non-empty tree is labelled by 1.

Definition 4 [3, (2.5e)] For 𝑛 ≥ 1 we denote by T♯
𝑛 the set of labelled rooted trees

𝜏 of order 𝑛 with vertex sequence 𝑉 = {1, . . . , 𝑛}, written as 𝜏 = (𝑉, 𝐸, 1), such
that the label of every vertex is smaller than that of each of its children. We also let
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T♯ :=
⋃

𝑛≥1 T♯
𝑛, and define the canonical forgetful map 𝜄 : T♯ → T by “forgetting”

the labeling information contained in a labeled tree.

We note that the labelling of a tree 𝜏 is not necessarily unique. By abuse of notation,
we shall omit the map 𝜄 when there is no ambiguity, in which case we will simply
use 𝜏 to denote 𝜄(𝜏) for 𝜏 ∈ T♯.

Proposition 2. [3, Theorem 2.5F] The number of all possible labellings of a rooted
tree 𝜏 = (𝑉, 𝐸, •) is given by the coefficient 𝛼(𝜏) defined in (10).

As a consequence of Proposition 2, since the labelling of a tree does not affect its
elementary differential, we can rewrite (8) and (9) respectively as

𝑥(𝑡) =
∑︁
𝜏∈T♯

(𝑡 − 𝑡0) |𝜏 |
|𝜏 |! 𝐹 (𝜏) (𝑥0) and 𝑥 (𝑛) (𝑡) =

∑︁
𝜏∈T♯

𝑛

𝐹 (𝜏) (𝑥(𝑡)), 𝑛 ≥ 1, (14)

see also [12, Theorem II.2.6]. Next, we define a new product on labelled trees that
generalizes the beta-product [3, Section 2.1], cf. § 1.5 of [4].

Definition 5 (Grafting product) Let 𝜏1 = (𝑉1, 𝐸1, 1) and 𝜏2 = (𝑉2, 𝐸2, 1) be two
labelled trees, and let 𝑙 ∈ 𝑉1 = {1, . . . , |𝜏1 |}.
• The grafting product with label 𝑙 of 𝜏1 and 𝜏2, denoted by 𝜏1 ∗𝑙 𝜏2, is the tree of

order |𝜏1 | + |𝜏2 | formed by grafting (attaching) 𝜏2 from its root to the vertex 𝑙 of
𝜏1, so that the vertices of 𝜏2 become descendants of the vertex 𝑙.

• The tree 𝜏1 ∗𝑙 𝜏2 is labelled by keeping the labels of 𝜏1, and by adding |𝜏1 | to the
labels of 𝜏2.

For any labelled tree 𝜏, we let ∅ ∗0 𝜏 = 𝜏 ∗𝑙 ∅ = 𝜏 for all 0 ≤ 𝑙 ≤ |𝜏 |, and keep the
labels of 𝜏.

Remark 1 (i) The beta-product is a grafting product with label 1, as the second
tree is always attached to the root of the first one.

(ii) The 𝐵+ operation can also be expressed by grafting-products, by forgetting
labelling. For example, we have [𝜏1, 𝜏2] = • ∗1 𝜏1 ∗1 𝜏2 = • ∗1 𝜏2 ∗1 𝜏1.

We note that any labelling is equivalent to a sequence of grafting of dots. In the next
lemma we let △0 := {0}, and

△𝑛 := {(𝑙1, . . . , 𝑙𝑛) : 1 ≤ 𝑙𝑖 ≤ 𝑖, 𝑖 = 1, . . . , 𝑛}, 𝑛 ≥ 1.

Lemma 3 (i) Given 𝜏 a labelled tree with |𝜏 | ≥ 2, there is a unique sequence
(𝑙𝑖)1≤𝑖≤ |𝜏 |−1 in △ |𝜏 |−1 such that

𝜏 = • ∗𝑙1 • ∗𝑙2 · · · ∗𝑙|𝜏 |−1
•. (15)

(ii) For any 𝑛 ≥ 2, the map which sends 𝜏 ∈ T♯
𝑛 to the sequence (𝑙1, . . . , 𝑙𝑛−1)

determined by (15) is a bijection from T♯
𝑛 to △𝑛−1.
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Proof. We prove (𝑖) by induction on |𝜏 |. The case |𝜏 | = 2 is verified since 𝜏 = • ∗1 •.
Suppose that (15) holds for all trees 𝜏 such that |𝜏 | = 𝑛, and let 𝜏 be a labelled tree
with |𝜏 | = 𝑛 + 1. Denote by 𝜏− the subtree obtained by removing the vertex with
label 𝑛 + 1 from 𝜏. It is clear from Definition 4 that the parent of the vertex 𝑛 + 1 has
label 𝑙 not bigger than 𝑛, hence 𝜏 = 𝜏− ∗𝑙 • has the form (15). The converse of (𝑖)
holds, since for each 𝑛 ≥ 2, the sequence (𝑙1, . . . , 𝑙𝑛−1) ∈ △𝑛−1 determines a unique
tree • ∗𝑙1 • ∗𝑙2 · · · ∗𝑙𝑛−1

• in T♯
𝑛. Assertion (𝑖𝑖) follows from (𝑖). ⊓⊔

The next result is a consequence of Lemma 3-(𝑖𝑖).

Corollary 1 The number of labelled trees of order 𝑛 ≥ 1 is given by

|T♯
𝑛 | =

∑︁
𝜏∈T♯

𝑛

1 =
∑︁
𝜏∈T𝑛

𝛼(𝜏) = (𝑛 − 1)!.

Proof. For completeness, we provide a proof that does not rely on Lemma 3-(𝑖𝑖).
By (9) and (10) we have

𝑥 (𝑛) (𝑡0) =
∑︁
𝜏∈T𝑛

𝛼(𝜏)𝐹 (𝜏) (𝑥0).

Letting 𝑓 (𝑥) := 𝑒𝑥 , 𝑥0 := 0 and 𝑡0 := 0, by (7) we have 𝐹 (𝜏) = 𝑓 𝑛 for all 𝜏 ∈ T𝑛.
Hence, the solution 𝑥(𝑡) = − log(1 − 𝑡) of (1) satisfies 𝑥 (𝑛) (0) = ∑

𝜏∈T𝑛
𝛼(𝜏), and it

remains to note that 𝑥 (𝑛) (𝑡) = (𝑛 − 1)!(1 − 𝑡)−𝑛, 𝑛 ≥ 1. □

4 Random sampling of Butcher trees

In this section we discuss the representation of solutions to (1) by the random
generation of Butcher trees.

Definition 6 Given (𝑝𝑛)𝑛≥0 a probability distribution on N such that 𝑝𝑛 > 0 for all
𝑛 ≥ 0, we generate a random labelled tree T by uniform attachment, as follows.

i) Choose the order of T with the distribution P( |T | = 𝑛) = 𝑝𝑛, 𝑛 ≥ 0;
ii) Start from a root • with the label 1;

iii) Starting from a tree 𝜏 with order 𝑙, 1 ≤ 𝑙 ≤ 𝑛− 1, attach a new vertex with label
𝑙 + 1 to an independently and uniformly chosen vertex of 𝜏, and repeat this step
inductively until we reach the given order 𝑛.

For 𝑛 ≥ 0, we let

𝑞
♯
𝑛 (𝜏) := P (T = 𝜏 | |T | = 𝑛) , 𝜏 ∈ T♯

𝑛,

denote the conditional distribution of T given its size is 𝑛 ≥ 0. We note that 𝜄(T ) is
T-valued, and its conditional distribution on T is given by
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𝑞𝑛 (𝜏) := P (𝜄(T ) = 𝜏 | |T | = 𝑛) =
∑︁
𝜏′ ∈T♯𝑛
𝜄 (𝜏′ )=𝜏

𝑞
♯
𝑛 (𝜏′), 𝜏 ∈ T𝑛. (16)

By Lemma 3-(𝑖𝑖), the random labelled tree T generated in Definition 6 takes the
form

T = • ∗𝜂1
• ∗𝜂2 · · · ∗𝜂|T |−1

•,

where (𝜂1, . . . , 𝜂 | T |−1) is a uniform random variable taking values in △ | T |−1.

Theorem 1 Assume that there exists 𝐶 > 0 such that

|∇𝑚 𝑓 (𝑥0) | ≤ 𝐶, for all 𝑚 ≥ 0. (17)

Then, the solution of the ODE (1) admits the probabilistic expression

𝑥(𝑡) = E
[
(𝑡 − 𝑡0) | T |𝐹 (T )(𝑥0)

( |T | ∨ 1)𝑝 | T |

]
, 𝑡 ∈ [𝑡0, 𝑡0 + 1/𝐶). (18)

Proof. It follows from Lemma 3-(𝑖𝑖) that given |T | = 𝑛, the random tree T is
uniformly distributed in T♯

𝑛, i.e. we have

𝑞
♯
𝑛 (𝜏) = P (T = 𝜏 | |T | = 𝑛) = 1

|T♯
𝑛 |

=
1

((𝑛 − 1) ∨ 0)! ,

in which case 𝑞
♯
𝑛 (𝜏) is independent of 𝜏 ∈ T♯

𝑛, and the conditional probability (16)
is given by

𝑞𝑛 (𝜏) =
𝛼(𝜏)

((𝑛 − 1) ∨ 0)! , 𝜏 ∈ T.

Hence, we have

E
[
(𝑡 − 𝑡0) | T |𝐹 (T )(𝑥0)

( |T | ∨ 1)𝑝 | T |

]
=

∞∑︁
𝑛=0

(𝑡 − 𝑡0)𝑛𝑝𝑛
(𝑛 ∨ 1)𝑝𝑛

∑︁
𝜏∈T♯

𝑛

𝑞
♯
𝑛 (𝜏)E [𝐹 (T )(𝑥0) | |T | = 𝑛,T = 𝜏]

=
∑︁
𝜏∈T♯

(𝑡 − 𝑡0) |𝜏 |
|𝜏 |! 𝐹 (𝜏) (𝑥0)

= 𝑥(𝑡), (19)

by the first equation of (14). From the assumption (17), we have |𝐹 (𝜏) (𝑥0) | ≤ 𝐶 |𝜏 |

for all 𝜏 ∈ T such that |𝜏 | ≥ 1. The 𝑞-𝑡ℎ integrability of (19), 𝑞 ≥ 1, can be implied
by the bound

E
[���� (𝑡 − 𝑡0) | T |𝐹 (T )(𝑥0)

( |T | ∨ 1)𝑝 | T |

����𝑞] ≤ |𝑥0 |𝑞

𝑝
𝑞−1
0

+
∞∑︁
𝑛=1

(𝐶 (𝑡 − 𝑡0))𝑛𝑞

𝑛𝑞 𝑝
𝑞−1
𝑛

∑︁
𝜏∈T♯

𝑛

𝑞
♯
𝑛 (𝜏)
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=
|𝑥0 |𝑞

𝑝
𝑞−1
0

+
∞∑︁
𝑛=1

(𝐶 (𝑡 − 𝑡0))𝑛𝑞

𝑛𝑞 𝑝
𝑞−1
𝑛

, (20)

which is finite for 𝑞 = 1, provided that 𝐶 (𝑡 − 𝑡0) < 1. □

The random generation of Butcher trees in Theorem 1 is implemented in the following
Mathematica code:

MCsample[f_, t_, x0_, dist_] := (n = RandomVariate[dist];
If[n == 0, Return[x0/PDF[dist, 0]],
If[n == 1, Return[t*f[x0]/PDF[dist, 1]], g = Graph[{1 -> 2}];
g = Graph[g, VertexLabels -> {1 -> D[f[ y], y]}];
g = Graph[g, VertexLabels -> {2 -> f[y]}]; m = 1;
While[m <= (n - 2), l = VertexCount[g];
j = RandomVariate[DiscreteUniformDistribution[{1, l}]];
g = VertexAdd[g, {l + 1}];
g = Graph[g, VertexLabels -> {l + 1 -> f[ y]}];
lab = Sort[List @@@ PropertyValue[g, VertexLabels]][[j]][[2]];
g = Graph[g, VertexLabels -> {j -> D[lab, y]}];
g = EdgeAdd[g, j -> l + 1]; m++];
sample = Product[ff[[2]] , {ff,
List @@@ PropertyValue[g, VertexLabels]}] /. {y -> x0};

Return[sample*tˆn/PDF[dist, n]/n]]]);
f[y_] := Exp[y]
MCsample[f, t, x0, GeometricDistribution[0.5]]

5 Connection with semilinear PDEs

In this section, we consider the case where the function 𝑓 in (1) involves a linear
component, i.e. 𝑓 (𝑥) = 𝐴𝑥 + 𝑔(𝑥), where 𝐴 is a linear operator on R𝑑 , in which case
the ODE (1) becomes {

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝑔(𝑥(𝑡)), 𝑡 ∈ (𝑡0, 𝑇],
𝑥(𝑡0) = 𝑥0 ∈ R𝑑 ,

(21)

and can be rewritten in integral form as

𝑥(𝑡) = 𝑒 (𝑡−𝑡0 )𝐴𝑥0 +
∫ 𝑡

𝑡0

𝑒 (𝑡−𝑠)𝐴𝑔(𝑥(𝑠))𝑑𝑠, 𝑡 ∈ (𝑡0, 𝑇] .

By [18, Theorem 4.5] we have

𝑥(𝑡) =
∑︁
𝜏∈T

𝛼(𝜏)𝜙 |𝜏 | (𝑡, 𝐴)𝐹𝑔 (𝜏) (𝑥0), (22)

where 𝐹𝑔 is defined in (12), with 𝜙0 (𝑡, 𝑎) := 𝑒 (𝑡−𝑡0 )𝑎 and

𝜙𝑛 (𝑡, 𝑎) :=
∫
𝑡0≤𝑡1<· · ·<𝑡𝑛≤𝑡

𝑒 (𝑡−𝑡𝑛 )𝑎𝑑𝑡𝑛 · · · 𝑑𝑡1 =

∫ 𝑡

𝑡0

𝑒 (𝑡−𝑠)𝑎
(𝑠 − 𝑡0)𝑛−1

(𝑛 − 1)! 𝑑𝑠, (23)
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𝑛 ≥ 1, 𝑡 ≥ 𝑡0. In addition, from the fact that labelling does not change elementary
differentials, the expansion (22) can be rewritten as the exponential Butcher series

𝑥(𝑡) =
∑︁
𝜏∈T♯

𝜙 |𝜏 | (𝑡, 𝐴)𝐹𝑔 (𝜏) (𝑥0). (24)

Given (𝑁𝑡 )𝑡≥𝑡0 a standard Poisson process with

P(𝑁𝑡 = 𝑛) = 𝑒−(𝑡−𝑡0 ) (𝑡 − 𝑡0)𝑛
𝑛!

, 𝑡 ≥ 𝑡0, 𝑛 ≥ 0,

and increasing sequence of jump times (𝑇𝑖)𝑖≥1, and let 𝑇0 = 𝑡0, let T𝑡 denote the
random tree constructed in Definition 6, using the Poisson distribution 𝑝𝑛 = P(𝑁𝑡 =

𝑛), 𝑛 ≥ 0. In what follows, we assume that 𝐴 is a stochastic matrix, that is, a square
matrix with non-negative entries where each column sums up to 1, which generates
a continuous-time Markov chain 𝑋 = (𝑋𝑡 )𝑡≥𝑡0 , independent of (𝑁𝑡 )𝑡≥𝑡0 .

In Theorem 2 we propose a canonical way to evaluate the solution to the semilinear
equation (21) as an expected value over random trees. It is worth noting that the
decomposition 𝑓 (𝑥) = 𝐴𝑥 + 𝑔(𝑥) can be used for a generalization to semilinear
parabolic PDEs, in which case 𝐴 is an elliptic operator that can generate a Markov
process 𝑋 = (𝑋𝑡 )𝑡≥𝑡0 , and the discrete {1, . . . , 𝑑}-valued index 𝑖 is replaced by the
spatial variable of the PDE. This can also be regarded as a randomization of the
exponential Butcher series (22), and as a nonlinear extension of the probabilistic
representation of [6] which uses linear chains for linear PDEs. In the special case
𝐴 = 0, this probabilistic representation recovers (18) by generating tree sizes via the
Poisson distribution (𝑝𝑛)𝑛≥0 with parameter 𝑡 − 𝑡0.

Theorem 2 Assume that 𝐴 is a stochastic matrix and there exists 𝐶 > 0 such that

|∇𝑚𝑔(𝑥0) | + |𝐴𝑥0 | + |𝐴| ≤ 𝐶, for all 𝑚 ≥ 0. (25)

Then, for 𝑡 ∈ [𝑡0, 𝑡0 + 1/𝐶) we have

𝑥𝑖 (𝑡) = 𝑒 (𝑡−𝑡0 )E
[
(( |T𝑡 | − 1) ∨ 0)!

(
𝐹𝑔 (T𝑡 ) (𝑥0)

)
𝑋𝑡−𝑇|T𝑡 |

1{𝑇|T𝑡 |≤𝑡 }
��𝑋𝑡0 = 𝑖

]
, (26)

𝑖 = 1, . . . , 𝑑.

Proof. From the fact that the sequence (𝑇𝑖 − 𝑇𝑖−1)𝑖=1,...,𝑛 is i.i.d. with common
exponential distribution, for any integrable function ℎ on the 𝑛-dimensional simplex

△𝑛
𝑡 := {(𝑡1, . . . , 𝑡𝑛) : 𝑡0 ≤ 𝑡1 < · · · < 𝑡𝑛 ≤ 𝑡},

we have

E[1{𝑁𝑡=𝑛}ℎ(𝑇1, . . . , 𝑇𝑛)]

= E

[
1{𝑡0<𝑇𝑛≤𝑡<𝑇𝑛+1 }ℎ

(
𝑇1, . . . , 𝑡0 +

𝑛∑︁
𝑖=1

(𝑇𝑖 − 𝑇𝑖−1)
)]
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=

∫
0<𝑟1+···+𝑟𝑛≤𝑡−𝑡0

ℎ

(
𝑡0 + 𝑟1, . . . , 𝑡0 +

𝑛∑︁
𝑖=1

𝑟𝑖

)
𝑒−(𝑟1+···+𝑟𝑛 )∫ ∞

𝑡−𝑡0−(𝑟1+···+𝑟𝑛 )
𝑒−𝑟𝑛+1𝑑𝑟𝑛+1𝑑𝑟𝑛 · · · 𝑑𝑟1

= 𝑒−(𝑡−𝑡0 )
∫

0<𝑟1+···+𝑟𝑛≤𝑡−𝑡0
ℎ

(
𝑡0 + 𝑟1, . . . , 𝑡0 +

𝑛∑︁
𝑖=1

𝑟𝑖

)
𝑑𝑟𝑛 · · · 𝑑𝑟1

= 𝑒−(𝑡−𝑡0 )
∫
𝑡0≤𝑡1<· · ·<𝑡𝑛≤𝑡

ℎ(𝑡1, . . . , 𝑡𝑛)𝑑𝑡𝑛 · · · 𝑑𝑡1,

where we applied the change of variables 𝑡𝑖 = 𝑡0 + 𝑟1 + · · · + 𝑟𝑖 in the last equality.
Taking ℎ(𝑡1, . . . , 𝑡𝑛) := 𝑒 (𝑡−𝑡𝑛 )𝑎, 𝑡0 ≤ 𝑡1 < · · · < 𝑡𝑛 ≤ 𝑡, it follows that (23) can be
rewritten as

𝜙𝑛 (𝑡, 𝑎) = 𝑒𝑡−𝑡0E
[
1{𝑁𝑡=𝑛}𝑒

(𝑡−𝑇𝑛 )𝑎] , 𝑛 ≥ 0.

Next, by construction of the continuous-time Markov chain (𝑋𝑡 )𝑡≥𝑡0 with generator
𝐴, we have(

𝑒 (𝑡−𝑡0 )𝐴𝑥
)
𝑖
= E

[
𝑥𝑋𝑡

��𝑋𝑡0 = 𝑖
]
, 𝑖 = 1, . . . , 𝑑, 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 .

Finally, as the random tree T𝑡 is constructed with the Poisson random size 𝑁𝑡 and
independent uniform attachment, we have

|T𝑡 | = 𝑁𝑡 , P (T𝑡 = 𝜏 | |T𝑡 | = 𝑛) = 1

|T♯
𝑛 |
, 𝜏 ∈ T♯

𝑛.

Combining the above with (24), we get

𝑥𝑖 (𝑡) = 𝑒𝑡−𝑡0
∞∑︁
𝑛=0

∑︁
𝜏∈T♯

𝑛

E
[
1{𝑁𝑡=𝑛}

(
𝑒 (𝑡−𝑇𝑛 )𝐴𝐹𝑔 (𝜏) (𝑥0)

)
𝑖

]
= 𝑒𝑡−𝑡0

∞∑︁
𝑛=0

∑︁
𝜏∈T♯

𝑛

E
[
1{𝑁𝑡=𝑛}

(
𝐹𝑔 (𝜏) (𝑥0)

)
𝑋𝑡−𝑇𝑛+𝑡0

��𝑋𝑡0 = 𝑖
]

= 𝑒𝑡−𝑡0
∞∑︁
𝑛=0

∑︁
𝜏∈T♯

𝑛

E
[ (
𝐹𝑔 (𝜏) (𝑥0)

)
𝑋𝑡−𝑇𝑛+𝑡0

��𝑁𝑡 = 𝑛, 𝑋𝑡0 = 𝑖
]
P(𝑁𝑡 = 𝑛)

= 𝑒𝑡−𝑡0
∞∑︁
𝑛=0

((𝑛 − 1) ∨ 0)!P( |T𝑡 | = 𝑛)

×
∑︁
𝜏∈T♯

𝑛

E
[ (
𝐹𝑔 (𝜏) (𝑥0)

)
𝑋𝑡−𝑇𝑛+𝑡0

�� |T𝑡 | = 𝑛,T𝑡 = 𝜏, 𝑋𝑡0 = 𝑖
]
P (T𝑡 = 𝜏 | |T𝑡 | = 𝑛)

= 𝑒𝑡−𝑡0E
[
(( |T𝑡 | − 1) ∨ 0)!

(
𝐹𝑔 (T𝑡 ) (𝑥0)

)
𝑋𝑡−𝑇|T𝑡 | +𝑡0

1{𝑇|T𝑡 |≤𝑡 }
��𝑋𝑡0 = 𝑖

]
.
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By the definition (12) of 𝐹𝑔 and the bound (25), the 𝑞-𝑡ℎ integrability of (26), 𝑞 ≥ 1,
can be controlled by the bound

E
[��(( |T𝑡 | − 1) ∨ 0)!

(
𝐹𝑔 (T𝑡 ) (𝑥0)

)
𝑋𝑡−𝑇|T𝑡 | +𝑡0

��𝑞 ��𝑋𝑡0 = 𝑖
]

≤ 𝑒−(𝑡−𝑡0 ) |𝑥0 |𝑞 + E
[
1{ | T𝑡 | ≥1}

��(( |T𝑡 | − 1)!)𝑞𝐶 | T𝑡 |
��𝑞]

= 𝑒−(𝑡−𝑡0 ) |𝑥0 |𝑞 + 𝑒−(𝑡−𝑡0 )
∞∑︁
𝑛=1

(𝑛 − 1)!𝑞𝐶
𝑛𝑞

𝑛!
(𝑡 − 𝑡0)𝑛,

which is finite for 𝑞 = 1, provided that 𝐶 (𝑡 − 𝑡0) < 1. □

6 Numerical examples

In this section we consider numerical implementations of the Monte Carlo generation
of Butcher trees for problems of the form (1).

i) Let 𝑓 (𝑦) := 𝑒𝑦 , and consider the equation

¤𝑥(𝑡) = 𝑒𝑥 (𝑡 ) , 𝑥(0) = 𝑥0, 𝑡0 = 0, (27)

with solution
𝑥(𝑡) = − log(𝑒−𝑥0 − 𝑡), 𝑡 ∈ [0, 𝑒−𝑥0 ).

In this case, the moment bound (20) is sharp with 𝐶 = 𝑒𝑥0 .
ii) Let 𝑓 (𝑡, 𝑦) := 𝑦𝑡 + 𝑦2, and consider the equation

¤𝑥(𝑡) = 𝑡𝑥(𝑡) + 𝑥2 (𝑡), 𝑥(0) = 1/2, 𝑡0 = 0, (28)

with solution

𝑥(𝑡) = 𝑒𝑡
2/2

2 −
∫ 𝑡

0 𝑒𝑠
2/2𝑑𝑠

,

see Eq. (223a) in [2].

Table 1 displays the growth of computation times for the commandB[f,t,x0,t0,n]
applied to (27) with 𝑥0 = 1, and to (28) with 𝑥0 = 1/2, 𝑛 = 1, . . . , 8. For the purpose
of benchmarking, all tree generations are performed using Mathematica.

𝑛 1 2 3 4 5 6 7 8 MC (Geometric)
Eq. (27), 𝑑 = 1 0s 0s 0.1s 0.1s 0.4 0.5s 3s 21s 22s (70K samples)
Eq. (28), 𝑑 = 2 0s 0s 0s 0.2s 1s 13s 222s > 1h 164s (10K samples)

Table 1: Computation times in seconds for (8) applied to (27) and (28).
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Figure 2 compares the numerical solutions of (27) and (28) by the truncated Butcher
series expansion

𝑥(𝑡) =
∑︁
𝜏∈T
|𝜏 |≤𝑛

(𝑡 − 𝑡0) |𝜏 |
𝜏!𝜎(𝜏) 𝐹 (𝜏) (𝑥0), 𝑡 > 𝑡0,

denoted by B-𝑛, to the probabilistic representation (18), for different orders 𝑛 ≥ 1.
The Monte Carlo estimations of (18) use the geometric distribution with respectively
70, 000 and 10, 000 samples, see Table 1, so that their runtimes are comparable to
those of the Butcher series estimates. The solution of (27) is estimated using the above
codes for one-dimensional ODEs, and the solution of (28) is estimated using the
multidimensional codes presented in Section 7, after rewriting the non-autonomous
ODE (28) as a two-dimensional autonomous system.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35
t

Exact solution
B-8 Series (2.2)
B-6 Series (2.2)

Monte Carlo (4.3)

(a) Numerical solutions of (27) with 𝑥0 = 1.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1
t

Exact solution
B-7 Series (2.2)
B-5 Series (2.2)

Monte Carlo (4.3)

(b) Numerical solutions of (28) with 𝑥0 = 1/2.

Fig. 2: Comparisons of (8) vs. (18).

Next, we compare the performance of various probability distributions (𝑝𝑛)𝑛∈N in
terms of variance.

Variance analysis

(𝑖) Poisson distribution. Taking 𝑝𝑛 := 𝜆𝑛𝑒−𝜆/𝑛!, 𝑛 ≥ 0, to be the Poisson distribution
with parameter 𝜆 > 0, the variance bound (20) is given by the series

𝑥2
0
𝑝0

+
∞∑︁
𝑛=1

(𝐶 (𝑡 − 𝑡0))2𝑛

𝑛2𝑝𝑛
=
𝑥2

0
𝑝

+ 𝑒𝜆
∞∑︁
𝑛=1

(
𝐶2 (𝑡 − 𝑡0)

𝜆

)𝑛 (𝑛 − 1)!
𝑛

,

which diverges for all 𝑡 > 𝑡0.
(𝑖𝑖) Geometric distribution. Taking 𝑝𝑛 := (1 − 𝑝)𝑝𝑛, 𝑛 ≥ 0, to be the geometric
distribution with success probability 1 − 𝑝 for some 𝑝 ∈ [0, 1), the variance bound
(20) is given by the series
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𝑥2
0
𝑝0

+
∞∑︁
𝑛=1

(𝐶 (𝑡 − 𝑡0))2𝑛

𝑛2𝑝𝑛
=

𝑥2
0

1 − 𝑝
+ 1

1 − 𝑝

∞∑︁
𝑛=1

(𝐶2 (𝑡 − 𝑡0)2/𝑝)𝑛
𝑛2 , 𝑡 ∈ [𝑡0, 𝑡0+

√
𝑝/𝐶),

in which case the variance is finite.
(𝑖𝑖𝑖) Optimal distribution. Using the Lagrangian

𝑥2
0
𝑝0

+
∞∑︁
𝑛=1

(𝐶𝑡)2𝑛

𝑛2𝑝𝑛
+ 𝜁

(
1 −

∞∑︁
𝑛=0

𝑝𝑛

)
with multiplier 𝜁 , we find that the distribution that minimizes the second moment
bound (20) has the form

𝑝0 = 𝑐0𝑥0, 𝑝𝑛 = 𝑐0
(𝐶𝑡)𝑛
𝑛

, 𝑛 ≥ 1, (29)

where 𝑐0 = (𝑥0 − log(1 − 𝐶𝑡))−1 is a normalization constant, see Figure 3 in which
the moment bound (20) is plotted as a function of 𝐶 ∈ [0,√𝑝] with 𝑡 = 1 for the
distribution (29) (lower bound) and for the geometric distributions with parameters
𝑝 = 0.5, 0.75, and 𝑥0 = 1.

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1
c

p=0.5
Lower bound

(a) 𝑝 = 0.5.

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1
c

p=0.75
Lower bound

(b) 𝑝 = 0.75.

Fig. 3: Second moment lower bound.

The graphs of Figure 4 are plotted using the Poisson and geometric distributions
with respectively 100,000 and 70,000 Monte Carlo samples, in order to match the
22 seconds computation time of Figure 2-(𝑎) for (27), see Table 1.
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(a) Poisson tree size.
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(b) Geometric tree size.

Fig. 4: Numerical solution of (27) by the Monte Carlo method (18).

7 Multidimensional codes

The next Mathematica code estimates the Butcher series (8) up to a given or-
der 𝑛 ≥ 1 in the multidimensional case. The second component in the output of
B[f,t,x0,t0,n] counts the number of trees involved in the Butcher series trun-
cated up to the order 𝑛 ≥ 1.

B[f_, t_, x0__, t0_, n_] := (d = Length[x0];
If[n == 0, Return[{x0, 1}],
If[n == 1, Return[{x0 + (t - t0)*f[x0], 2}], count = 2;
sample = x0 + (t - t0)*f[x0];
g = ConstantArray[Graph[{1 -> 2}], d]; ii = Array[i, n];
For[ii[[1]] = 1, ii[[1]] <= d, ii[[1]]++,
g[[ii[[1]]]] =
Graph[g[[ii[[1]]]],
VertexLabels -> {1 -> D[f[yy], yy[[ii[[1]]]]]}];
g[[ii[[1]]]] =
Graph[g[[ii[[1]]]], VertexLabels -> {2 -> f[yy][[ii[[1]]]]}];
m = 1; count += 1;
sample += 1/2*(t - t0)ˆVertexCount[g[[ii[[1]]]]]*
Product[ff[[2]] , {ff,
List @@@
PropertyValue[g[[ii[[1]]]], VertexLabels]}] /. {yy ->
x0}]; list = g;

While[m <= (n - 2), temp = list; list = {};
Do[l = VertexCount[g];
For[j = 1, j <= l, j++, gg = VertexAdd[g, {l + 1}];
lab = Sort[List @@@ PropertyValue[gg, VertexLabels]][[j]][[
2]]; For[ii[[l]] = 1, ii[[l]] <= d, ii[[l]]++,
gg = Graph[gg,
VertexLabels -> {l + 1 -> f[ yy][[ii[[l]]]]}];
gg = Graph[gg, VertexLabels -> {j -> D[lab, yy[[ii[[l]]]]]}];
gg = EdgeAdd[gg, j -> l + 1];
GraphPlot[gg,
PlotStyle -> {FontSize -> 20, FontColor -> Red}];
count += 1;
sample += (t - t0)ˆ(l + 1)/(l + 1)!*
Product[ff[[2]] , {ff,
List @@@ PropertyValue[gg, VertexLabels]}] /. {yy ->
x0}; list = Append[list, gg]]], {g, temp}]; m++];

Return[{sample, count}]]]);
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x0 = {0, 0.5}; t0 = 0; t1 = 1.3885;
f[y__] := {1, y[[1]]*y[[2]] + y[[2]]ˆ2}
B[f, t, x0, t0, 4]

The next Mathematica code generates a single random Butcher tree sample in (18)
for a multidimensional ODE.

MCsample[f_, t_, x0_, t0_, dist_] := (d = Length[x0];
n = RandomVariate[dist];
If[n == 0, Return[x0/PDF[dist, 0]],
If[n == 1, Return[(t - t0)*f[x0]/PDF[dist, 1]],
g = ConstantArray[Graph[{1 -> 2}], d]; ii = Array[i, n];
sample = 0;
For[ii[[1]] = 1, ii[[1]] <= d, ii[[1]]++,
g[[ii[[1]]]] =
Graph[g[[ii[[1]]]],
VertexLabels -> {1 -> D[f[yy], yy[[ii[[1]]]]]}];
g[[ii[[1]]]] =
Graph[g[[ii[[1]]]], VertexLabels -> {2 -> f[yy][[ii[[1]]]]}];
sample += (t - t0)ˆ2/PDF[dist, 2]/2*
Product[ff[[2]] , {ff,
List @@@
PropertyValue[g[[ii[[1]]]], VertexLabels]}] /. {yy ->
x0}]; If[n == 2, Return[sample]]; sample = 0; list = g;

m = 1; While[m <= (n - 2), temp = list; list = {};
Do[l = VertexCount[g];
j = RandomVariate[DiscreteUniformDistribution[{1, l}]];
gg = VertexAdd[g, {l + 1}];
lab = Sort[List @@@ PropertyValue[gg, VertexLabels]][[j]][[2]];
For[ii[[l]] = 1, ii[[l]] <= d, ii[[l]]++,
gg = Graph[gg, VertexLabels -> {l + 1 -> f[ yy][[ii[[l]]]]}];
gg = Graph[gg, VertexLabels -> {j -> D[lab, yy[[ii[[l]]]]]}];
gg = EdgeAdd[gg, j -> l + 1];
GraphPlot[gg,
PlotStyle -> {FontSize -> 20, FontColor -> Red}];
If[m == (n - 2),
sample +=
Product[ff[[2]] , {ff,
List @@@ PropertyValue[gg, VertexLabels]}] /. {yy ->
x0}]; list = Append[list, gg]], {g, temp}]; m++];

Return[sample*(t - t0)ˆn/PDF[dist, n]/n]]]);
x0 = {0, 0.5}; t0 = 0; t1 = 1.3885;
f[y__] := {1, y[[1]]*y[[2]] + y[[2]]ˆ2}
MCsample[f, t, x0, t0, GeometricDistribution[0.5]]

Acknowledgements This research is supported by the Ministry of Education, Singapore, under
its Tier 1 Grant RG103/23. The work of Q. Huang is supported by the Start-Up Research Fund
of Southeast University under Grant No. RF1028624194 and the Jiangsu Provincial Scientific
Research Center of Applied Mathematics under Grant No. BK20233002.

References

1. J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. J. Austral. Math.
Soc., 3:185–201, 1963.

2. J.C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons, Ltd.,
Chichester, third edition, 2016.

3. J.C. Butcher. B-Series: Algebraic Analysis of Numerical Methods, volume 55 of Springer
Series in Computational Mathematics. Springer, Cham, 2021.



20 Qiao Huang and Nicolas Privault

4. F. Chapoton and M. Livernet. Pre-Lie algebras and the rooted trees operad. Internat. Math.
Res. Notices, 8:395–408, 2001.

5. G.M. Constantine and T.H. Savits. A multivariate Faa di Bruno formula with applications.
Trans. Amer. Math. Soc., 348(2):503–520, 1996.

6. R.C. Dalang, C. Mueller, and R. Tribe. A Feynman-Kac-type formula for the deterministic and
stochastic wave equations and other P.D.E.’s. Trans. Amer. Math. Soc., 360(9):4681–4703,
2008.

7. R. Dascaliuc, N. Michalowski, E. Thomann, and E.C. Waymire. Complex Burgers equation:
a probabilistic perspective. In Sojourns in probability theory and statistical physics. I. Spin
glasses and statistical mechanics, a Festschrift for Charles M. Newman, volume 298 of Springer
Proc. Math. Stat., pages 138–170. Springer, Singapore, 2019.

8. R. Dascaliuc, T.N. Pham, E. Thomann, and E.C. Waymire. Doubly stochastic Yule cascades
(Part I): The explosion problem in the time-reversible case. J. Funct. Anal., 284(1):Paper No.
109722, 25, 2023.

9. R. Dascaliuc, T.N. Pham, E. Thomann, and E.C. Waymire. Doubly stochastic Yule cascades
(part II): The explosion problem in the non-reversible case. Ann. Inst. Henri Poincaré Probab.
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