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Performance Analysis of Ambient RF Energy
Harvesting with Repulsive Point Process Modeling
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Abstract

Ambient RF (Radio Frequency) energy harvesting technique has recently been proposed as a potential solution
to provide proactive energy replenishment for wireless devices. This paper aims to analyze the performance of
a battery-free wireless sensor powered by ambient RF energy harvesting using a stochastic geometry approach.
Specifically, we consider the point-to-point uplink transmission of a wireless sensor in a stochastic geometry
network, where ambient RF sources, such as mobile transmit devices, access points and base stations, are distributed
as a Ginibre α-determinantal point process (DPP). The DPP is able to capture repulsion among points, and hence,
it is more general than the Poisson point process (PPP). We analyze two common receiver architectures: separated
receiver and time-switching architectures. For each architecture, we consider the scenarios with and without co-
channel interference for information transmission. We derive the expectation of the RF energy harvesting rate in
closed form and also compute its variance. Moreover, we perform a worst-case study which derives the upper bound
of both power and transmission outage probabilities. Additionally, we provide guidelines on the setting of optimal
time-switching coefficient in the case of the time-switching architecture. Numerical results verify the correctness
of the analysis and show various tradeoffs between parameter setting. Lastly, we prove that the sensor is more
efficient when the distribution of the ambient sources exhibits stronger repulsion.

Index terms- Ambient RF energy harvesting, sensor networks, determinantal point process, Poisson
point process, Ginibre model.

I. INTRODUCTION

Ambient RF energy harvesting techniques offer the capability of converting the received RF signals
from environment into electricity [1], [2]. Therefore, it has recently emerged as an alternative method to
operate low-power devices [3]–[6], such as wireless sensors [7]. Ambient RF energy harvesting aims to
capture and recycle the environmental energy such as broadcast TV, radio and cellular signals [8], which
are essentially free and universally present, making this technique even more appealing. An experiment
with ambient RF energy harvesting in [9] shows that 60µW is harvested from TV towers that are 4.1km
away. It is also reported in [10] that 109µW RF power can be harvested from daily routine in Tokyo.
In [11], the authors measure the ambient RF power density from 680MHz to 3.5GHz and show that the
average power density from 1GHz to 3.5GHz is of the order of 63µ W/m2. Detected 6.3km away from
Tokyo Tower, the RF-to-DC conversion efficiency is demonstrated to be about 16%, 30% and 41% when
the input power is -15dBm, -10dBm and -5dBm, respectively [12].

In this context, wireless devices powered by ambient RF energy are enabled for battery-free imple-
mentation, and a perpetual lifetime. For example, reference [13] demonstrates that an information rate of
1kbps can be achieved between two prototype devices powered by ambient RF signals, at distance of up
to 2.5 feet and 1.5 feet for outdoors and indoors, respectively. Existing literature has also presented many
implementations of battery-free devices powered by ambient energy from WiFi [14], GSM [15] and DTV
bands [16] as well as ambient mobile electronic devices [17].
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TABLE I
COMPARISON OF COMMON STOCHASTIC MODELS.

Model Simulation Mathematical tractability Modulability Data fitting
PPP Very easy Closed forms Intensity Not very fitting
Ginibre α-DPP Easy Closed forms Intensity, α Different degrees of repulsion

A. Related Work
Geometry approaches have been applied to analyze RF energy harvesting performance in cellular

network [18], cognitive radio network [19], and relay network [20]–[22]. The authors in [18] investigate
tradeoffs among transmit power and density of mobiles and wireless charging stations which are both
distributed as a homogeneous Poisson Point Process (PPP). Energy harvesting relay network has been
mostly analyzed. In [19], the authors study a cognitive radio network where primary and secondary
networks are distributed as independent homogeneous PPPs. The secondary network is powered by the
energy opportunistically harvested from nearby transmitters in the primary network. Under the outage
probability requirements for both coexisting networks, the maximum throughput of the secondary network
is analyzed. The study in [20] analyzes the impact of cooperative density and relay selection in a large-
scale network with transmitter-receiver pairs distributed as a PPP. Reference [21] investigates a decode-
and-forward relay network with multiple source-destination pairs. Under the assumption that the relay
nodes are distributed as a PPP, the network outage probability has been characterized. The studies in [22]
investigates network performance of a two-way network-coded cooperative network, where the source,
destination and RF-powered relay nodes are modeled as three independent PPPs.

Other than RF energy harvesting, stochastic geometry approaches have also been applied to address
other types of energy harvesting systems. Reference [23] investigates the network coverage of a hexagonal
cellular network, where the base stations are powered by renewable energy, and the mobiles are distributed
as a PPP. The authors in [24] explore the network coverage in a relay-assisted cellular network modeled
as a PPP. Each relay node adopt an energy harvesting module, the energy arrival process of which is
assumed to be an independent and identical poisson process. In [25], the authors provides a fundamental
characterization of the regimes under which a multiple-tier heterogeneous network with genetic energy
harvesting modules fundamentally achieves the same performance as the ones with reliable energy sources.
Different from above studies, our previous in [26] adopts a determinantal point process model to analyze
the downlink transmission performance from an access point to a sensor powered by ambient RF energy.

B. Motivations and Contributions
As discussed in Section I-A, the prior literature mainly focuses on the performance analysis on RF-

powered wireless devices using PPPs. We generalize this approach by considering a larger class of point
processes, specifically the Ginibre α-determinantal point process. Table I compares the PPP and the Ginibre
α-DPP with regards to a few key points summarized in the table. Therein, the column “simulation”
refers to the ease (in terms of time, computational complexity and implementation difficulty) of the
simulation of the point process. By mathematical tractability, we mean the possibility of obtaining closed
mathematical formulas for the moments of the point process. By modulability, we mean the choice of
available parameters. Lastly, by data fitting we refer to the range of phenomena modeled by the point
process.

The Ginibre α-DPP offers many advantages in terms of modeling capability and ease of simulation
[27] (here, −1 ≤ α < 0 is a parameter, and the PPP is a special case obtained in the limit α→ 0). One
advantage of the Ginibre α-DPP over the PPP is that the Ginibre α-DPP can be used to model random
phenomena where repulsion is observed. Mobile systems may exhibit some clustering and repulsion
behaviors, such as in mobile sensor networks [28], mobile cellular networks [29] and mobile social
networks [30]. Therefore, the Ginibre α-DPP is a suitable tool for the analysis of the impact of distribution
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patterns on network performance. Previous works in [31] and [32] have adopted Ginibre point processes
to model the locations of base stations in wireless networks.

Since the direct simulation of DPP models is computationally slow, in this paper we focus on a worst-
case scenario which is simpler to analyze. Namely, we perform a worst-case analysis of the point-to-point
uplink transmission between an RF-powered sensor node and a data sink. The sensor node needs to harvest
RF energy from ambient RF sources (e.g., cellular mobiles and access points), which are modeled using
a Ginibre α-DPP which we have briefly described previously. The sensor, assumed to be battery-free,
transmits to the data sink using instantaneously harvested RF energy. A power outage happens if the
instantaneously harvested energy fails to meet the circuit power consumption of the sensor. Moreover,
if the minimum transmission rate requirement cannot be fulfilled, a transmission outage occurs. For the
study of the transmission outage probability, we consider the scenarios of out-of-band transmission and
in-band transmission. In the former scenario, the sensor node transmits data on a frequency band different
from that for RF energy harvesting (without co-channel interference). In the latter scenario, the sensor
node transmits on the same frequency band of ambient RF energy sources (with co-channel interference).
We focus on analyzing the performance of two different receiver architectures: a separated architecture
[1] and a co-located receiver architecture, called time-switching [33], whose details are in Section II-A.
By modeling the RF sources with a Ginibre α-DPP, we analyze the impact of the distribution of ambient
RF sources on the performance of the RF-powered sensor. Our main contributions are summarized below.
• First, we derive the expectation of aggregated energy harvesting rate by the sensor. We also obtain

the expression of the variance of the energy harvesting rate. The closed-form expressions are verified
by the numerical results. Since obtaining numerical results is very time-consuming, our closed forms
are very useful in practice.

• Next, we investigate the power outage probability, i.e. the probability that the sensor node becomes
inactive due to lack of sufficient energy supply. We give an upper-bound of the power outage
probability in closed form, and we interpret this upper-bound as a worst-case scenario. We confirm
that the theoretical power outage probability and its estimation by simulation are consistent. We also
compare the performance of separated and time-switching receiver architectures by simulation.

• We further study the transmission outage probability, i.e. the probability that the sensor fails to
fulfill its transmission rate requirement, because of insufficient transmit power. The scenarios of out-
of-band transmission and in-band transmission are both considered. We derive an upper-bound of
the transmission outage probability and again interpret is as a worst-case scenario. Inspired by the
observations in the numerical results, we derive the optimal value of the time-switching coefficient
τ . The expression for the optimal choice of τ is given and verified by numerical computation. Lastly,
we derive a lower bound of the transmission rate.

Note that this paper is an extension of [34], wherein we present partial of the results with the separated
architecture.

The remainder of this paper is organized as follows. Section II introduces the system model, the DPP
geometry model of ambient RF sources and performance metrics. Section III estimates the performance
metrics of the sensor for both Ginibre α-DPP and PPP modeling of ambient RF sources. Lastly, our
conclusion can be found in Section IV.

Notations: Throughout the paper, we use E[X] to denote the probabilistic expectation of a random
variable X , and P(A) to denote the probability of an event A.

II. SYSTEM MODEL

A. Network Model
We consider a network comprising a number of ambient RF energy sources, i.e., wireless information

transmitters, in which a sensor node is powered solely by the energy harvested from these energy sources.
Figure 1 shows the considered network model, where the sensor node harvests RF energy emitted from
the ambient sources and utilizes the harvested energy to perform uplink data transmission to the data sink.
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Fig. 1. A network model of ambient RF energy harvesting.

(a) Separated Receiver Architecture (b) Time Switching Achitecture

Fig. 2. Separated receiver and time switching architectures.

We model the distribution of ambient RF energy sources as a Ginibre α-DPP, which will be specified
in detail in Section II-B. The transmit power of the ambient RF sources are assumed to be identical.
Without any loss of generality, the sensor is considered to lie at the origin. Furthermore, we assume that
the sensor node is battery-free. In particular, the sensor utilizes the instantaneously harvested RF energy
to supply its operations. We study two different receiver architectures: separated receiver architecture, and
time-switching, which either enables the sensor to perform data transmission and RF energy harvesting
simultaneously or separately.
• Separated receiver architecture: As shown in Fig. 2a, this architecture equips the energy harvester

and the information transmitter with separated antennas so that they can function independently and
concurrently. The instantaneously harvested energy is first used to operate the sensor circuit and
then the surplus energy is provided for information transmission. This architecture can maximize
the utilization of energy harvesting devices, but it is generally larger in size compared to the time-
switching architecture.

• Time-Switching Architecture: As shown in Fig. 2b, the time-switching architecture, is equipped with
a single antenna. By adopting a switcher, this architecture allows either the energy harvester or the
information transmitter attached to the antenna at a time. The time-switching architecture works on a
time-slot basis. In each time slot, the energy harvester first uses τ (0 ≤ τ ≤ 1) portion of a time slot
to harvest RF energy. The capacitor reserves the surplus of the harvested energy after being used to
power the sensor circuit. Next, during the rest of 1− τ time, the information transmitter utilizes the
surplus energy from the capacitor to transmit information.
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The RF energy harvesting rate of the sensor node from the RF energy source k in a free-space channel
P k

H can be obtained based on the Friis equation [35] 1 as follows:

P k
H = %βPS

GSGHλ
2

(4πdk)2
, (1)

where β is the RF-to-DC power conversion efficiency of the sensor node, and % is an efficiency factor
which depends on the specific architecture. For a given RF energy source, PS is its transmit power, GS

is its transmit antenna gain, λ is the wavelength at which it emits. As the focus of this paper is to
analyze the impact of the locations of ambient RF sources to the performance of the sensor node, we
intentionally make other parameters, e.g., PS , GS , and λ to be constants for ease of presentation and
analysis. Nevertheless, the proposed analytical framework can also be extended to the case when these
parameters vary. dk is the distance of an RF energy source k to the receiver antenna of the sensor node.
GH is the receive antenna gain of the sensor node. Let xk ∈ R2 be the coordinates of the RF energy
source k (recall that the sensor node lies at the origin). The distance is modeled as dk = ε+‖xk‖, where ε
is a fixed (small) parameter which ensures that the associated harvested RF power is finite in expectation.
Physically, ε is the closest distance that the RF energy sources can be to the sensor node.

The aggregated RF energy harvesting rate by the sensor node from the ambient RF sources can be
computed as

PH =
∑
k∈K

P k
H =

∑
k∈K

%βPS
GSGHλ

2

(4π(ε+ ‖xk‖))2
, (2)

where K is a random set consisting of all RF energy sources. We assume that K is a point process [36].
The sensor consumes a base circuit power, denoted by PC. Note that this circuit power consumption

also accounts for the energy loss due to various factors such as capacity leakage. Following practical
models [37], the circuit power consumption of the sensor is assumed to be fixed. We assume that, other
than circuit power consumption, there is no power loss during transfer from energy harvester to information
transmitter for both architectures. For the separated receiver architecture, the transmit power is given by
PT = [PH − PC]+, where [x]+ = max(0, x) and PC is a constant. For the time-switching architecture, all
the harvested energy can be used in the data transmission phase to maximize transmission rate. Thus the
transmit power is dependent on the transmission time, and is given by PT = [PH − PC]+ /(1− τ). Then,
the general form of maximum transmission rate of the sensor node is given as follows2:

C = η ·W · log2

(
1 + h0

[PH − PC]+

η(ξ
∑

k∈K P
k
H + σ2)

)
, (3)

where W is the transmission bandwidth, and 0 ≤ η ≤ 1 is an efficiency factor depending on the specific
architecture. σ2 is a nonnegative constant which represents the power of additive white Gaussian noise
(AWGN). The term ξ

∑
k∈K P

k
H corresponds to the interference, and the specific value of ξ ∈ {0, 1}

depends on whether we consider an out-of-band or in-band transmission scenario. h0 denotes the channel
gain between the transmit antenna of the sensor node and the receive antenna of data sink. The separated
receiver architecture corresponds to % = 1 and η = 1. The time-switching architecture corresponds to the
% = τ and η = 1− τ , where τ is the time-switching parameter. In both of these cases, ξ = 1 corresponds
to an in-band transmission scenario, while ξ = 0 corresponds to an out-of-band transmission.

B. Geometric DPP Modeling of Ambient RF Energy Sources
As an extension of the Poisson setting, we model the locations of RF energy sources using a point

process K on an observation window O ⊂ R2 such that 0 < |O| < +∞ (here |O| denotes the Lebesgue

1Other RF signal propagation models can also be used without loss of generality in the analysis of this paper.
2Note that state-of-the-art wireless information receivers are not yet able to achieve this rate upper bound due to additional processing

noise such as the RF band to baseband conversion noise.
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measure of O). In other terms, K is an almost surely finite random collection of points inside O. We refer
to [36] and [38] for the general theory of point processes. The correlation functions ρ(n) of K (if they
exist), w.r.t. the Lebesgue measure on R2, verify

E

[
n∏
i=1

K(Bi)

]
=

∫
B1×···×Bn

ρ(n)(x1, . . . , xn) dx1 · · · dxn, (4)

for any family of mutually disjoint bounded subsets B1, . . . , Bn of E, n ≥ 1. Heuristically, ρ(1) is the
particle density, and ρ(n)(x1, . . . , xn) dx1 . . . dxn is the probability of finding a particle in the vicinity of
each xi, i = 1, . . . , n. The correlation functions are thus a generalization of the concept of probability
density function to the framework of point processes. The correlation functions play an important role in
the definition and interpretation of a general α-DPP.

1) General α-determinantal point process: We let α = −1/j for an integer j ∈ N∗, and we define
a general α-DPP in the following. Let us introduce a map K : L2(R2) 7→ L2(R2), where L2(R2) is the
space of square integrable functions on R2. We assume in the following that K satisfies Condition A
from [41]. The map K is called the kernel of the α-DPP. It represents the interaction force between the
different points of the point process. A locally finite and simple point process on R2 is called an α-DPP
if its correlation functions w.r.t. the Lebesgue measure on R2 exist and satisfy

ρ(n)(x1, . . . , xn) = detα(K(xi, xj))1≤i,j≤n, (5)

for any n ≥ 1 and x1, . . . , xn ∈ R2, and where the α-determinant of a matrix M = (Mij)1≤i,j≤n is defined
as

detαM =
∑
σ∈Sn

αn−ν(σ)

n∏
i=1

Miσ(i), (6)

where Sn stands for the n-th symmetric group and ν(σ) is the number of cycles in the permutation σ ∈ Sn.
Let us now give some basic properties of the α-DPP to emphasize the role played by the kernel K.

We start by a proposition exhibiting the repulsion properties of the α-DPP. Its proof follows from the
formula defining the correlation functions (4).

Proposition 1 (Repulsion of the α-DPP). The covariance of an α-DPP of kernel K is given by

Cov(K(A),K(B)) = α

∫
A×B
|K(x, y)|2 dxdy,

where K(A) and K(B)) denote the random number of point process points located within the disjoint
bounded sets A,B ⊂ R2.

Since α < 0, K(A) and K(B) are negatively correlated and the associated α-DPP is known to be
locally Gibbsian, see, e.g., [40], therefore it is a type of repulsive point process. Additionally, the α-DPP
exhibits more repulsion when α is close to −1. As α → 0, K(A) and K(B) tend not to be correlated,
and in fact it can be shown that the corresponding point process converges weakly to the PPP, c.f. [41].

Next, we recall from [42] the following proposition which gives the hole probabilities of the α-DPP.
Proposition 2 allows us to compute the quantities known as hole probabilities.

Proposition 2 (Hole probability of the α-DPP). For every bounded set B ⊂ R2 we have

P(K ∩B = ∅) = Det(Id + αKB)−1/α, (7)

where KB is the operator restriction of K to the space L2(B) of square integrable functions on B with
respect to the Lebesgue measure. Here, Id is the identity operator on L2(B) and for any trace class
integral operator K, Det (Id + αK) is the Fredholm determinant of Id + αK defined in [39].



7

2) The Ginibre point process: In the rest of the paper, we focus on the Ginibre α-DPP, which is a
particular α-DPP well-suited for applications. The Ginibre process is a type of α-DPP that is invariant with
respect to rotations. Therefore, it will be fruitful for computational convenience to restrict our attention to
the choice of observation window O = B(0, R), defined as a disc centered around 0 and of radius R > 0.

The Ginibre process is defined by the so-called Ginibre kernel given by

K(x, y) = ρ eπρxȳe−
πρ
2

(|x|2+|y|2), (8)

for x, y in O = B(0, R), and where ρ > 0 is a fixed parameter called density of the point process. This
kernel is that of the usual Ginibre process defined, e.g., in [27], to which we have applied a homothety
of parameter

√
πρ > 0: x 7→ x/(

√
πρ). Next we recall a few features of the Ginibre process.

• The Ginibre kernel K defined in (8) satisfies Condition A from [41], and is thus a type of α-DPP.
• The intensity function of the Ginibre process is given by

ρ(1)(x) = K(x, x) = ρ, (9)

c.f. [41]. This means that the average number of points in a bounded set B ⊂ B(0, R) is ρ |B|. Note
that the intensity function of a homogeneous PPP is also constant, so ρ is interpreted as the intensity
of the corresponding PPP.

• The Ginibre α-DPP is stationary and isotropic, in the sense that its distribution is invariant with
respect to translations and rotations, c.f. [27]. Hence, the Ginibre point process models a situation
where the RF energy sources are distributed homogeneously in R2.

We write K ∼ Gin(α, ρ) when K is an α-DPP with Ginibre kernel defined in (8) and density
ρ. The spectral theorem for Hermitian and compact operators yields the decomposition K(x, y) =∑

n≥0 λnϕn(x)ϕn(y), where (ϕi)i≥0 is a basis of eigenvectors of L2(O), and (λi)i≥0 are the corresponding
eigenvalues. In, e.g., [27], it is shown that the eigenvalues of the Ginibre point process on O = B(0, R)
are given by

λn =
Γ(n+ 1, πρR2)

n!
, n ∈ N, (10)

where
Γ(z, a) ,

∫ a

0

e−ttz−1 dt, z ∈ C, a ≥ 0, (11)

is the lower incomplete Gamma function. On the other hand, the eigenvectors of K are given by ϕn(z) ,
1√
λn

√
ρ√
n!
e−

πρ
2
|z|2(
√
πρz)n, for n ∈ N and z ∈ O. We refer to [27] for further mathematical details on the

Ginibre point process.
To illustrate how the parameter α affects the distribution of the DPP, in Fig. 3 we show some snapshots

of the scattering of ambient RF energy sources in a disc of radius R = 10, when the RF source density is
ρ = 0.3. It is seen that strong repulsion exists between the RF sources when α = −1. As a result, the RF
sources tend to scatter evenly over the area. We can observe that the repulsion decreases very fast with the
increase of α. When α = −0.5, some of the RF sources exhibit attraction by locating close to each other.
Some grids of vacant area begin to emerge. The attraction keeps increasing as α approaches zero. When
α = −0.03, the RF sources show clustering behavior, which is a feature of the PPP. Consequently, there
appear many grids of vacant area. Thus, depending on the distribution of RF sources that is observed, we
shall choose a different value of the parameter α that appropriately models the situation at hand.

C. Performance Metrics
We define the performance metrics of the sensor node as the expectation of RF energy harvesting

rate, the variance of the RF energy harvesting rate, power outage probability and transmission outage
probability. Let us first introduce the mathematical quantities of interest.
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Fig. 3. Snapshots of the distribution of ambient RF energy sources (a) α = −1 (b) α = −0.5 (c) α = −0.03.

1) Theoretical values: The expectation of the RF energy harvesting rate is defined as EPH
, E [PH] .

The variance of RF energy harvesting rate is given by VPH
, E

[
(PH − E [PH])2] .

Power outage occurs when the sensor node becomes inactive due to lack of enough energy supply. The
power outage probability is then defined as Ppo , P (PH < PC) .

Let m ≥ 0 denote the minimum transmission rate requirement. If the sensor fails to achieve this
requirement, a transmission outage occurs. The transmission outage probability can be defined as Pto ,
P (C < m) .

2) Estimation by simulation: The different theoretical performance metrics introduced in Section II-C1
may in practice be estimated by Monte Carlo simulation of the underlying α-DPP. The simulation of
α-DPPs when α = −1/j, j ∈ N, is done by using the Schmidt orthogonalization algorithm developed in
full generality in [43], and specifically in [27] for the Ginibre point process. The simple generalization to
α = −1/j can be found in the recent survey [44], and additional details on DPP can be found in [45].

3) Upper bounds under a worst-case scenario: In practice, there are no closed forms for all the
performance metrics appearing in Section II-C1. Additionally, estimation by simulation suffers from some
drawbacks: 1) the time required to draw N samples of PH can be rather long; 2) the estimation may
differ significantly from the theoretical result (if N is not sufficiently large); 3) it is difficult to modify
the parameters retroactively, and a new set of simulations is then required. These drawbacks motivate the
computation of upper bounds which is the object of the remainder of the paper.

To that end, we introduce a simpler scenario, which is henceforth called worst-case scenario. In this
worst-case scenario, the sensor node only receives energy from one RF source at a time. In this simpler
case, there is energy (respectively transmission) outage if and only if the closest RF source is further
than some characteristic distance. Figure 4 illustrates the difference between the general-case scenario,
and the worst-case scenario. γ represents the maximum distance from the sensor node where a single
RF energy source can still power the sensor node by itself. In Fig. 4a, as an RF energy source lies in
the range of γ, sufficient power is guaranteed from this single source. As a result, both the general-case
scenario and worst-case scenario experience no outage. If there exists no RF energy source in the range
of γ, the sensor may still be powered if the sum of harvested energy from multiple RF energy sources is
large enough. In this context, the outage largely depends on the density of RF energy sources. When the
density is high, as in Fig. 4b, the sensor shall experience no outage in general-case scenarios. However,
in the worst-case scenario, outage occurs. Contrarily, when the density is low, as in Fig. 4c the sensor
does not harvest enough energy in both general-case and worse-case scenarios.

As illustrated here, our worst-case scenario over-estimates the outage probability. Indeed in Fig. 4b,
there is an outage in the worst-case scenario, although there is not in the general scenario. Therefore, the
performance metrics in this worst-case scenario over-estimate the real performance metrics. this will be
the focus of Section III in which we show that this worst-case scenario constitutes an upper-bound to the
outage probabilities.
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Fig. 4. Example scenarios for ambient RF energy harvesting.

III. PERFORMANCE ANALYSIS

In this section we analyze the performance metrics defined in Section II-C when K ∼ Gin(α, ρ) is the
Ginibre α-DPP with parameter α = −1/j for j ∈ N∗, and density ρ > 0.

A. The Expectation and Variance of RF Energy Harvesting Rate
First, we obtain the expectation of RF energy harvesting rate in the following theorem.

Theorem 1. The expectation of RF energy harvesting rate can be explicitly computed as follows3:

E[PH]=2π%βPS
GSGHλ

2

(4π)2
ρ

(
ε

R + ε
+ ln(R + ε)− 1− ln(ε)

)
(12)

≈ε→0
ρ%βPSGSGHλ

2

8π
ln

(
R

ε

)
. (13)

Additionally, the variance of the RF energy harvesting rate can be computed as follows:

VPH =

(
%βPS

GSGHλ
2

(4π)2

)2(
2πρ

(
1

6ε2
− 3R + ε

6(R + ε)3

)
+αρ2

∫
O×O

e−πρ‖x−y‖
2

(ε+ ‖x‖)2 (ε+ ‖y‖)2 dxdy

)
, (14)

where recall that O = B(0, R) is the observation window.

Before moving on to the proof, a few remarks are in order. First, we note that Theorem 1 implies
that at the level of expectations, the Ginibre α-DPP behaves like a homogeneous PPP and in particular,
the expectation of RF energy harvesting rate is independent of the repulsion parameter α. Therefore,
on average, the harvested energy is the same when α varies. However, it is straightforward from (14)
that the variance of the RF energy harvesting rate is larger when the point process is closer to a PPP.
Heuristically, there is a larger probability that there are no points close to the sensor when the RF sources
are distributed as a PPP. Second, notice that the second term in (14) is in fact not a closed form. To the best
of our knowledge, the second term cannot be explicitly calculated, but should instead be approximated
numerically.

Proof. We have

E[PH] = βPS
GSGHλ

2

(4π)2

∫
O

ρ(1)(x)

(ε+ ‖x‖)2
dx

3Here, we say that f ≈ε→0 g if f/g −−−→
ε→0

1.
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TABLE II
PARAMETER SETTING.

Symbol GiS , GkS β P kS W λk PC σ2

Value 1.5 0.3 1W 1KHz 0.167m 15.8µW −90dBm
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Fig. 5. RF Energy Harvesting Rate versus Density of Ambient RF Energy Sources.

by Campbell’s formula [36], where ρ(1)(x) = K(x, x) = ρ is the intensity function of K given by (9).
We thus find

E[PH] = βPS
GSGHλ

2

(4π)2
2π

∫ R

0

ρ
r

(ε+ r)2
dr,

by polar change of variable, and the integral on the r.h.s. is computed explicitly as∫ R

0

r

(ε+ r)2
dr =

(
ε

R + ε
+ ln(R + ε)− 1− ln(ε)

)
,

which yields the result.
For brevity, the proof of the expression of variance (14) is presented in Appendix I

Next, we examine the validity of the expressions of the expectation and variance of RF energy harvesting
rate. All the network simulations in this paper are considered in the scenario of an LTE network with a
typical 1800MHz operating frequency. The corresponding wave length adopted is 0.167m. The channel
gain of both transmit antenna and receive antenna are assumed to be 1.5. The RF-to-DC power conversion
efficiency is assumed to be 30%. We consider the transmit power of ambient RF sources is 1W . The
circuit power consumption of the sensor is fixed to be -18dBm (i.e., 15.8µW ) as in [46]. The sensor
is assumed to be allocated with a 1kHz bandwidth for data transmission. The AWGN is considered to
be -90dBm. The channel gain between the sensor and data sink is calculated as h0 = 62.5d−4 [47],
where d is the distance between the sensor node and the data sink. The results with the separated and
time-switching receiver architectures are labeled as “SA” and “TS”, respectively. Note that the results
for the PPP are identical to that of the α-DPP, when α = 0. Additionally, the performance of separated
receiver architecture in terms of expectation and variance of RF energy harvesting rate and power outage
probability is identical to the case when τ = 1 for time-switching.

As shown in Fig. 5, the numerical results, averaged over N = 5 × 105 of simulation runs, match the
analytical expression (12) accurately over a wide range of density ρ, i.e., from 0.01 to 1. As expected,
the RF energy harvesting rate increases with the density of ambient RF energy sources. Under the same
density, the RF energy harvesting rate is affected by ε. We observe that when ε = 0.001, larger RF energy
harvesting rate is available at the sensor than that when ε = 0.01. The straightforward reason is that, from
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(2), the smaller distance the RF sources locate near the sensor, the more aggregated RF energy harvesting
rate can be achieved. Additionally, the use of the approximate expression (13) from (12) can be observed
to increase with the density of ambient RF energy sources. However, the difference between (13) and
(12) in percentage remains the same, i.e., 15 percent when ε = 0.01. This difference is dependent on ε,
and is shown to diminish with the decrease of ε. As shown in Fig. 5, when ε = 0.001, the approximate
expression approximates more closely to the analytical expression.

B. Upper Bound of the Power Outage Probability
In this section, we derive upper-bounds of power outage probability defined in Section II-C1. We

interpret these upper-bounds in terms of a worst-case scenario, as specified in Section II-C3. We also
point out that all the numerical estimations done in this section are performed under the worst-case
assumption.

Theorem 2. Let us define

γ ,
λ

4π

√
%βPSGSGH

PC

.

Then, the following bound holds:

Ppo = P(PH < PC) ≤

(∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γ)2)

n!

))−1/α

, (15)

where Γ(z, a) is the lower incomplete Gamma function defined in (11).

Remark that the parameter ε does not appear in the bound of Theorem 2 and rigorously, the inequality
holds only for a sufficiently small value of ε. In practice, we should therefore make sure that ε is chosen
small enough.

Proof. To make the proof easier to follow, let us set f(xk) , %βPS
GSGHλ

2

(4π(ε+‖xk‖))2
, for k ∈ K. Then,

Ppo = P

(∑
k∈K

f(xk) ≤ PC

)
≤ P(∀k ∈ K, f(xk) ≤ PC) (16)
= P(∀k ∈ K, ‖xk‖ ≥ γ − ε)
= P(K ∩ B(0, γ − ε) = ∅),

where we have chosen ε such that γ − ε ≥ 0. Thus by Proposition 2, we obtain

Ppo ≤ Det(Id + αKB(0,γ−ε))
−1/α. (17)

Since in our case K is the Ginibre kernel, the eigenvalues of K are given by (10). By standard properties
of the Fredholm determinant which can be found, e.g., in [39], we find,

Ppo ≤

(∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γ − ε)2)

n!

))−1/α

,

and the result follows by letting ε go to zero on the r.h.s. of (17), since the associated function of ε is
continuous.

Let us explain briefly the heuristics behind the bound in Theorem 2. Note that the only line which is
not an equality in the proof of Theorem 2 is (16). The approximation made therein is that the harvested
energy rate PH is provided by the RF source closest to the sensor node. Hence, the probability appearing
on the r.h.s. of (15) is the probability corresponding to the worst-case scenario introduced in Section II-C3.
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Fig. 7. Upper Bound of Power Outage Probability versus Density
of Ambient RF Energy Sources and Time-Switching Coefficient τ
(time-switching architecture).

Estimation of this upper-bound by simulation will therefore consist in assuming the worst-case scenario.
Conversely, estimation of the l.h.s. of (15) will consist in assuming the general-case scenario.

It should be noted that the eigenvalues appearing in the product of Theorem 2 are in decreasing order,
and decrease exponentially when n ≥ πρ inf(R, γ)2, see [27] for details. Hence, the product which appears
in Theorem 2 is well approximated by(

N∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γ)2)

n!

))−1/α

, (18)

where N � πρ inf(R, γ)2. We also note that

d

dα
ln

(∏
n≥0

(1 + αλn)

)−1/α

=
1

α2

∑
n≥0

(1 + αλn) ln(1 + αλn)− αλn
1 + αλn

≥ 0,

which means that the bound of Theorem 2 is smallest when α = −1, i.e. when repulsion is maximal, and
increases with α.

As a corollary of Theorem 2, we find in the case of a PPP (which is obtained as the limit as α → 0
in the theorem) the next corollary.

Corollary 1. Let K ∼ Poiss(O, ρ) be a Poisson process on O = B(0, R) with density ρ. Then, the
following bound holds:

Ppo ≤ e−πρ inf(R,γ)2 , (19)

where γ is as defined in Theorem 2.

In Fig. 6, we show the variation of the upper bound of the power outage probability Ppo as a function the
density of ambient RF energy sources ρ for both separated and time-switching architecture. It is observed
that Ppo is a decreasing function of ρ. The numerical results verify that the analytical expressions for the
upper bounds in (15) and (19) are very tight for different values of α. We also observe that the smaller
the α, the lower the upper bound of the outage probability. In other words, more repulsion among the
locations of the RF sources results in lower outage probability of the sensor. This finding coincides with
the previous analysis that the maximal repulsion results in best power outage performance. Moreover, we
can observe that the influence of α depends on the density ρ. For both receiver architectures, the gap
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Fig. 9. Upper Bound of Power Outage Probability versus Cir-
cuit Power Consumption and Time-Switching Coefficient τ (time-
switching architecture).

between the bounds for DPP (α = −1) and PPP first increases with the density ρ and then decreases
when the power outage probability becomes low.

Figure 7 examines the impact of time-switching coefficient τ on the upper bound of the outage
probability. It is obvious that, regardless of density ρ, power outage probability is a monotonically
decreasing function of τ . As is seen on Figure 7, a small value of τ can significantly degrade the upper
bound of power outage performance. The more the value of τ decreases, the more quickly the power
outage performance degrades.

Then, we evaluate the impact of circuit power consumption PC of the sensor for separate and time-
switching receiver architectures in Fig. 8 and Fig. 9, respectively. It is seen that, when the density ρ is
small (e.g., ρ = 0.01), the corresponding plot is a logarithm-like function. Specifically, the power outage
probability is very sensitive to the small value of PC , and becomes less sensitive when PC is larger (e.g.,
above 2 × 10−5W). For example, the upper bound of power outage probability for PPP increases from
15.1% to 58.4% (i.e., 43.3% difference) when PC varies from 0.2 × 10−5W to 0.7 × 10−5W. However,
when PC varies in the same amount from 2.0 × 10−5W to 2.5 × 10−5W, the upper bound only changes
from 82.9% to 86.1% (i.e., 3.2% difference). This indicates that, in practice, advanced sensor circuit with
small PC can help to lower down power outage probability significantly, especially when the available
RF energy harvesting rate is small. For the scenarios with larger density ρ (e.g., ρ = 0.03), the outage
probability tends to grow smoothly with the increase of PC . The gap between the upper bounds of the
DPP (α = −1) and the PPP increases with the density ρ. This can be understood since a larger number of
random RF sources results in a larger variance in RF energy harvesting rate (shown in (14) in Theorem
1), thus a greater difference in the power outage probability. For time-switching, as shown in Fig. 9, the
impact of PC on the power outage probability is dependent on the coefficient τ . The larger τ is, the more
dynamically the upper bound of power outage probability varies when PC is small.

Lastly, we emphasize that in practice, the computation of the upper-bound obtained in Theorem 2 is
very fast. Therefore, we believe that these bounds are the preferred choice in practical applications.

C. Upper Bound of the Transmission Outage Probability
Next, we give a practical upper bound for the estimation of the transmission outage probability Pto.

Again, we interpret these upper-bounds in terms of a worst-case scenario, which was specified in Sec-
tion II-C3.
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Theorem 3. Let us define:

γm ,
λ

4π

√
PS%βGSGH (h0 + ηξ (1− 2m/(ηW )))

PCh0 + ησ2 (2m/(ηW ) − 1)
. (20)

Then we obtain

Pto = P (C < m) ≤

(∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γm)2)

n!

))−1/α

. (21)

Proof. Applying the definition of C given in (3), it holds that

Pto=!P

(
h0

η
[PH − PC]+<

(
σ2 + ξ

∑
k∈K

P k
H

)(
2m/(ηW ) − 1

))

= P
(
PH < PC + η

(
σ2 + ξPH

) 2m/(ηW ) − 1

h0

)
= P

(
PH

(
h0 − ηξ

(
2m/(ηW ) − 1

))
< h0PC + ησ2

(
2m/(ηW ) − 1

))
where we have used the fact that 2m/(ηW )−1 ≥ 0. This implies that if h0− ξ

(
2m/(ηW ) − 1

)
≤ 0, Pto = 1.

Now, if h0 − ξ
(
2m/(ηW ) − 1

)
> 0, it remains to reorganize the equation in order to use Theorem 2:

Pto = P

(
PH <

h0PC + ησ2
(
2m/(ηW ) − 1

)
h0 − ηξ (2m/(ηW ) − 1)

)
, (22)

so we conclude by Theorem 2 that Pto ≤
(∏

n≥0

(
1 + αΓ(n+1,πρ inf(R,γm)2)

n!

))−1/α

, where

γm =
λ

4π

√√√√√ %βPSGSGH(
h0PC+ησ2(2m/(ηW )−1)
h0−ηξ(2m/(ηW )−1)

) =
λ

4π

√
PS%βGSGH (h0 + ηξ (1− 2m/(ηW )))

PCh0 + ησ2 (2m/(ηW ) − 1)
.

We note that equation (22) is an equality, so the only inequality in the proof of Theorem 3 traces back
to the application of Theorem 2. So similar to the observations made after the proof of Theorem 2, we
note that the probability appearing on the r.h.s. of (21) corresponds to the worst-case scenario introduced
in Section II-C3. Estimation of the upper-bound by simulation will therefore consist in assuming the
worst-case scenario.

We may also estimate the transmission outage probability when K is a Poisson process as follows.

Corollary 2. Let K ∼ Poiss(O, ρ) be a Poisson process on O = B(0, R) with density ρ. Then, the
following bound holds:

Pto ≤ e−πρ inf(R,γm)2 , (23)

where γm is defined in (20).

In Fig. 10, we evaluate the analytical expressions of the upper bound of transmission outage probability
for both scenarios of out-of-band and in-band transmission. For the former and latter scenarios, we set
the distance between the sensor and data sink d to be 50m and 5m, and the transmission rate requirement
to be 3kbps and 0.02kbps, respectively. The numerical results are averaged over 106 runs of simulation.
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Fig. 10. Upper bound of transmission outage probability versus density of ambient RF energy sources.

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1

0

0.2

0.4

0.6

0.8

1

ρ

τ

Upper Bound of Transmission Outage Probability versus ρ and τ

T
ra

n
s
m

is
s
io

n
 O

u
ta

g
e

 P
ro

b
a

b
ili

ty

Fig. 11. Upper Bound of Transmission Outage Probability versus Density of Ambient RF Energy Sources and Time-Switching Coefficient
τ (out-of-band transmission).

Similar to the upper bound of power outage probability, the upper bound of transmission outage probability
demonstrates a similar pattern, i.e., a decreasing function of density ρ. It is shown that the analytical upper
bounds for both receiver architectures in both scenarios of out-of-band and in-band transmission are very
accurate.

For the time-switching architecture, we examine the impact of the coefficient τ in Fig. 11. We can
observe that the larger the density ρ is, the more the value of τ affects the transmission outage performance.
Unlike power outage probability which is a decreasing function of τ , transmission outage probability has
a minimal value attained for τ ∈ (0, 1). For a certain density ρ > 0, when τ varies from 0 to 1, the upper
bound of transmission outage probability first decreases, but begins to increase quickly after τ exceeds
a certain value. Then, after τ reaches another certain threshold, the upper bound remains to be 1. This
implies that there exists some tradeoff between the energy harvesting time and data transmission time to
minimize transmission outage probability. Another interesting finding in Fig. 11 is that the optimal value
of τ to minimize the transmission outage probability are not dependent on the density ρ. This will be
proved in Section III-D.

Next, in Fig. 12 and Fig. 13, we illustrate the impact of transmission rate requirement on the upper
bounds of transmission outage probability for separated and time-switching receiver architecture, respec-
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Fig. 12. Upper bound of transmission outage probability versus transmission rate requirement (separated receiver architecture).
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(a) Out-of-band Transmission (d = 50, ρ = 0.03 )
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(b) In-band Transmission (d = 5, ρ = 0.03 )

Fig. 13. Upper bound of transmission outage probability versus transmission rate requirement and τ (time-switching architecture).

tively. It is clear from the figures that the transmission outage probability is an increasing function of
transmission rate requirement for both architectures. As can be seen from Fig. 12, a larger density ρ
causes a bigger difference between the upper bounds of transmission outage probability for the DPP
(α = −1) and the PPP. This is because when the density ρ is small, there are few RF sources, and their
correlation structure does not have such a high impact. Similar to the study in power outage probability, the
difference when α varies is caused by the increased variance of RF energy harvesting rate. Indeed, since
the variance is higher, when α is close to −1, the transmission outage probability is also higher. For out-
of-band transmission, the upper bound of the transmission outage probability is a sigmoid shape function
of transmission rate requirement. Specifically, when the transmission rate requirement is relatively small
or high, the upper bound of transmission outage probability increases more slowly with the transmission
rate requirement, compared to the case when the transmission rate requirement is median. By contrast, for
in-band transmission, the transmission outage probability is close to a linear function of rate requirement.
In Fig. 13, for both scenarios of out-of-band transmission and in-band transmission, we can observe that
the optimal τ is dependent on the rate requirement. Generally, the larger the rate requirement, the smaller
the value of optimal τ . This motivates us to study the optimal value of τ in the next subsection.

Based on Theorem 3, we can also derive the lower bound of achievable transmission rate of the sensor.
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TABLE III
OPTIMAL VALUES OF τ .

Analytical result Simulation result

ξ = 0
m = 2 0.6828 0.68
m = 4 0.4364 0.44
m = 6 0.2690 0.26

ξ = 1
m = 0.02 0.9185 0.92
m = 0.06 0.8658 0.86
m = 0.08 0.7980 0.80

For brevity, the characterization of the lower bound of transmission rate is provided in Appendix II.

D. Optimal Choice of the Parameter in the Time-Switching Architecture
In this subsection, we consider the choice of the parameter τ in the time-switching architecture. Let us

recall that the time-switching architecture corresponds to the choice of % = τ and η = 1 − τ . First note
that the bound of Theorem 2 is a decreasing function of τ . In other words, in the worst-case scenario,
the power outage probability is lowest when τ is largest.

Turning our attention to the result of Theorem 3, we note that the bound obtained therein is equal to
1 for τ = 0, and also equal to 1 for τ = 1. It follows that the upper bound to the transmission outage
probability is minimized for a certain τ in [0, 1]. Therefore, the value τ ∗ which minimizes the transmission
outage probability is given by

argminτ∈[0,1]


(∏
n≥0

(
1+α

Γ(n+ 1, πρ inf(R, γm)2)

n!

))−1/α
, (24)

where we emphasize that in (24), γm depends on τ . Noticing that the function

τ 7−→

(∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γm)2)

n!

))−1/α

is decreasing, it follows that τ ∗ can be obtained from the simpler expression

argmaxτ∈[0,1]

{√
τ (h0 + (1− τ)ξ (1− 2m/((1−τ)W )))

PCh0 + (1− τ)σ2 (2m/((1−τ)W ) − 1)

}
, (25)

where in the last expression it becomes clear that τ ∗ depends only on h0, ξ,m,W, PC and σ. Note that,
for a certain scenario when h0, ξ, W , PC and σ are fixed, the optimal τ is only dependent on m. This
analysis validates the observation in Fig. 11 that optimal τ is not affected by density ρ. In addition, the
analysis agrees with Fig. 13 that the rate requirement influences the optimal value of τ .

In Fig. 14, we present the numerical results for the upper bound of transmission outage probability versus
τ , under various rate requirement m for both scenarios of out-of-band (ξ = 0) and in-band transmission
(ξ = 1). The results are averaged over 106 runs of simulation. It is obvious that the optimal τ that minimizes
the transmission outage probability differs based on m and ξ. This agrees with the above analysis. Then,
we compare the optimal values of τ observed from Fig. 14 with the corresponding analytical results
obtained from (25) in Table III. The analytical results can provide very accurate guideline for the setting
of optimal τ to perform best in a worst-case scenario. For discrete time-switching [48], the analytical
results can be approximated to the closest practical value of τ .



18

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time Switching Coefficient τ

T
ra

n
s
m

is
s
io

n
 O

u
ta

g
e

 P
ro

b
a

b
ili

ty

Upper Bound of Transmission Outage Probability versus τ

 

 

m=2,ξ=0,d=50

m=4,ξ=0,d=50

m=6,ξ=0,d=50

m=0.04,ξ=1,d=5

m=0.06,ξ=1,d=5

m=0.08,ξ=1,d=5

Fig. 14. Upper Bound of Transmission Outage Probability versus Time-Switching Coefficient τ (ρ = 0.05, α = −1).

IV. CONCLUSION

This paper has presented the performance analysis of a wireless sensor powered by ambient RF energy
through a stochastic geometry approach. We have analyzed the general cases when the ambient RF sources
are distributed as a Ginibre α-determinantal point process (DPP), which covers the Poisson point process
case when α approaches zero. We have derived the expression of the expectation and variance of the
RF energy harvesting rate. We have further characterized the worst-case performance of the sensor node
using the upper bound of power outage probability and transmission outage probability. Additionally,
we have studied the optimal value of the time-switching coefficient to minimize the transmission outage
probability. Numerical results validate all the analytical expressions, which leads us to believe that these
analytical expressions are usable in practice. We have found that given a certain network density, the
sensor achieves better performance when the distribution of ambient RF sources shows stronger repulsion
and less attraction. Our system model can be extended by considering multiple-input and multiple-out
communication channel between the sensor and data sink. Another direction of our future work is to
extend the performance analysis from an individual node level to a network of nodes.

Appendix I
Proof. Recall the following fundamental formula of point process theory found, e.g., in [38],

VPH =

∫
O

(
P k

H

)2
ρ(1)(k) dk +

∫
O×O

P k
HP

l
H ρ

(2)(k, l) dkdl −
(∫

O

P k
H ρ

(1)(k) dk

)2

,

where ρ(1) and ρ(2) are the first and second correlation functions defined in (5). Noting that ρ(2)(k, l) =
K(k, k)K(l, l) + α|K(k, l)|2 and recombining the terms, one finds

Var (PH) =

∫
O

(
P k

H

)2
K(k, k) dk + α

∫
O×O

P k
HP

l
H |K(k, l)|2 dkdl.

It remains to substitute the expressions of P k
H and K(k, l) to obtain

VPH =

(
%βPS

GSGHλ
2

(4π)2

)2
(∫

O

(
1

(ε+ ‖xk‖)2

)2

ρ dk

+α

∫
O2

1

(ε+ ‖xk‖)2

1

(ε+ ‖xl‖)2

∣∣∣ρeπρkl̄e−πρ2 (|k|2+|l|2)
∣∣∣2dkdl

)
.
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By polar change of variable in the first term, and simply rewriting the second, we have

VPH =

(
%βPS

GSGHλ
2

(4π)2

)2(
2πρ

∫ R

0

r

(ε+ r)4 dr

+αρ2

∫
O×O

1

(ε+ ‖x‖)2

1

(ε+ ‖y‖)2 e
−πρ‖x−y‖2 dxdy

)
.

We conclude by simply evaluating the first integral analytically and obtain (14).

Appendix II
This appendix derives the worst-case expectation of the transmission rate of the sensor, based on

Theorem 3.

Theorem 4. The expected transmission rate of the sensor node is lower-bounded as follows:

E[C] ≥ sup
M≥0

M

1−

(∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γM)2)

n!

))−1/α


where γM was defined in (20) which we recall here:

γM =
λ

4π

√
PS%βGSGH (h0 + ηξ (1− 2M/(ηW )))

PCh0 + ησ2 (2M/(ηW ) − 1)
. (26)

Proof. Since C ≥ 0, we apply Markov’s inequality for any M > 0,

E[C] ≥MP (C ≥M) ,

and it suffices to use Theorem 3 to bound the probability appearing on the r.h.s.:

E[C] ≥M

1−

(∏
n≥0

(
1 + α

Γ(n+ 1, πρ inf(R, γM)2)

n!

))−1/α
 . (27)

Lastly, it suffices to remark that the r.h.s. of (27) tends to zero as M tends to zero and as M tends to
infinity. Since as a function of M , the r.h.s. of (27) is continuous, the supremum over all M ∈ (0,+∞)
is therefore finite.
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