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Abstract
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1 Introduction

Two random variables F and G are said to satisfy a convex concentration inequality

if

E[φ(F )] ≤ E[φ(G)] (1.1)

for all convex function φ : R −→ R. By classical arguments, the application of (1.1)

to the convex function φ(x) = exp(λx), λ > 0, can be used to estimate the deviation
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probabilities of F via the Laplace transform of G.

In this paper we establish a convex concentration inequality for additive functionals

of the form

ST =

∫ T

0

g(Xt)dt,

where (Xt)t∈R+ is a Rd-valued jump-diffusion process solution of (2.1) below and ad-

mitting an invariant distribution, and g : Rd −→ R is a sufficiently smooth function,

cf. Theorem 2.1.

We apply the technique of [12], cf. also [17], [6], [11], which consists in rewriting St

as the half sum

St =

←−
M f

t +
−→
M f

t

2
,

of a forward martingale

−→
M f

t := f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds, t ∈ R+, (1.2)

and a backward martingale
←−
M f

t defined in (2.9) below, where L is the generator of

(Xt)t∈R+ , cf. (2.5) below, and f is in the space C2b (Rd) of C2 functions on Rd which

have bounded first and second derivatives.

In Proposition 2.1 below we derive a convex concentration inequality for
−→
M f

T using

forward-backward stochastic calculus, cf. [8], [3], [1], [2].

When (Xt)t∈R+ is reversible with invariant probability measure µ on Rd, both mar-

tingales have same distribution under Pµ and the convex concentration inequality for

ST is obtained from that on
−→
M f

T after solving the Poisson equation −Lf = g for f ,

cf. Theorem 2.1 below.

The framework of mean-reverting and stationary processes is well adapted to the

modeling of interest rates in finance, and we apply those inequalities to the derivation

of bounds on the prices of interest rate derivatives for which the underlying interest
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rate processes are usually mean-reverting and stationary.

This paper is organized as follows. Section 2 focuses on convex concentration inequal-

ities, first for the martingale with jumps
−→
M f

t , and then for ST =

∫ T

0

g(Xt)dt. Some

examples of processes satisfying the assumptions (A), (B), (C) and (D) below are

also given at the end of Section 2 from [16]. Section 3 presents some consequences on

related transportation-information inequalities. In Section 4 we apply those results

to derive bounds on the prices of interest rate derivatives.

2 Convex concentration inequalities

Given m(x, du) a non-negative Radon measure on Rn, x ∈ Rd, we consider three

vector fields b : Rd −→ Rd, σ1 : Rd −→Md×n, and

σ2 : Rd −→ L2(Rn,m(x, du);Rd)

x 7−→ σ2(x, ·),

where Md×n denotes the space of d× n matrices.

We assume that

(A) x 7−→ b(x) ∈ Rd, x 7−→ σ1(x) ∈Md×n, and x 7−→ σ2(x, ·) ∈ L2(Rn,m(x, du);Rd)

are continuously differentiable in x ∈ Rd.

Consider the Rd-valued Markov jump-diffusion process (Xt)t∈R+ , solution of the stochas-

tic differential equation

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ1(Xs)dWs +

∫ t

0

∫
Rn
σ2(Xs− , u)ω̃X(ds, du), (2.1)

where Wt is a Rn-valued Brownian motion,

ω̃X(dt, du) = ωX(dt, du)−m(Xt, du)dt

is the compensated random measure with intensity m(Xt, du)dt on Rn ×R+, defined

on a well-filtered probability space (Ω,F , (Ft),P), and X0 is a (random) initial con-

dition independent of ωX(dt, du).
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Since the coefficients b, σ1 and σ2 are bounded on compacts of R+ × Rd, it can be

shown that SDE in (2.1) admits a unique solution Xt(x), cf. Theorem 13.58, Theo-

rem 14.80 of [7], pages 434, 438 and 481, using the results on martingale problems for

discontinuous processes of [9], [10], [15]. In addition, Xt is a right-continuous process

admitting left limits Xt− , t ∈ R+.

We also assume that

(B) the process (Xt)t∈R+ admits a unique invariant probability distribution µ on Rd,

and

(C) we have ‖σ1(x)‖HS ≤ σ1,∞ <∞, x ∈ Rd, and

|σ2(x, u)| ≤ σ2,∞(u), m(x, du)dx− a.e. (2.2)

for some measurable function u 7−→ σ2,∞(u) on Rn, and

m(x, du) ≤ n(du), x ∈ Rd. (2.3)

where n(du) is a measure on Rn such that∫
Rn

(eλσ2,∞(u) − λσ2,∞(u)− 1)n(du) <∞, λ > 0.

Given f ∈ C2b (Rd), let
−→
M f

t be the µ-local martingale defined by

−→
M f

t := f(Xt)− f(X0)−
∫ t

0

Lf(Xs)ds, t ∈ R+, (2.4)

where

Lf(x) = 〈b(x),∇f(x)〉Rd +
1

2

d∑
i,j=1

ai,j(x)∂i,jf(x) (2.5)

+

∫
Rn

(f(x+ σ2(x, u))− f(x)− 〈∇f(x), σ2(x, u)〉Rd)m(x, du),

f ∈ C2b (Rd), is the generator of (Xt)t∈R+ , with (ai,j) = (σ1σ
†
1)i,j, and ∇ is the gradient

on Rd. The next proposition states a convex concentration inequality for
−→
M f

T .
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Proposition 2.1 Let T > 0. Under Conditions (A), (B), and (C), for all φ in the

set Cc of C2-convex functions with convex derivative on R, we have

E
[
φ(
−→
M f

T )
]
≤ E

[
φ

(
W̄

(
T‖f‖2Lipσ2

1,∞

)
+ ‖f‖Lip

∫ T

0

∫
Rn
σ2,∞(u)ω̃(ds, du)

)]
, (2.6)

where
−→
M f

t is defined by (2.4), f ∈ C2b (Rd) is Lipschitz, ω̃(ds, du) is a compensated

Poisson random measure with intensity n(du)ds, and W̄ (σ2) is an independent cen-

tered Gaussian random variable with variance σ2 > 0.

Proof. By Itô’s formula we have

〈
−→
M f〉t =

∫ t

0

Γ(f)(Xs)ds, t ∈ R+,

where

Γ(f)(x) =
d∑

i,j=1

ai,j(x)∂if(x)∂jf(x) +

∫
Rn
|f(x+ σ2(x, u))− f(x)|2m(x, du),

x ∈ Rd, is the carré du champ operator of L. Therefore we have

〈(
−→
M f )c〉t =

d∑
i,j=1

∫ t

0

ai,j(Xs)∂if(Xs)∂jf(Xs)ds

=
n∑
k=1

d∑
i,j=1

∫ t

0

σ
(1)
i,k (Xs)σ

(1)
j,k (Xs)∂if(Xs)∂jf(Xs)ds

≤
n∑
k=1

∫ t

0

∣∣∣∣∣
d∑
i=1

σ
(1)
i,k (Xs)∂if(Xs)

∣∣∣∣∣
2

ds

≤
n∑
k=1

d∑
i=1

∫ t

0

|σ(1)
i,k (Xs)|2

d∑
i=1

|∂if(Xs)|2ds

≤ ‖f‖2Lip
∫ t

0

‖σ1(Xs)‖2HSds

≤ t‖f‖2Lipσ2
1,∞, t ∈ R+,

while we have

|∆
−→
M f

t | := |
−→
M f

t −
−→
M f

t− | ≤ ‖f‖Lip|∆Xt|.
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Next we define the backward martingale (M∗
t )t∈[0,T ] with respect to its own backward

filtration (F∗t )t∈[0,T ], as

M∗
t = W̄

(
‖f‖2Lipσ2

1,∞T

)
− W̄

(
‖f‖2Lipσ2

1,∞t

)
+ ‖f‖Lip

∫ T

t

∫
Rn
σ2,∞(u)ω̃(ds, du),

t ∈ [0, T ], where ω̃ is a compensated Poisson random measure with intensity n(du)ds,

independent of ωX .

By the forward-backward Itô formula, cf. Theorem 8.1 of [8], for any φ ∈ Cc we have

E[φ(
−→
M f

t +M∗
t )]− E[φ(

−→
M f

0 +M∗
0 )] =

1

2
E
[∫ t

0

φ′′(
−→
M f

s +M∗
s )(d〈(

−→
M f )c〉s − d〈(M∗)c〉s)

]
+E

[∫ t

0

∫
Rn
ψ(
−→
M f

s +M∗
s ,∆
−→
M f

s )ωX(ds, du)

]
−E

[∫ t

0

∫
Rn
ψ(
−→
M f

s +M∗
s , ‖f‖Lipσ2,∞(u))ω̃(ds, du)

]
=

1

2
E
[∫ t

0

φ′′(
−→
M f

s +M∗
s )(d〈(

−→
M f )c〉s − d〈(M∗)c〉s)

]
+E

[∫ t

0

∫
Rn
ψ(
−→
M f

s +M∗
s , ‖f‖Lipσ2(Xs− , u))ωX(ds, du)

]
−E

[∫ t

0

∫
Rn
ψ(
−→
M f

s +M∗
s , ‖f‖Lipσ2,∞(u))ω̃(ds, du)

]
≤ E

[∫ t

0

∫
Rn
ψ

(
−→
M f

s +M∗
s , ‖f‖Lipσ2(Xs, u)

)
m(Xs, du)ds

]
−E

[∫ t

0

∫
Rn
ψ

(
−→
M f

s +M∗
s , ‖f‖Lipσ2,∞(u)

)
n(du)ds

]
≤ 0,

from (2.3), where

ψ(x, y) := φ(x+ y)− φ(x)− yφ′(x) = y2
∫ 1

0

(1− τ)φ′′(x+ τy)dτ ≥ 0,

is a non-negative and non-decreasing function of y. This shows that

E[φ(
−→
M f

t +M∗
t )] ≤ E[φ(

−→
M f

0 +M∗
0 )], t ∈ [0, T ],

which yields (2.6) by letting t = T . �
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Next, we derive a convex concentration inequality for the additive functional

ST =

∫ T

0

g(Xt)dt,

where g is a function on Rd such that µ(g) = 0.

We make the following assumption.

(D) The process (Xt)t∈R+ is reversible with respect to the invariant probability

measure µ, i.e.

〈Lf, g〉L2(Rd,µ) = 〈f,Lg〉L2(Rd,µ), f, g ∈ C2b (Rd).

Note that the Poisson equation (2.7) below admits the trivial Lipschitz solution f(x) =
d∑
i=1

xi when g(x) = −
d∑
i=1

bi(x), x ∈ Rd.

Theorem 2.1 Assume that Conditions (A), (B), (C) and (D) hold. Consider g a

Lipschitz function on Rd such that µ(g) = 0 and such that the Poisson equation

Lf = −g, (2.7)

admits a Lipschitz solution f ∈ C2b (Rd). Then we have

Eµ
[
φ

(∫ T

0

g(Xt)dt

)]
≤ E

[
φ

(
W̄
(
Tσ2

1,∞‖f‖2Lip
)

+ ‖f‖Lip
∫ T

0

∫
Rn
σ2,∞(u)ω̃(ds, du)

)]
,

(2.8)

where ω̃(ds, du) is a compensated Poisson random measure with intensity n(du)ds and

W̄ (σ2) is an independent centered Gaussian random variable with variance σ2 > 0.

Proof. Inspired by Lyons-Zheng’s forward-backward martingale decomposition, cf.

[12] and also [17], [6], [11], we define

←−
M f

t = f(X0)− f(Xt)−
∫ t

0

Lf(Xs)ds, (2.9)

t ∈ R+, where f solves the Poisson equation (2.7). Obviously we have

ST =

∫ T

0

g(Xt)dt = −
∫ T

0

Lf(Xt)dt =

←−
M f

T +
−→
M f

T

2
,
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and by the reversibility assumption (D),
−→
M f

T and
←−
M f

T have the same distribution

under Pµ. Therefore, for any convex function φ we have

Eµ[φ(ST )] = Eµ

[
φ

(←−
M f

T +
−→
M f

T

2

)]
≤ 1

2
Eµ
[
φ(
←−
M f

T ) + φ(
−→
M f

T )
]

= Eµ
[
φ(
−→
M f

T )
]
,

and we conclude by Proposition 2.1. �

Taking φ(x) = eλx, λ > 0, in Theorem 2.1 we obtain the following corollary on the

Laplace transform of ST , which can be used in deviation bounds by Chebyshev-type

arguments.

Corollary 2.2 Assume that Conditions (A), (B), (C) and (D) hold and that (2.7)

admits a Lipschitz solution f for g a Lipschitz function on Rd such that µ(g) = 0.

Then we have

E[eλ(ST−E[ST ])] ≤ exp

(
λ2

2
T‖f‖2Lipσ2

1,∞ + Tβ(λ‖f‖Lip)

)
, (2.10)

where

β(λ) :=

∫
Rn

(eλσ2,∞(u) − λσ2,∞(u)− 1)n(du) <∞,

and n(du) is defined in (2.3).

Proof. Although this result is a direct consequence of Theorem 2.1, we present an

independent derivation. By the definition (2.5) of L we have

e−f(x)(Lef )(x)

= Lf(x) +
1

2

d∑
i,j=1

ai,j(x)∂if(x)∂jf(x) +

∫
Rn
h

(
f(x+ σ2(x, u))− f(x)

)
m(x, du),

f ∈ C2b (Rd), where

h(x) = ex − x− 1, x ∈ R.

Let

Zf
t := exp

(
f(Xt)− f(X0)−

∫ t

0

(e−fLef )(Xs)ds

)
= exp

(
−→
M f

t +

∫ t

0

Lf(Xs)−
∫ t

0

(e−fLef )(Xs)ds

)
8



= exp

(
−→
M f

t −
1

2

∫ t

0

d∑
i,j=1

ai,j(Xs)∂if(Xs)∂jf(Xs)ds

−
∫ t

0

∫
Rn
h

(
f(Xs + σ2(Xs, u))− f(Xs)

)
m(Xs, du)ds

)
, t ∈ R+,

which is both a local martingale and a supermartingale by Lemma 3.3 in [5], for all

initial distribution ρ ∈M1(Rd) absolutely continuous with respect to µ.

Define now the sub-probability measure Q by

dQ = ZλfdP

on the path space. We have

Eµ
[
exp

(
λ
−→
M f

t

)]
= EPµ

[
Zλf
t exp

(
λ2

2

∫ t

0

d∑
i,j=1

ai,j(Xs)∂if(Xs)∂jf(Xs)ds

+

∫ t

0

∫
Rn
h

(
λf(Xs + σ2(Xs− , u))− λf(Xs)

)
m(Xs, du)ds

)]
= EQµ

[
exp

(
λ2

2

∫ t

0

d∑
i,j=1

ai,j(Xs)∂if(Xs)∂jf(Xs)ds

+

∫ t

0

∫
Rn
h

(
λf(Xs + σ2(Xs, u))− λf(Xs)

)
m(Xs, du)ds

)]
≤ exp

(
λ2

2
t‖f‖2Lipσ2

1,∞ + tβ
(
‖f‖Lipλ

))
,

which recovers (2.10). �

Examples

We now produce some examples of processes (Xt)t∈R+ that satisfies Assumptions (A),

(B), (C) and (D), based on Example 1.2 in [16].

Taking d = n = 1 and assuming that the invariant measure µ(dx) = ρ(x)dx has a

differentiable density ρ(x) on R, we let a(x) = σ2
1(x), σ2(x, u) = u− x,

b(x) = a(x)
ρ′(x)

ρ(x)
+ a′(x),
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and

m(x, du) = j(|u− x|)ρ(u)du,

where j(u) is a non-negative Borel measurable function on R.

Then by Theorem 1.1 of [16], the process (Xt)t∈R+ with generator

Lf(x) = b(x)f ′(x) + a(x)f ′′(x)

+

∫
R
(f(x+ z)− f(x)− zf ′(x))j(|z|)ρ(x+ z)dz

= b(x)f ′(x) + a(x)f ′′(x)

+

∫
R
(f(x+ σ2(x, u))− f(x)− σ2(x, u)f ′(x))m(x, du),

f ∈ C2b (R), is symmetric with respect to µ(dx) = ρ(x)dx, provided∫
Rd
|z|m(x, dz) <∞, x ∈ Rd.

Assuming in addition that the function z 7−→ j(z) is bounded by 1 on R and supported

in B(0, K), we have

|σ2(x, u)| = |x− u| ≤ K, m(x, du) ≤ ρ(u)du− a.e., x ∈ R,

i.e. (2.2) and (2.3) are satisfied with σ2,∞(u) = K > 0 and n(du) = µ(du) = ρ(u)du.

Again by Example 1.3 in [16], when d = n = 1 and ρ(x) = e−x
2/2/
√

2π is the standard

Gaussian density with σ1(x) = a constant, then b(x) = −x and we find

Lf(x) = −xf ′(x) +
1

2
σ2
1f
′′(x) (2.11)

+

∫
R
(f(x+ σ2(x, u))− f(x)− σ2(x, u)f ′(x))j(|x− u|)m(du),

f ∈ C2b (R), and the process (Xt)t∈R+ with generator L is symmetric with respect to

the Gaussian measure µ(dx) = e−x
2/2dx/

√
2π.

3 Transportation-information inequality

In this section 3 we present some consequences of Theorem 2.1 on related transportation-

information inequalities. Given p ≥ 1, the Lp-Wasserstein distance between two prob-
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ability measures µ and ν on Rd is defined by

Wp,d(µ, ν) = inf

(∫ ∫
|d(x, y)|pdπ(x, y)

)1/p

,

where d(x, y) is the distance on Rd and the infimum is taken over all probability mea-

sures π on Rd×Rd with marginal distribution µ and ν. Given α a non-decreasing, left-

continuous function on R+ which vanishes at 0, we say that µ satisfies a transportation-

information inequality W1I with deviation function α if

α(W1,d(ν, µ)) ≤ I(ν|µ), ν ∈M1(Rd), (3.1)

for some given probability measure µ, cf. Guillin et al. [6]. Here, I(ν|µ) is the

Fisher-Donsker-Varadhan information of ν with respect to µ

I(ν|µ) =

{
E(
√
f,
√
f) := −〈L

√
f,
√
f〉L2(R,µ), if dν = fdµ,

√
f ∈ D(E),

+∞ otherwise
(3.2)

associated with the Dirichlet form E on L2(µ) with domain D(E). From the charac-

terization result Corollary 2.4 of [6] and the convex concentration inequality (2.8), we

obtain the following result under the hypotheses of Theorem 2.1.

Theorem 3.1 Assume that Conditions (A), (B), (C) and (D) hold. The invari-

ant probability µ satisfies the W1I transportation-information inequality (3.1) with

deviation function

α(r) := sup
λ>0

(
λr − 1

2
β(2‖f‖Lipλ)− λ2‖f‖2Lipσ2

1,∞

)
(3.3)

for d(x, y) = |x− y| the Euclidean distance on Rd.

Proof. For any initial probability measure ν absolutely continuous with respect to µ

with dν/dµ ∈ L2(µ) and r, T > 0, by Theorem 2.1, applied to φ(x) = eλx with λ > 0,

we have

Pν
(

1

T
ST − µ(g) > r

)
= Pν

(
ST − Eµ[ST ] > rT

)
≤ inf

λ>0
e−λrTEν [exp(λ(ST − Eµ[ST ]))]

11



≤
∥∥∥∥dνdµ

∥∥∥∥
2

inf
λ>0

e−λrT
∣∣Eµ [exp

(
2λ(ST − Eµ[ST ])

)]∣∣1/2
≤

∥∥∥∥dνdµ
∥∥∥∥
2

inf
λ>0

exp

(
−λrT + λ2Tσ2

1,∞‖f‖2Lip +
T

2
β
(
2λ‖f‖Lip

))
,

which, by Corollary 2.4 of [6], implies the α-W1I inequality (3.1) with deviation

function α(r) given by (3.3). �

4 Application to interest rate derivatives

Theorem 2.1 applies typically to the derivation of bounds on options such as Asian op-

tions on the average ST =

∫ T

0

g(Xt)dt of a asset price g(Xt). However, the processes

we consider are mostly mean-reverting stationary processes and as such they are more

frequently used for the modeling of instantaneous interest rates than for stock prices,

cf. e.g. [4]. This is the case in particular for the Vasicek model which relies on the

Gaussian Ornstein-Uhlenbeck process, cf. e.g. [14] and references therein for a review.

Consequently we present an application to the pricing of interest rate derivatives.

Bond pricing

Assuming that the short term interest rate rt is modeled as rt = b(Xt), the bond price

E

[
exp

(
−
∫ T

0

rsds

)]
can be bounded by Theorem 2.1 as

E

[
exp

(
−
∫ T

0

rsds

)]
≤ E

[
exp

(
−W̄

(
Tσ2

1,∞
)

+

∫ T

0

∫
Rn
σ2,∞(u)ω̃(ds, du)

)]
≤ exp

(
Tσ2

1,∞/2 + T

∫
Rn

(eσ2,∞(u) − σ2,∞(u)− 1)n(du)

)
,

where W̄ (σ2) is a centered Gaussian random variable with variance σ2 > 0.
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Caplet pricing

In this case, the process b(Xt) is used to model an instantaneous forward rate, and

the integral

f(t, t, T ) =

∫ T

t

b(Xs)ds

represents a spot forward interest rate process under the forward measure.

The price of an interest rate cap with strike κ = Eµ[f(t, t, T )] on f(t, t, T ) can be

bounded as follows:

Eµ[(f(t, t, T )− κ)+] ≤ E

[(
W̄
(
(T − t)σ2

1,∞
)

+

∫ T

t

∫
Rn
σ2,∞(u)ω̃(ds, du)− κ

)+
]

= E
[(
W̄
(
(T − t)σ2

1,∞
)

+K(ω̃([0, T − t]× Rn)− (T − t)n(Rn))− κ
)+]

= e−(T−t)n(R
n)

∞∑
k=0

((T − t)n(Rn))k

k!
E
[(
W̄
(
(T − t)σ2

1,∞
)

+Kk −K(T − t)n(Rn)− κ
)+]

= e−(T−t)n(R
n) 1

σ1,∞
√

2(T − t)π

∞∑
k=0

((T − t)n(Rn))k

k!∫ ∞
−Kk+K(T−t)n(Rn)+κ

(x+Kk −K(T − t)n(Rn)− κ) e−x
2/(2(T−t)σ2

1,∞)dx

= e−(T−t)n(R
n)σ1,∞

√
(T − t)

2π

∞∑
k=0

((T − t)n(Rn))k

k!(
e
− (−Kk+K(T−t)n(Rn)+κ)2

(2(T−t)σ21,∞ + (Kk −K(T − t)n(Rn)− κ) Φ

(
−Kk +K(T − t)n(Rn) + κ

(T − t)σ2
1,∞

))
,

where Φ is the standard Gaussian distribution function.

In the case of a Gaussian stationary distribution with mean reversion coefficient b(x) =

−x the covariance of the process can be difficult to compute, so that the above bounds

can remain useful even in this case.
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[16] J. Wang. Symmetric Lévy type operator. Acta Math. Sin. (Engl. Ser.), 25(1):39–46, 2009.

[17] L.M. Wu. Forward-backward martingale decomposition and compactness results for additive
functionals of stationary ergodic Markov processes. Ann. Inst. H. Poincaré Probab. Statist.,
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