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Abstract The main goal of this paper is to provide an algorithm for the random
sampling of Butcher trees appearing in the numerical solution of ordinary differential
equations (ODEs). This algorithm complements and simplifies a recent approach to
the probabilistic representation of ODE solutions, by removing the need to generate
random branching times. The random sampling of trees is compared to the finite
order truncation of Butcher series in numerical experiments.
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1 Introduction

Butcher series [1], [2] are used to represent the solutions of ordinary differential
equations (ODEs) by combining rooted tree enumeration with Taylor expansions,
see e.g. Chapters 4-6 of [10], and [11] and references therein for applications to
geometric numerical integration. Given f : RY — R? a smooth function and t < T,
consider the d-dimensional autonomous ODE problem

{x(r) = f(x(1), 1€ (,T], (1)

x(l‘o) =Xp € RY.

If the solution x(¢) is sufficiently smooth at ¢ = ¢, Taylor’s expansion yields

Qiao Huang
School of Mathematics, Southeast University, Nanjing 211189, P.R. China, e-mail: giao.huang@
seu.edu.cn

Nicolas Privault
School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang
Link, Singapore 637371, e-mail: nprivault@ntu.edu.sg


qiao.huang@seu.edu.cn
qiao.huang@seu.edu.cn
nprivault@ntu.edu.sg

2 Qiao Huang and Nicolas Privault

10)* d*!
k! dsk-1

X(0) = X0+ (1~ 10) £ (¥(10)) + Z - fEe @

for small time ¢ — #y. The series (2) can be rewritten using the “elementary differen-
tials”
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as the expansion
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which is known to admit a graph-theoretical expression as the Butcher series
t— [0)| 7|
=35 Y10 by (o), @

over rooted trees 7, where F(7) represents elementary differentials, and o (1), 7!
respectively represent the symmetry and factorial of the tree 7, see Section 2 for
definitions. The series (4) can be used to estimate ODE solutions by expanding x(t)
into a sum over trees up to a finite order. However, the generation of high order trees
is computationally expensive.

In this paper, we consider the numerical estimation of the series (4) using Monte
Carlo generation of random trees and branching processes, which are classical prob-
abilistic tools that have been the object of extensive studies, see for example [23],
[24]. Although Monte Carlo estimators cannot compete with classical Runge-Kutta
schemes, they represent an alternative to the truncation of series, and they allow
for estimates whose precision improves when the number of iterations increases.
This approach is also motivated by related constructions extending the use of the
Feynman-Kac formula to the numerical estimation of the solutions of fully nonlin-
ear partial differential equations by stochastic branching mechanisms and stochastic
cascades, see [22], [15], [19], [17], [6], [7], [13], [8], [9], [20].

Here, in comparison with [20], we present a direct and simpler approach to the
random generation of Butcher trees that does not require the use of random branching
times. From a simulation point of view, this amounts to estimating (4) as an expected
value, by generating random trees 7~ having a conditional probability distribution of
the form .

P(T=7|T1=n) =
tlo(7)
over rooted trees 7 of size |t| = n > 0, and (Cn)nZO is a sequence of positive
numbers. More precisely, we construct a random tree 7~ whose size complies with a
probability distribution (p,),>0 on N, such that the solution of the ODE (1) admits
the following probabilistic representation:
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see Theorem 1. The Monte Carlo implementation of (5) allows us to estimate x(7)
at a given t > o within a (possibly finite) time interval. A major difference with
the expansion (4) is that the Monte Carlo method proceeds iteratively by randomly
sampling trees of arbitrary orders, therefore avoiding the evaluation of (4) at a fixed
order. In comparison to the probabilistic representation of ODE solutions proposed
in [21], the present algorithm does not require the generation of sequences of random
branching times.

In Section 5 we extend our approach to semilinear ODEs of the form

{X(I) = Ax(1) + f(x(1)), 1€ (20, T],

x(t9) =xo € RY,

where A is a linear operator on R?. Here, tree sizes are generated with the Poisson
distribution of mean ¢ > 0, and the impact of the operator A is taken into account via
an independent continuous-time Markov chain with generator A. In this case, our
approach extends the construction presented in [6] for linear PDEs, by replacing the
use of linear chains (or paths) with general random trees in the setting of nonlinear
ODEs. This construction can also be seen as a randomization of exponential Butcher
series, see [14], [18].

Numerical examples are presented in Section 6, using Mathematica, by comparing
the Monte Carlo evaluation of (5) to the truncation

— )17
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7eT
|7l<n
of (8) at different orders n > 1. The Mathematica codes presented in this paper are
available at
https://github.com/nprivaul/mc-odes/blob/main/mc-odes.nb
We refer the reader to [16] for a complete implementation of Butcher series compu-
tations in Julia.

We proceed as follows. In Section 2 we review the construction of Butcher
trees for the representation of ODE solutions. Section 3 reviews and proves addi-
tional statements needed for labelled trees. In Section 4 we present the algorithm
for the random generation of Butcher trees by the random attachment of vertices.
Section 5 deals with semilinear ODEs using Poisson distributed tree sizes and a
continuous-time Markov chain. Numerical examples are presented in Section 6, and
multidimensional versions of the codes are listed in Section 7.


https://github.com/nprivaul/mc-odes/blob/main/mc-odes.nb
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2 Butcher trees

In this section we review the construction of Butcher trees for the series representation
(3) of the solution of the ODE (1). A rooted tree 7 = (V, E, +) is a nonempty set V of
vertices and a set of edges E between some of the pairs of vertices, with a specific
vertex called the root and denoted by “~”, such that the graph (V, E) is connected
with no loops. We denote by “0” and “+” the empty tree and the single node tree,
respectively. The next definition uses the B* operation, see [3, pages 44-45], namely

if 71,..., 7, are trees, then [7y,..., 7,] denotes the tree 7 formed by introducing
a new vertex, which becomes the root of 7, and m new edges from the root of 7 to
each of the roots of 7;, i = 1,2, ..., m. We also use the notation
kN fn] = [ k kn €N
T LT = Tlyee s Tlaee s Ths e os Tnls ..., kn €N,
N— e | —
k terms k, terms

Definition 1 [11, Definition III.1.1]. The set of rooted trees is denoted by T, and
can be defined as the closure of @ and - under the B* operation, i.e.:

(i) 0eT,- €T,

@G [r1,...,tm] €Tifr,..., 7, € T.
The size (or order) of 7 € T is defined as the number of its vertices, and denoted by
|7]. In particular, we have |@| = 0 and |+| = 1. For n > 0, we denote by T,, the subset

of trees of order n in T, and for ay, . . ., a, € R? we let
d
omf
m o—
V" flay,...,am) = Z a1, " Am,i,
. - 6)6,‘1 s ﬁxim
seens Im= j=1,..., d

Definition 2 [11, DefinitionIII.1.2]. The elementary differential of f € C*®°(R%,R%)
is the mapping F : T — C®(R?, R%) defined recursively by

() F(0)=1d, F(-) = f,
@) F(r)=V"f(F(11),...,F(ty)) fort = [11,...,Tm].

The pair (7, F (7)) is called a Butcher tree, and the map F can be used to express any
of the terms involving f in the series (3). Indeed, when |7| = n, F(7) takes the form

[Tvmr =vmr@mrc ), @
i=1

for some integer sequence (m;);=1,..., such thatm, =0andm; +---+m, =n— 1.

.....

Given a tree 7 € T, the map F provides a way to encode each vertex of T using
f orits derivatives: each vertex with no descendants is coded by f, and the vertices
with m descendants are coded by V™ f, for m > 1. In order to characterize the
coeflicients of (3), we need two functionals defined on trees.
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Definition 3 a) [2, Section 304], [3, Section 2.5]. The symmetry o of a tree is
defined recursively by

(i) oc@=10()=1,
i) o([r]", ..., oam]) = [11%, kilo ()i fory, .. ., Ty distinctand ki, . . ., ki €
N.

b) The factorial (or density) 7! of a tree 7 is defined by

G ol=1,-'=1,
() 7! = 7|12, ! for 7 = [71,..., 7]

Using the above formalism, we obtain the following result.

Proposition 1. /3, Definition 3.4B, Theorem 3.5C]. The series (3) can be rewritten
as the Butcher series

— )7l
W= 3 RO, ®

The computation of the Taylor expansion (2) can be implemented in the following
Mathematica code, by noting that in order to calculate the term of order k > 2 in the
Taylor expansion (2), the quantity x(s) in f(x(s)) can be replaced with its expansion
until the order k — 1, as the (k — 1)-th derivative ! /ds*~! of (s — ty)! vanishes
ats =ty whenl > k.

Taylor[f_, t_, x0__, t0_, k_] := (d = Length[x0];
glx_] := x0 + f[x0]*(x - t0); h = Array[hh, d];
For[j = 2, j <= k, j++, For[i =1, i <=d, i++,
h[[i]1[z_] = g[x]1[[i]] + (z - t®)"j/j!*D[£[g[s]I[[i1], {s, j - 1}] /. {s —>
t0};1; v = {};
For[i = 1, i <= d, i++, v = Append[v, h[[i]]1[x]1]1]; g[x_] = v];
Return[g[t]])
flx__1 := {£f1[x[[11], x[[2]1], f2[x[[1]1], x[[2]111}
Taylor[f, t, {x1, x2}, 0, 2]

with sample output
1
{x1 +1f1(x1,x2) + Etz (fl(o’l)(xl, x2)f2(x1, x2) + f1(x1, x2)f1 50 (x1, x2)) ,
1
X2+ 12(x1,x2) + 517 (f1(x1, x2)220:0) (x1,x2) + £2(x1, x2)f2(0’1)(x1,x2))}

for k =2,d =2, and ¢y = 0. Instead of the above code, we will use the following
implementation of the truncated Butcher series (6) up to any tree order n > 1 in case
d =1, which also prints out the corresponding trees.

B[f_, t_, x0_, t0_, n_] := (If[n == 0, Return[x0],
If[n == 1, Return[x® + (t - t®)*f[x0]],
sample = x0 + (t - t®)*f[x0]; g = Graph[{l -> 2}];
g = Graph[g, VertexLabels -> {1 -> D[f[ y], yl}];
g = Graph[g, VertexLabels -> {2 -> f[y]}]; m = 1;
sample = sample + 1/2*(t - t0) VertexCount[g]*
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Product[££f[[2]] , {ff, List @@@ PropertyValue[g, VertexLabels]}] /. {y -> x0};

list = {g};
While[m <= (n - 2), temp = list; list = {};
Do[l = VertexCount[g];

For[j =1, j <= 1, j++, gg = VertexAdd[g, {1 + 1}];

gg = Graph[gg, VertexLabels -> {1 + 1 -> f[ y]1}];

lab = Sort[List @@@ PropertyValue[gg, VertexLabels]][[j11[[2]];

gg = Graph[gg, VertexLabels -> {j -> D[lab, yl}];

gg = EdgeAdd[gg, j -> 1 + 1]; Print[gg];

sample = sample + (t - t®)" (1 + 1)/ + 1)!I*

Product[f£f[[2]] , {ff, List @@@ PropertyValue[gg, VertexLabels]}] /. {y ->

x0};
list = Append[list, ggll, {g, temp}]; m = m + 1];
Return[sample]]]);

For example, the command B[ £, t,x0,t0,4] produces the scalar output
x0 + f(x0) (t — t0) + Ef(x0)(t - 10)%f"(x0)

+ éf(xO)z(t —10)3f” (x0) + éf(xO)(t - 10)3f" (x0)?
+ 2—14f(x0)(t — 10)*f(x0) + %f(x0)3f(3)(x0)(t —10)* + éf(xO)z(t — 10)*f’ (x0)f” (x0)

and enumerates the trees appearing in the series (8).

(y)
O f(a)(}/)
f(y) f(y) ) T fly) fy) f )
o————0—0 oo o0
) f(y) f(y)
(y) f(y) OXY \\b g
@ ®
(y) (y) f'(y)
[} [} ®
(y)
2
f f f f f f
é ) % ) W) » ) f'W) » )
f f f
o ) 3 ) “ ()
fi f f
$ ¥ fy) )

Fig. 1: Generation of Butcher trees.

Figure 1 prints directed rooted trees of orders 3 and 4, each with a natural orientation
away from the root. In addition to the result of Proposition 1, the derivatives of the
Butcher series (8) can be written using the elementary differentials F introduced in
Definition 2, as in the following lemma.

Lemma 1 /3, Lemma 3.5B] We have

(@)= Y a(@FE@)(x(), nxl, ©)

7eT,
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where
7|!

a(t) = TeT. (10)

o (1)’
Proof. For completeness, we give a proof of (9) by induction using the Faa di Bruno
formula [5, Theorem 2.1], which states that for a smooth function g : R4 — RY,
the derivatives of y(¢) = g(x(¢)) are given by, for each n > 1,

Y™ (@) o
n! . .
= Y e Vg @) (40, 0,0, 0)
kpoknz0 Lli=1 i@k
By ki ki terms k, terms

where the summation is taken over all different nonnegative solutions (k1, ..., k)
of the linear Diophantine equation X1, ik; = n. Now we prove (9). We start with
n = 1, for which the result holds. Assume that the result is true for lower orders than
n. Then we apply Faa di Bruno’s formula (11) to derive

Xy = [£(0)]" (1)
(n—=1)!

1 . K
Kook 20 H?:] kil (it)ki

2 ikj=n-1

n—1 . ki
Z ﬂ (#'(T)) Vit g (F(r)R L F (o) 1) (x (1)

i i=1

VhEthe f(F ()R F ()R (1)

) o T w0 (M k)
n!
- ZT T FOE@),

where in the first line, the first summation is taken over all nonnegative integers
n-1

(ki)i=1,...n—1 satisfying Y-y iki = n — 1, the second summation is taken over
all trees (7;)i=1,....n—1 With |7;| = i; in the last line 7 = [le‘,...,‘r:ff‘l'] so that
lt] = 1+ 27 ik; = n. O

The next lemma presents a tree expansion for g (x(7)), withg € C*(R4,R%),d,d’ >
1. For this purpose, we consider the elementary differential F, : T — C (R4, R
of g defined by

Fg(®) =1d, Fg(') =g, and Fg(T) =V"g(F(11),.... F(tw)), T=1[71,...,Tml,
(12)
with V0 = gand 0! = 1.

Lemma 2 Let g € C°(R4,RY"). We have
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— ) l7l-1
sy = 37 L e ). (13)
7eT\{0} '

Proof. Letting x(1) = (x;(t))1<izd> Xo = (xi(0))1<i<a, and denoting by (x(r) —

x0)®™ the matrix ((x; () — x;,(0)), ..., (x;, (£) — x;,, (0)))19’1 _____ i <a» DY (8) and
Definition 3 we have

(e8]

S = Y 9" () ((x(1) 1))

m=0
R 1 (l — t())\71\+---+|7'm|
=2 2 ety T F @ F (@) (o)
m=0"" 7|,..7;neT\{0} =13 g
- I7| T1; k! _
= Z W(j_(_r)(f — 1) TV g (F (1) ..., F () (x0),
m=0 1y,...7,,€T\{0} o
where the indexes k1, k7, . . . count equal trees among 7y, . . ., T,,,. From the fact that
there are ( ki Z; ) possibilities for writing the tree 7 in the form [7, .. ., 7,,], it then

follows that

(r- l‘())lﬂ_1 m
g(x(1)) = [Tl——==—V"¢ (F(71)...., F (tm)) (x0)
ceiloy Tlo (1)
(t —1p)I71-1 -
= Z WOZ(T)V g(F(t1),.... F (tm)) (x0),
7eT\{0} :
where @ (7) is defined in (10). Then, we get (13). O

In particular, when g is the function f in ODE (1), then Fy = F and

(t —to)l7I-!
Flx(1) = Y (1) F (1) (x0),
TETZ;@} (Ir[= 1! 0

which in turn proves that the Butcher series (8) solves (1).

3 Labelled trees

Our random generation of Butcher trees will use labelled trees, which provide a
combinatorial interpretation of the coefficients appearing in (8). By convention, the
empty tree ( is labelled by 0 and the root of any non-empty tree is labelled by 1.

Definition 4 [3, (2.5¢)] For n > 1 we denote by Tﬂ the set of labelled rooted trees
7 of order n with vertex sequence V = {1,...,n}, written as 7 = (V, E, 1), such
that the label of every vertex is smaller than that of each of its children. We also let
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T# .= Uns1 Ti, and define the canonical forgetful map ¢ : ™ 5T by “forgetting”
the labeling information contained in a labeled tree.

We note that the labelling of a tree 7 is not necessarily unique. By abuse of notation,
we shall omit the map ¢ when there is no ambiguity, in which case we will simply
use 7 to denote «(7) for 7 € TF.

Proposition 2. [3, Theorem 2.5F ] The number of all possible labellings of a rooted
tree T = (V, E,+) is given by the coefficient a(t) defined in (10).

As a consequence of Proposition 2, since the labelling of a tree does not affect its
elementary differential, we can rewrite (8) and (9) respectively as

— )7l
x()= ) %F(T)(XQ) and x"(1)= )" F()(x(r)), n>1, (14)
TeTH . TET,ﬁ,

see also [12, Theorem I1.2.6]. Next, we define a new product on labelled trees that
generalizes the beta-product [3, Section 2.1], cf. § 1.5 of [4].

Definition 5 (Grafting product) Let 7 = (V, E1, 1) and 7» = (V», E, 1) be two
labelled trees, and let [ € V; = {1, ..., |7(|}.

* The grafting product with label / of 7| and 1, denoted by 71 *; 1, is the tree of
order |11| + |m2| formed by grafting (attaching) 7, from its root to the vertex / of
71, so that the vertices of ) become descendants of the vertex [.

* The tree 7] *; 75 is labelled by keeping the labels of 71, and by adding |71 | to the
labels of 1.

For any labelled tree 7, we let @ %9 7 = 7%, @ = 7 for all 0 < [ < ||, and keep the
labels of 7.

Remark 1 (i) The beta-product is a grafting product with label 1, as the second
tree is always attached to the root of the first one.
(ii) The B* operation can also be expressed by grafting-products, by forgetting
labelling. For example, we have [7), 7o] =+ %[ 7| %] Tp =+ %] Tp %] T|.

We note that any labelling is equivalent to a sequence of grafting of dots. In the next
lemma we let A := {0}, and

Ay ={(y1,....0) : 1< <i,i=1,...,n}, n>1.

Lemma 3 (i) Given 7 a labelled tree with |t| > 2, there is a unique sequence
(I1<i<|z|-1 in Aj7)-1 such that

T =k 2% ...*llT\fl .. (15)

(ii) For any n > 2, the map which sends T € TB, to the sequence (ly,...,1,—1)
determined by (15) is a bijection from T,ﬁl 10 Ap—1.
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Proof. We prove (i) by induction on |7|. The case |7| = 2 is verified since 7 = « %/ .
Suppose that (15) holds for all trees 7 such that |7| = n, and let 7 be a labelled tree
with |7| = n + 1. Denote by 7_ the subtree obtained by removing the vertex with
label n + 1 from 7. It is clear from Definition 4 that the parent of the vertex n + 1 has
label / not bigger than n, hence 7 = 7_ #; + has the form (15). The converse of (i)
holds, since for each n > 2, the sequence ({1, ...,l,-1) € A,— determines a unique
«in Tﬁ. Assertion (ii) follows from (i). |

tree.*ll.*l ERRE 31

2 n-1

The next result is a consequence of Lemma 3-(ii).
Corollary 1 The number of labelled trees of order n > 1 is given by
Thi= > 1= > a(®)=(n-1)"
retTh 7eT,

Proof. For completeness, we provide a proof that does not rely on Lemma 3-(ii).
By (9) and (10) we have

xM (1) = ) a(r)F (1) (x0).
7eT,
Letting f(x) := ¥, xg := 0 and #9 := 0, by (7) we have F(7) = f" for all T € T,,.
Hence, the solution x(f) = —log(1 — 1) of (1) satisfies x(") (0) = Yrer, @(7), and it
remains to note that x (£) = (n — )!(1 — 1), n > 1. O

4 Random sampling of Butcher trees

In this section we discuss the representation of solutions to (1) by the random
generation of Butcher trees.

Definition 6 Given (p;,,),>0 a probability distribution on N such that p,, > 0 for all
n > 0, we generate a random labelled tree 7~ by uniform attachment, as follows.

i) Choose the order of 7~ with the distribution P(|7| = n) = p,, n > 0;
ii) Start from a root - with the label 1;
iii) Starting from a tree T with order /, 1 < [ < n— 1, attach a new vertex with label
[ + 1 to an independently and uniformly chosen vertex of 7, and repeat this step
inductively until we reach the given order n.

For n > 0, we let
gD =P(T=7||T|=n), teTh,

denote the conditional distribution of 7~ given its size is n > 0. We note that ¢(7") is
T-valued, and its conditional distribution on T is given by
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gu(0) =PWT) =7 |[IT|=m) = ) qi(x), TeT, (16)

T'ETB[
ut)=1

By Lemma 3-(if), the random labelled tree 7~ generated in Definition 6 takes the
form

T =y oy -1 %
where (771, . ..,7j7]-1) is a uniform random variable taking values in A|7_;.

Theorem 1 Assume that there exists C > 0 such that
V" f(x0)| < C, forallm = 0. 17)
Then, the solution of the ODE (1) admits the probabilistic expression

= 1)TTF(T)(x0)
x(t)=E G , t € [ty to+1/C). (18)

Proof. 1t follows from Lemma 3-(ii) that given |7 | = n, the random tree 7 is
uniformly distributed in Tﬁ i.e. we have

oy oo o Lo v
A0 =B (T =T IT1=0 = o = oo

in which case qn(‘r) is independent of 7 € Tﬁ and the conditional probability (16)
is given by

_ a(r)
gn(7) = m, TeT.
Hence, we have
(r = fO)lTlF(T)(xo) (t —10)"pn 4 ) )
71V Dpr (n vV 1Dpa T;ﬁ gn(DE[F(T)(x0) | 1T=n,T =7]

kd
Z =T by o)

|
7eTH | |

=x(1), (19)

by the first equation of (14). From the assumption (17), we have |F(1)(xq)| < C!7!
for all T € T such that |7| > 1. The g-th integrability of (19), ¢ > 1, can be implied
by the bound

00

< MJrZ (C(t —10))"4 Z 4 (o)

gqg-1 q g1
po n=1 nq TETu

(t = 10) "1 F (T) (x0) |
71V Dp)7




12 Qiao Huang and Nicolas Privault

|x0|q Z (C(t - fo))"q’ 20)

= nip;
which is finite for ¢ = 1, provided that C(r — #y) < 1. O

The random generation of Butcher trees in Theorem 1 is implemented in the following
Mathematica code:

MCsample[f_, t_, x0_, dist_] := (n = RandomVariate[dist];
If[n == 0, Return[x0/PDF[dist, 0]],
If[n == 1, Return[t*f[x0]/PDF[dist, 1]], g = Graph[{l -> 2}];
g = Graph[g, VertexLabels -> {1 -> D[f[ y], yl}];
g = Graph[g, VertexLabels -> {2 -> f[y]}]; m = 1;
While[m <= (n - 2), 1 = VertexCount[g];
j RandomVariate[DiscreteUniformDistribution[{1, 1}]1];
g VertexAdd[g, {1 + 1}];
g = Graph[g, VertexLabels -> {1 + 1 -> f[ y]}];
lab = Sort[List @@@ PropertyValue[g, VertexLabels]][[j]1[[2]];
g = Graph[g, VertexLabels -> {j -> D[lab, y1}];
g = EdgeAdd[g, j -> 1 + 1]; m++];
sample = Product[£ff[[2]] , {ff,
List @@@ PropertyValue[g, VertexLabels]}] /. {y -> x0};
Return[sample*t“n/PDF[dist, n]/n]]1]1);
fly_1 := Exply]
MCsample[f, t, x0, GeometricDistribution[.5]]

5 Connection with semilinear PDEs

In this section, we consider the case where the function f in (1) involves a linear
component, i.e. f(x) = Ax +g(x), where A is a linear operator on R¢, in which case
the ODE (1) becomes

x(1) = Ax(1) + g(x(1)), 1€ (10, T],

21)

x(t9) =xo € R,

and can be rewritten in integral form as
t
x(1) = 70 Axg + / e (x(s))ds, 1€ (to,T].
Ig

By [18, Theorem 4.5] we have

(1) = 3" (7)1 (1, A) F () (x0), (22)

7eT

where F, is defined in (12), with ¢¢(t, a) := e=)¢ and

1 n-1
¢n(t9 a) = / e(t—t;«;)ﬂdtn - dt[ — / (t— S)awds, (23)
o<t <---<t, <t to ( 1)'
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n > 1,t > to. In addition, from the fact that labelling does not change elementary
differentials, the expansion (22) can be rewritten as the exponential Butcher series

(1) = ) Pl (1, A)Fy (1) (x0). (24)

TeTH

Given (N;);»y, a standard Poisson process with

n
P(N; =n) = e‘“"‘”%, t>tg, n>0,
and increasing sequence of jump times (7});>1, and let Ty = fg, let 7; denote the
random tree constructed in Definition 6, using the Poisson distribution p,, = P(N; =
n), n > 0. In what follows, we assume that A is a stochastic matrix, that is, a square
matrix with non-negative entries where each column sums up to 1, which generates
a continuous-time Markov chain X = (X;);»,, independent of (N;);>,.

In Theorem 2 we propose a canonical way to evaluate the solution to the semilinear
equation (21) as an expected value over random trees. It is worth noting that the
decomposition f(x) = Ax + g(x) can be used for a generalization to semilinear
parabolic PDEs, in which case A is an elliptic operator that can generate a Markov
process X = (X;);>1,, and the discrete {1, ..., d}-valued index i is replaced by the
spatial variable of the PDE. This can also be regarded as a randomization of the
exponential Butcher series (22), and as a nonlinear extension of the probabilistic
representation of [6] which uses linear chains for linear PDEs. In the special case
A = 0, this probabilistic representation recovers (18) by generating tree sizes via the
Poisson distribution (p,),>0 With parameter ¢ — #g.

Theorem 2 Assume that A is a stochastic matrix and there exists C > 0 such that
[V"g(x0)| + |Axp| + |A| £ C, forallm = 0. (25)
Then, fort € [ty,to + 1/C) we have
xi(1) = VBT = 1) VO (Fe(TD0))y, etz [Xu = 1], 26)

i=1,...,d

Proof. From the fact that the sequence (7; — T;-1);=1,...n is i.i.d. with common
exponential distribution, for any integrable function % on the n-dimensional simplex

A=At ty) ttg St <--- <ty S,
we have
E[1{N,=n}h(T1, ..., Ty)]
n
=E

i=1

(T; _Ti—l))

1{[0<Tn§t<Tn+1}h (T17 ey tO +
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n
:/ h t0+rl,...,t0+Zri e—(r]+...+rn)
O<ri+-+rp<t—1to -

(o]
/ e "midradry, - - dr
t

—to—(ri+-+rn)

n
—e_(t_tO)/ h t0+r1,...,to+Zr,~ dryp -+ -dr
O<ry+--+r,<t—to i=1

= (~10) / h(ty, ... ty)dty - dt,
Wt <<ty <t

where we applied the change of variables #; = #9 + 7| + - - - + r; in the last equality.
Taking h(ti,...,t,) = elt=tm)a, to £t <--- <t, <t,it follows that (23) can be
rewritten as

Pn(t,a) = e B [1(n,nye " ™), n20.

Next, by construction of the continuous-time Markov chain (X;);»;, with generator
A, we have

(e008x), =[xy,

Xtozi], i=1,...,d,x=(x1,...,xd)€Rd.

Finally, as the random tree 7; is constructed with the Poisson random size N, and
independent uniform attachment, we have

1
=N =TI == e,

n

Combining the above with (24), we get

xi(t) = e fOZZ (1,2 (T2 Fy (1) (x0)) ]

n=0 ‘rETn

0N Bl A ey (Fe (D G0))y, . [Xe =]

n=0 ‘rETn

= il Z Z E[ (Fg(T)(xO))Xt—Tn+t0 |N, =n, Xy = i]P(Nt =n)

n=0 - cq#

8

8

e'” fOZ«n— 1)V O)IB(|7] = n)

x Z [ (Fe () (x0)) |17 =% =7, X, =i][P (T =7 | %] = n)

reTh
= B[] = 1)V 0)! (Fo(TD) (x0))

Xi-Tn+

Lty <y \Xto = i]'

Xi-Tigy 410
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By the definition (12) of F,; and the bound (25), the g-th integrability of (26), g > 1,
can be controlled by the bound

BT = D) VO (Fe (T (o)), -, 171X =1]

e |xol? + E[1qy7121 (171 - D)2 ]

IA

= ¢~ (1710 |y |9 4 o= (1710 Z(n - —(t - 19)",
n!
n=1
which is finite for ¢ = 1, provided that C (¢ — #p) < 1. O

6 Numerical examples

In this section we consider numerical implementations of the Monte Carlo generation
of Butcher trees for problems of the form (1).

i) Let f(y) := ¢”, and consider the equation
i) =D, x(0)=x0, 19=0, (27)
with solution
x(t) = —log(e ™ —1), t € [0,e™).
In this case, the moment bound (20) is sharp with C = ™.
ii) Let f(¢,y) := yt + y?, and consider the equation

(1) =tx(t) +x*(1),  x(0)=1/2, 1o =0, (28)

with solution
etz /2

x() = ———,
2 - fol es*2ds
see Eq. (223a) in [2].

Table 1 displays the growth of computation times for the command B[ £, t,x0,t0,n]
applied to (27) with xg = 1, and to (28) with xg = 1/2,n = 1, .. ., 8. For the purpose
of benchmarking, all tree generations are performed using Mathematica.

n 1(2] 3 4 5 6 7 8 MC (Geometric)
Eq. (27),d=1|0s|0s|0.1s|0.1s| 0.4 [ 0.5s | 3s 21s | 22s (70K samples)
Eq. (28),d =2|0s|0s| Os [0.2s| 1s | 13s | 2225 | > 1h | 164s (10K samples)

Table 1: Computation times in seconds for (8) applied to (27) and (28).
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Figure 2 compares the numerical solutions of (27) and (28) by the truncated Butcher
series expansion

NOEDY O ), >
B & tlo(r) 0’ 0
|Tl<n

denoted by B-n, to the probabilistic representation (18), for different orders n > 1.
The Monte Carlo estimations of (18) use the geometric distribution with respectively
70,000 and 10,000 samples, see Table 1, so that their runtimes are comparable to
those of the Butcher series estimates. The solution of (27) is estimated using the above
codes for one-dimensional ODEs, and the solution of (28) is estimated using the
multidimensional codes presented in Section 7, after rewriting the non-autonomous
ODE (28) as a two-dimensional autonomous system.

4.5 22
Exact solution Exact solution
4t B-8 Series (2.2) -= -~ 2r B-7 Series (2.2) --=--
B-6 Series (2.2) ----- o 18} B-5 Series (2.2) -----
35 L Monte Carlo (4.3) © s i Monte Carlo (4.3) ©
‘ 16
3r / 14t
2.5+ v 12}
2 1|
15 ) 081
0.6
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0 0.2 0.4 0.6 0.8 1
t t

(a) Numerical solutions of (27) with xo = 1. (b) Numerical solutions of (28) with xo = 1/2.

Fig. 2: Comparisons of (8) vs. (18).

Next, we compare the performance of various probability distributions (p;),en in
terms of variance.
Variance analysis

(i) Poisson distribution. Taking p,, := A"~ /n!,n > 0, to be the Poisson distribution
with parameter A > 0, the variance bound (20) is given by the series

0 Z C 0 0. 2 Z C 0 n—1)!
— 4+ - 7 = —4e s
po = nPpy P o ( 1 ) n

which diverges for all ¢ > £.

(if) Geometric distribution. Taking p, := (1 — p)p"™, n > 0, to be the geometric
distribution with success probability 1 — p for some p € [0, 1), the variance bound
(20) is given by the series
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N oo (Cl—n)™ xS (CR- 1) p)"

0 0 0 0)°/p)

_+§ = + E ., t € [to,to++/p/C),
po & nip, l-p 1-p & n’

in which case the variance is finite.
(iii) Optimal distribution. Using the Lagrangian

with multiplier £, we find that the distribution that minimizes the second moment
bound (20) has the form

cn"
Po = CoXo, DPn = co( Pt n>1, 29)

where co = (xo — log(1 — Ct))~! is a normalization constant, see Figure 3 in which
the moment bound (20) is plotted as a function of C € [0, 4/p] with ¢ = 1 for the
distribution (29) (lower bound) and for the geometric distributions with parameters
p =0.5,0.75, and xo = 1.

12 12
p=0.5 —— p=0.75 ——
o Lower bound

Lower bound
10

I L L L ) I L L L |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
C C

(a) p=0.5. (b) p=0.75.
Fig. 3: Second moment lower bound.
The graphs of Figure 4 are plotted using the Poisson and geometric distributions

with respectively 100,000 and 70,000 Monte Carlo samples, in order to match the
22 seconds computation time of Figure 2-(a) for (27), see Table 1.
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6 6
550 T 5.5 P T
5 | Poisson distribution sl Geometric distribution
45+ 45t
4t 4l
Q
351 e 351
3+ ER
251 251
2+ 2t
15+ Exact solution 15} Exact solution
1 ¢ ] Monte Carlo (4.3)  © 1 . ; Monte Carlo (4.3)  ©
0 005 01 015 02 025 03 035 0 005 01 015 02 025 03 035
t t
(a) Poisson tree size. (b) Geometric tree size.

Fig. 4: Numerical solution of (27) by the Monte Carlo method (18).

7 Multidimensional codes

The next Mathematica code estimates the Butcher series (8) up to a given or-
der n > 1 in the multidimensional case. The second component in the output of

B[f,t,x0,t0,n] counts the number of trees involved in the Butcher series trun-
cated up to the order n > 1.

B[f_, t_, x0
If[n == 0, Return[{x0, 1}],

__, t0_, n_] := (d = Length[x0];
If[n == 1, Return[{x0 + (t - t®)*f[x0], 2}], count = 2;
sample = x0 + (t - t®)*£f[x0];
g = ConstantArray[Graph[{l -> 2}], d]; ii = Array[i, n];
For[ii[[1]] = 1, ii[[1]] <= d, ii[[1]]++,
g[[ii[[11]11] =
Graph[g[[ii[[1]11]1],
VertexLabels -> {1 -> D[f[yy], yy[[ii[[111111}1;
gl[ii[[11111 =
Graph[g[[ii[[1]1]1]1], VertexLabels -> {2 -> f[yyl[[ii[[11111}];
m = 1; count += 1;
sample += 1/2*(t - t®) "VertexCount[g[[ii[[1]]1]11]1*
Product[f£f[[2]] , {ff,
List @@@
PropertyValue[g[[ii[[1]]]], VertexLabels]}] /. {yy ->
x0}]; list = g;
While[m <= (n - 2), temp = list; list = {};
Do[l = VertexCount[g];
For[j =1, j <= 1, j++, gg = VertexAdd[g, {1 + 1}];
lab = Sort[List @@@ PropertyValue[gg, VertexLabels]][[j1I1L[
2]11; For[ii[[1]] = 1, ii[[1]] <= d, 1ii[[1]]++,
gg = Graph[gg,
VertexLabels -> {1 + 1 > f[ yy][[ii[[1]1111}];
gg = Graph[gg, VertexLabels -> {j -> D[lab, yy[[ii[[1]1]1111}1;
gg = EdgeAdd[gg, j -> 1 + 1];
GraphPlot[gg,
PlotStyle -> {FontSize -> 20, FontColor -> Red}];
count += 1;
sample += (t - t®) " + 1)/A + 1)!*
Product[ff[[2]] , {ff,
List @@@ PropertyValue[gg, VertexLabels]}] /. {yy ->
x0}; list = Append[list, gglll, {g, temp}]; m++];
Return[{sample, count}]]1]);
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x0 = {0, 0.5}; t0 = 0; t1 = 1.3885;
fly__1 := {1, y[[111*y[[2]1] + y[[2]11"2}
BLf, t, x0, t0, 4]

The next Mathematica code generates a single random Butcher tree sample in (18)
for a multidimensional ODE.

MCsample[f_, t_, x0_, tO_, dist_] := (d = Length[x0];
n = RandomVariate[dist];
If[n == 0, Return[x0/PDF[dist, 0]],
If[n == 1, Return[(t - t0®)*f[x0]/PDF[dist, 1]],
g = ConstantArray[Graph[{1 -> 2}], d]; ii = Array[i, n];

sample = 0;
For[ii[[1]] = 1, ii[[1]] <= d, ii[[1]]++,
g[[ii[[1111] =

Graph[g[[ii[[1]11]1],

VertexLabels -> {1 -> D[f[yy], yy[[ii[[1]]1]11}];
g[[ii[[11]11] =

Graph[g[[ii[[1]1]], VertexLabels -> {2 -> f[yyl[[ii[[1]1]1]11}];
sample += (t - t®)"2/PDF[dist, 2]/2%
Product[f£[[2]] , {ff,
List @@@
PropertyValue[g[[ii[[1]]]], VertexLabels]}] /. {yy ->
x0}]; If[n == 2, Return[sample]]; sample = 0; list = g;
m = 1; While[m <= (n - 2), temp = list; list = {};
Do[l = VertexCount[g];
j = RandomVariate[DiscreteUniformDistribution[{1, 1}]];
gg = VertexAdd[g, {1 + 1}];
lab = Sort[List @@@ PropertyValue[gg, VertexLabels]][[j11[[2]];
For[ii[[1]] = 1, ii[[1]] <= d, 1i[[1]]++,

gg = Graph[gg, VertexLabels -> {1 + 1 -> f[ yy]J[[ii[[1]1]111}];
gg = Graph[gg, VertexLabels -> {j -> D[lab, yy[[ii[[1]]1111}];
g9 = EdgeAdd[gg, j -> 1 + 1];

GraphPlot[gg,
PlotStyle -> {FontSize -> 20, FontColor -> Red}];
Iffm == (n - 2),
sample +=
Product[£f£f[[2]] , {ff,
List @@@ PropertyValue[gg, VertexLabels]}] /. {yy ->
x0}]; list = Append[list, ggll, {g, temp}]; m++];
Return[sample*(t - t0) "n/PDF[dist, n]/n]]11);
x0 = {0, 0.5}; t0 = 0; t1l = 1.3885;
fly__1 := {1, y[[111*y[[2]1] + y[[2]11"2}
MCsample[f, t, x0, t0®, GeometricDistribution[0.5]]
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