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Abstract

We derive Berry-Esseen approximation bounds for general functionals of indepen-
dent random variables, based on a continuous-time integration by parts setting and
discrete chaos expansions methods. Our approach improves on related results obtained
in discrete-time integration by parts settings and applies to U -statistics satisfying the
weak assumption of decomposability in the Hoeffding sense, and yield Kolmogorov dis-
tance bounds instead of the Wasserstein bounds previously derived in the special case
of degenerate U -statistics. Linear and quadratic functionals of arbitrary sequences
of independent random variables are included as particular cases, with new fourth
moment bounds, and applications are given to Hoeffding decompositions, weighted U -
statistics, quadratic forms, and random subgraph weighing. In the case of quadratic
forms, our results recover and improve the bounds available in the literature, and apply
to matrices with non-empty diagonals.
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1 Introduction

Significant progress in probability approximation has been achieved in recent years by com-

bining the Chen-Stein method with the Malliavin calculus. See for example Nourdin and

Peccati (2009), Peccati et al. (2010), Peccati and Thäle (2013), for the derivation of distance

bounds on the Wiener and Poisson spaces, and also Nourdin et al. (2010a) and Krokowski

et al. (2016) in the case of Rademacher sequences. Those results rely on covariance rep-

resentations based on the inverse of the Ornstein-Uhlenbeck operator L acting on multiple
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Wiener-Poisson stochastic integrals. While the inverse operator L−1 is well adapted to cer-

tain random functionals such as multiple stochastic integrals, it can prove more difficult

to use in applications to other, more specific functionals. Other covariance representations

based on the Clark-Ocone representation formula and not relying on L−1 have been used in

Privault and Torrisi (2013) on the Wiener and Poisson spaces, and in Privault and Torrisi

(2015) for Rademacher sequences.

In Last et al. (2016), second order Poincaré inequalities in the Kolmogorov and Wasser-

stein distances have been obtained for functionals of a Poisson point process by using the

iterated Malliavin gradient instead of L−1. This approach relies on probabilistic repre-

sentations for the inverse operator L−1 using Mehler’s formula on the Poisson space, see

e.g. Lemma 6.8.1 in Privault (2009). Second order Poincaré inequalities for functionals of

Rademacher sequences have also been obtained in Krokowski et al. (2017), with application

to renormalized triangle counting using the Kolmogorov distance in the Erdős-Rényi ran-

dom graph, see also Privault and Serafin (2020) and references therein for the treatment of

arbitrary subgraph counting.

In Chatterjee (2008), a method based on difference operators has been introduced with

the aim of obtaining Stein bounds in the Wasserstein distance for functions of vectors of in-

dependent random variables. This approach has been extended in Lachièze-Rey and Peccati

(2017) to the derivation of bounds in the Kolmogorov distance, see also Friedrich (1989) for

earlier related results. .

An integration by parts setting for related difference operators has been exploited in

Decreusefond and Halconruy (2019) to derive normal Stein approximation bound for func-

tionals of independent random variables, see also Nguyen (2020), and Bobkov et al. (2019)

for concentration inequalities. In Duerinckx (2021), this framework has been unified with

the approaches of Chatterjee (2008) and Lachièze-Rey and Peccati (2017) with applications

in statistical physics, see also Duerinckx et al. (2020).

In Privault and Serafin (2018), a general framework for the derivation of Wasserstein

distance bounds for functionals of independent random sequences has been developed in

the continuous-time integration by parts setting of Privault (1997), using an analog of the

operator L−1 on discrete chaos expansions based on discrete multiple stochastic integrals.

This approach allows us to extend chaos-based arguments from the binomial and Wiener-

Poisson settings to general i.i.d. sequences of random variables.
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Bounds in total variance distance have also been obtained therein using Clark-Ocone

covariance representation formulas under stronger smoothness conditions. Applications to

normal approximation in the Wasserstein distance have been obtained in Privault and Serafin

(2022) for the weights of subgraphs in the Erdős-Rényi random graph.

Our first goal in this paper is to extend existing Stein normal approximation bounds

proved in the Kolmogorov distance for Rademacher sequences, see e.g. Krokowski et al.

(2017), Döbler and Krokowski (2019), to general sequences of independent random variables.

This is achieved in the general framework of Privault and Serafin (2018), by replacing the

Wasserstein distance with the Kolmogorov distance for which obtaining rates is known to

be more difficult and requires new ideas. In Theorem 3.1 we derive a general Berry-Esseen

bound in the Kolmogorov distance for functionals of independent random variables. In

comparison with Theorem 4.2 in Lachièze-Rey and Peccati (2017), the variance term (3.2)

in Theorem 3.1 can be easier to control, see also Theorem 2.3 in Duerinckx (2021).

The bound of Theorem 3.1 is then specialized to sums of multiple stochastic integrals

in Proposition 3.2, and then to multiple stochastic integrals in Proposition 3.3. Note that

multiple stochastic integrals of order d coincide with degenerate (generalized) U -statistics of

order d, and can then be used to represent Hoeffding decompositions as a chaos summations,

see the examples given below.

Our second goal is to show that the obtained bounds remain sharp despite the very general

framework of the paper, as demonstrated in the following examples. Consider a sequence

(X1, . . . , Xn) of (not necessarily identically distributed) independent random variables, and

the d-homogeneous random multilinear forms Wn,d written in the Hoeffding form as

Wn,d =
∑

J⊂{1,...,n}, |J |=d

WJ ,

where, for each J ⊂ {1, . . . , n}, WJ is a random variable with variance σ2
J , measurable with

respect to the σ-algebra FJ := σ (Xj : j ∈ J), and such that E [WJ | FK ] = 0, J ̸⊆ K ⊂ [n].

In de Jong (1990), a central limit theorem has been proved for the sequence (Wn,d)n≥1 under

the conditions

lim
n→∞

max
1≤i≤n

∑
J∋i

σ2
J = 0 and lim

n→∞
E[W 4

n,d] = 3,

generalizing earlier results by de Jong (1987) for quadratic random functionals. The results

of de Jong (1987; 1990) have been refined by the derivation of bounds in the Wasserstein
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distance in Theorem 1.3 in Döbler and Peccati (2017) in the case of degenerate U -statistics,

for which |J | is constrained to a fixed value |J | = d for some d ∈ {1, . . . , n} in the sum

(2.17).

Applications of Proposition 3.2 are given to Kolmogorov distance bounds in Theorem 4.1

for general U -statistics, and in Theorems 4.2 and 4.3 for degenerate U -statistics. This extends

the bounds of Döbler and Peccati (2017) by using the Kolmogorov distance instead of the

Wasserstein distance, and by applying to Hoeffding decompositions in full generality and not

only to degenerate U -statistics. This also extends the bounds in the Kolmogorov distance

derived in Döbler and Krokowski (2019) for U -statistics in the particular case of Rademacher

chaoses, where (X1, . . . , Xn) is a sequence of independent Bernoulli random variables.

More specifically, given an i.i.d. sequence (Xk)k≥1 of centered random variables with unit

variance, and the sum

Zn :=
1√
n

n∑
k=1

Xk, n ≥ 1,

convergence bounds to the standard normal distribution N of the form

dW (Zn,N ) ≤ E [|X1|3]√
n

have been obtained in e.g. Theorem 1.1 in Goldstein (2010) in the Wasserstein distance

dW (X,N ) := sup
h∈Lip(1)

|E[h(X)]− E[h(N )]|.

See also Corollary 2.11 of Döbler (2015) for related bounds in the Kolmogorov distance

dK(X,N ) := sup
x∈R

|P (X ≤ x)− P (N ≤ x)|,

including the case of random sums. In the case of quadratic functionals of the form

Qn :=
∑

1≤k,l≤n

aklXkXl, (1.1)

where A = (aij)1≤i,j≤n is a symmetric matrix, the bound

dK(Qn,N ) ≤ C
(
E
[
|X1|3

])2 |λ1|, (1.2)

where λ1 denotes the largest absolute eigenvalue of A and C > 0 is an absolute constant,

has been obtained in Götze and Tikhomirov (1999) when the diagonal of A vanishes, see e.g.

Theorem 1 therein, and also Theorem 3.1 of Shao and Zhang (2019).
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In this vanishing diagonals setting, Theorem 4.3 is applied to derive a version of Theo-

rem 3.3 of Döbler and Peccati (2019) for the Kolmogorov distance instead of the Wasserstein

distance in Corollary 4.4. Theorem 4.3 also yields Corollary 5.1 which recovers Theorem 3.1

in Shao and Zhang (2019), and improves on the above bound (1.2) of Theorem 1 in Götze

and Tikhomirov (1999). In addition, Corollary 5.1 extends the Kolmogorov bounds of Theo-

rem 1.1 in Döbler and Krokowski (2019), restricted to the quadratic case, from Rademacher

sequences to general sequences of random variables by using fourth moment differences as

in e.g. Theorem 1.3 of Döbler and Peccati (2017).

In case the diagonal of A = (aij)1≤i,j≤n may not vanish, the bound

dK

(
Qn

σn

,N
)

≤ C(γ)
(E [|X|3])2 + γE[X6]√∑

1≤i,j≤n a
2
ij

|λ1|, (1.3)

has been obtained in Theorem 1.1 of Götze and Tikhomirov (2002) for some γ > 0 depending

on A. See also Proposition 3.1 in Chatterjee (2008) for a result in the Wasserstein distance

using Rademacher sequences, and Theorem 2.2 in Chatterjee (2009) for related normal ap-

proximation bounds in total variation distance for a smooth function of finite-dimensional

random vectors via second order Poincaré inequalities.

In comparison with Theorem 1.1 of Götze and Tikhomirov (2002), the bound (5.7) in

Theorem 5.2 gives better rates under weaker assumptions according to the inequality (5.5).

Theorem 5.2 also provides an additional bound (5.6) which is valid for any i.i.d. sequence

(Xn)n≥1 and holds in the Kolmogorov distance, instead of the Wasserstein distance used in

Döbler and Peccati (2017). This bound is related to the so-called fourth moment phenomenon

(Nualart and Peccati (2004)), which has been the object of intense research work, see e.g.

Nourdin and Peccati (2012) and references therein.

We proceed as follows. In Section 2 we recall the framework of Privault (1997) for the

treatment of functionals of independent random sequences, including the construction of

discrete multiple stochastic integrals and the associated finite difference gradient operator

and integration by parts formula, which are used to derive a fourth moment bound in Sec-

tion 2.3. Section 3 contains our main result Theorem 3.1 which states a general Berry-Esseen

bounds for general functionals of independent random sequences, and its applications to the

derivation of Kolmogorov bounds for discrete multiple integrals and for sums of discrete mul-

tiple integrals in Propositions 3.2-3.3. Applications to Hoeffding decompositions, weighted
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U -statistics and random subgraph weighing in the Erdős and Rényi (1959) random graph

are given in Section 4. Section 5 focuses on quadratic forms.

2 Preliminaries

2.1 Setting

We work on the probability space (Ω,F ,P) where Ω = [−1, 1]N and F , P are the nat-

ural σ-algebra and probability measure generated on Ω by the cylindrical Borel sets and

Lebesgue measure, respectively. Let (Uk)k≥1 denote the i.i.d. sequence of uniformly dis-

tributed [−1, 1]-valued random variables on (Ω,F ,P), constructed as the canonical projec-

tions from Ω to [−1, 1]. We define the finite difference gradient operator ∇ of a functional

F (U1(ω), U2(ω), . . .) of the sequence (U1(ω), U2(ω), . . .) as

∇tF := E
[
F
∣∣∣U1, . . . , U⌊ t

2
⌋, U⌊ t

2
⌋+1 = t−1−2

⌊ t
2

⌋
, U⌊ t

2
⌋+2, . . .

]
−E
[
F
∣∣∣U1, . . . , U⌊ t

2
⌋, U⌊ t

2
⌋+2, . . .

]
,

t ∈ R+. In other words, using the shifted sequence

Φt(ω) :=
(
U1(ω), . . . , U⌊ t

2
⌋(ω), t− 1− 2

⌊ t
2

⌋
, U⌊ t

2
⌋+2(ω), . . .

)
, t ∈ R+,

we have

∇tF := F ◦ Φt −
1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
F ◦ Φsds, t ∈ R+, (2.1)

provided that (F ◦ Φs)s∈R+ is integrable on R+, P-a.s., see Definition 5 and Proposition 10

in Privault (1997). Although ∇t does not satisfy the chain rule of derivation, we have the

following identity.

Lemma 2.1 The finite difference operator ∇ satisfies the relation

∇t(FG) = (F ◦ Φt)∇tG+ (G ◦ Φt)∇tF − 1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(∇tF∇tG+∇uF∇uG)du, (2.2)

t ∈ R+, provided that (F ◦ Φs)s∈R+, (G ◦ Φs)s∈R+ and (F 2 ◦ Φs)s∈R+, (G2 ◦ Φs)s∈R+ are

integrable on [2n− 2, 2n], n ≥ 1, P-a.s.

Proof. By (2.1), we have

∇t(FG) =
1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
((FG) ◦ Φt − (FG) ◦ Φu)du

=
1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(F ◦ Φu)(G ◦ Φt −G ◦ Φu)du+

1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(G ◦ Φt)(F ◦ Φt − F ◦ Φu)du
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=
1

2
(F ◦ Φt)

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(G ◦ Φt −G ◦ Φu)du+

1

2
(G ◦ Φt)

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(F ◦ Φt − F ◦ Φu)du

−1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(F ◦ Φt − F ◦ Φu)(G ◦ Φt −G ◦ Φu)du

= (F ◦ Φt)∇tG+ (G ◦ Φt)∇tF − 1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(F ◦ Φt − F ◦ Φu)(G ◦ Φt −G ◦ Φu)du.

Furthermore, we have∫ 2⌊t/2⌋+2

2⌊t/2⌋
(F ◦ Φt − F ◦ Φu)(G ◦ Φt −G ◦ Φu)du =

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(∇tF −∇uF )(∇tG−∇uG)du

=

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(∇tF∇tG+∇uF∇uG)du,

from the equality
∫ 2⌊t/2⌋+2

2⌊t/2⌋ ∇uFdu = 0. □

For any X ∈ L1(Ω) and k ∈ N we also note the identity

E[X] =
1

2
E
[∫ 2k+2

2k

X ◦ Φudu

]
. (2.3)

In addition, since
∫ 2k+2

2k
∇uXdu = 0 a.s. holds directly from the formula (2.1), for any

X, Y ∈ L1(Ω) we obtain∫ 2k+2

2k

∇uX∇uY du =

∫ 2k+2

2k

∇uXΦuY du−
∫ 2k+2

2k

ΦsY ds

∫ 2k+2

2k

∇uXdu

=

∫ 2k+2

2k

∇uXΦuY du, a.s. (2.4)

Definition 2.2 Given fn in the space L̂2(Rn
+) of square integrable symmetric functions on

Rn
+ that vanish outside of

∆n :=
⋃

ki ̸=kj≥1

1≤i ̸=j≤n

[2k1 − 2, 2k1]× · · · × [2kn − 2, 2kn],

we define the multiple stochastic integral

In(fn) = n!

∫ ∞

0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)d(Yt1 − t1/2) · · · d(Ytn − tn/2),

with respect to the jump process Yt :=
∞∑
k=1

1[2k−1+Uk,∞)(t), t ∈ R+, which satisfies

In(fn) =
n∑

r=0

(
−1

2

)n−r (
n

r

)
(2.5)

×
∑

k1 ̸=···̸=kr≥1

∫ ∞

0

· · ·
∫ ∞

0

fn(2k1 − 1 + Uk1 , . . . , 2kr − 1 + Ukr , y1, . . . , yn−r)dy1 · · · dyn−r.
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The multiple stochastic integral In(fn) satisfies the bound

E
[
(In(fn))

2
]
≤ n! ∥fn∥2L2(Rn

+,dx/2) , n ≥ 1,

which allows us to extend the definition of In(fn) to all fn ∈ L̂2(Rn
+), see Propositions 4 and

6 in Privault (1997). Under the additional condition∫ 2k

2k−2

fn(t, ∗)dt = 0, k ≥ 1, (2.6)

i.e. fn is canonical in the sense of Surgailis (2003), the multiple stochastic integral In(fn)

can be written as the U -statistics of order n

In(fn) =
∑

k1 ̸=···̸=kn≥1

fn(2k1 − 1 + Uk1 , . . . , 2kn − 1 + Ukn),

with the isometry and orthogonality relation

E [In(fn)Im(fm)] = 1{n=m}n!⟨fn, fm⟩L2(R+,dx/2)⊗n , fn ∈ L̂2(Rn
+), fm ∈ L̂2(Rm

+ ), (2.7)

see Proposition 6 in Privault (1997), which shows that the sequence (In(fn))n≥1 forms a

family of mutually orthogonal centered random variables. Under the condition (2.6) we have

the relation

∇tIn(fn) = nIn−1 (fn(t, ∗)) , t ∈ R+, (2.8)

see Proposition 10 in Privault (1997).

The operator ∇ also admits an adjoint operator ∇∗ given by

∇∗ (In(gn+1)) := In+1(1∆n+1 g̃n+1),

where g̃n+1 is the symmetrization of gn+1 ∈ L̂2(Rn
+) ⊗ L2(R+) in n + 1 variables. Precisely,

the operator ∇ is closable with domain

Dom(∇) =
{
X ∈ L2(Ω) : E[∥∇X∥2L2(R+)] < ∞

}
⊂ L2(Ω× R+),

see Proposition 8 in Privault (1997), and satisfies the duality relation (or integration by parts

formula)

E
[
⟨∇X, u⟩L2(R+,dx/2)

]
= E[X∇∗(u)], (2.9)

which shows that ∇∗ is closable as well, with domain Dom(∇∗) ⊂ L2(Ω). The operators

(∇,∇∗) are linked by the Skorohod isometry

E[∇∗u∇∗v] = E
[∫ ∞

0

utvtdt

]
+ E

[∫ ∞

0

∫ ∞

0

∇sut∇tvs ds dt

]
,
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see Proposition 9 in Privault (1997), which yields the Poincaré inequality

E
[
|∇∗u|2

]
≤ E

[∫ ∞

0

|ut|2dt
]
+ E

[∫ ∞

0

∫ ∞

0

|∇sut|2ds dt
]
. (2.10)

Finally, every X ∈ L2(Ω) admits the chaos decomposition

X = E[X] +
∞∑
n=1

In(fn), (2.11)

for some sequence of functions fn in L̂2(Rn
+), n ≥ 1, cf. Proposition 7 in Privault (1997).

Moreover, under the condition (2.6) the sequence (fn)n≥1 is unique in L̂2(Rn
+) due to the

isometry relation (2.7), and in this case we have

E[X2] = (E[X])2 +
∞∑
n=1

n!∥fn∥2L2(Rn
+,(dx/2)⊗n). (2.12)

The operator L defined on linear combinations of multiple stochastic integrals as

LIn(fn) := −∇∗∇tIn(fn) = −nIn(fn), fn ∈ L̂2(Rn
+),

is called the Ornstein-Uhlenbeck operator. By (2.11) the operator is invertible for centered

X ∈ L2(Ω), and its inverse operator L−1 is given by

L−1In(fn) = − 1

n
In(fn), n ≥ 1. (2.13)

In fact, we can easily derive the form of any real power of −L, i.e. it holds

(−L)αIn(fn) = nαIn(fn), n ≥ 1, α ∈ R.

We also recall that, by Proposition 5.3 in Privault and Serafin (2022), for every fn ∈
L̂2(Rn

+) there exists f̄n ∈ L̂2(Rn
+) given by

f̄n(t1, . . . , tn) = Ψt1 · · ·Ψtnfn(t1, . . . , tn), (2.14)

satisfying (2.6) and such that In(fn) = In(f̄n), where

Ψtif(t1, . . . , tn) := f(t1, . . . , tn)−
1

2

∫ 2⌊ti/2⌋+2

2⌊ti/2⌋
f(t1, . . . , ti−1, s, ti+1, . . . , tn)ds,

i = 1, . . . , n, t1, . . . , tn ∈ R+. We end this section with the following multiplication formula

for multiple stochastic integrals, see Proposition 5.1 in Privault and Serafin (2018). Letting
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n∧m := min(n,m), for 0 ≤ l ≤ k ≤ n∧m we define the contraction fn ⋆
l
k gm of fn ∈ L̂2(Rn

+)

and gm ∈ L̂2(Rm
+ ) as

fn ⋆
l
k gm(y1, . . . , yn−l, z1, . . . , zm−k) (2.15)

:=
1

2l

∫
Rl
+

fn(x1, . . . , xl, y1, . . . , yn−l)gm(x1, . . . , xl, y1, . . . , yk−l, z1, . . . , zm−k)dx1 · · · dxl,

and we let fn ⋆̃lkgm denote the symmetrization

fn ⋆̃lk gm(x1, . . . , xn+m−k−l)

:=
1∆m+n−k−l

(x1, . . . , xn+m−k−l)

(m+ n− k − l)!

∑
σ∈Σm+n−k−l

fn ⋆
l
k gm(xσ(1), . . . , xσ(m+n−k−l)).

Then, for fn ∈ L̂2(Rn
+) and gm ∈ L̂2(Rm

+ ) satisfying (2.6), the following multiplication formula

holds:

In(fn)Im(gm) =
m∧n∑
k=0

k!

(
m

k

)(
n

k

) k∑
i=0

(
k

i

)
Im+n−k−i

(
fn ⋆̃ikgm

)
, (2.16)

whenever fn ⋆
i
k gm ∈ L2(Rm+n−k−i

+ ) for every 0 ≤ i ≤ k ≤ m ∧ n.

2.2 Multiple stochastic integrals and Hoeffding decomposition

Although the multiple integrals (chaoses) seem a little abstract, they are in fact a very well

known objects. Namely, we can call them degenerate U -statistics. To explain the context,

let us recall the definition of the Hoeffding decomposition.

Given (X1, . . . , Xn) a family of independent random variables and [n] := {1, . . . , n},
n ≥ 1, the family (FJ)J⊂[n] of σ-algebras is defined as

FJ := σ(Xj : j ∈ J), J ⊂ [n].

Definition 2.3 A centered F[n]-measurable random variable Wn admits a Hoeffding decom-

position if it can be written as

Wn =
∑
J⊂[n]

WJ , (2.17)

where (WJ)J⊂[n] is a family of random variables such that WJ is FJ-measurable, J ⊂ [n],

and

E [WJ | FK ] = 0, J ̸⊆ K ⊂ [n].
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If we take the sum over |J | = d for a fixed 1 ≤ d ≤ n, we call Wn a degenerate U-statistic

of order d. In particular, for any U-statistic we may write

Wn =
n∑

d=1

W (d)
n , (2.18)

where W
(d)
n are the degenerate U-statistics of order d

For J = {k1, . . . , k|J |} with k1 < k2 < · · · < k|J |, any WJ in Definition 2.3 can be written as

a function WJ = gJ
(
Xk1 , . . . , Xk|J|

)
of
(
Xk1 , . . . , Xk|J|

)
, with in particular

E
[
gJ (Xj : j ∈ J) | FJ\{k}

]
= 0, k ∈ J, (2.19)

and

Wn =
∑
J⊂[n]

gJ
(
Xk1 , . . . , Xk|J|

)
. (2.20)

Note that if Xi = Ui, i ∈ [n], then the chaos decomposition (2.11) coincides with the

Hoeffding decomposition (2.17), by taking

WJ :=
1

|J |!
f|J |
(
2k1 + 1 + U1, . . . , 2k|J |−1 + 1 + U|J |−1, 2k|J | + 1 + U|J |

)
, J ⊂ [n],

and condition (2.19) is equivalent to (2.6). Furthermore, any sequence (X1, . . . , Xn) of

independent random variables with distribution functions (FX1 , . . . , FXn) is distributed as

(
F−1
X1

(
U1 + 1

2

)
, . . . , F−1

Xn

(
Un + 1

2

))
,

where
(
F−1
X1

, . . . , F−1
Xn

)
are the generalized inverses of (FX1 , . . . , FXn). For instance, for f1 ∈

L2([0, 2n]), the stochastic integral

I1(f1) :=
n−1∑
k=0

(
f1(2k + 1 + Uk)−

1

2

∫ 2k+2

2k

f1(t)dt

)
represents a sum of independent centered random variables (degenerate U -statistic of order 1)

I1(f1)
d
=

n∑
k=1

(Xk − E[Xk]) (2.21)

by taking f1(x) = F−1
Xk

((x + 2)/2 − k), x ∈ [2k − 2, 2k), 1 ≤ k ≤ n. Analogously, we

may represent any degenerate U -statistic of order d as Id(fd) for suitable function fd and

therefore the chaos decomposition (2.11) becomes the Hoeffding decomposition (2.18). For

this reason, investigating the multiple stochastic integrals is very natural. It also explains

the special attention we put on the sums of the multiple stochastic integrals, as it allows us

to deal with any U -statistic in the most general sense.
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2.3 Fourth moment bound

The main result of this subsection is the below-given fourth order moment bound stated in

terms of the gradient operator ∇.

Proposition 2.4 For any X ∈ L4(Ω) we have

E
[
X4
]
≤ 36E[∥∇X∥4L2(R+)] + 15E[∥∇X∥4L4(R+)] + 2

(
E
[
X2
])2

. (2.22)

Before passing to the proof, we present a covariance relation, that can be obtained as in

Proposition 2.1 in Houdré and Privault (2002) and also plays a crucial role in the proof of

Theorem 3.1.

Lemma 2.5 Let α ∈ R and X, Y ∈ L2(Ω) such that Lα−1X ∈ Dom(∇) and L−αY ∈
Dom(∇). Then we have the covariance relation

Cov (X, Y ) = E
[∫ ∞

0

(∇t(−L)α−1X)(∇t(−L)−αY )
dt

2

]
. (2.23)

Proof. We have

Cov (X, Y ) = E[(X − E[X])(Y − E[Y ])]

= −E[L(−L)α−1(X − E[X])(−L)−α(Y − E[Y ])]

= E[∇∗∇(−L)α−1(X − E[X])(−L)−α(Y − E[Y ])]

=
1

2
E
[∫ ∞

0

(∇t(−L)α−1X)(∇t(−L)−αY )dt

]
.

□

Proof of Proposition 2.3. By the covariance relation (2.23), we have

E
[
X4
]
= Var

[
X2
]
+
(
E
[
X2
])2

=
1

2
E
[∫ ∞

0

∇t

(
X2 − E

[
X2
])

∇tL
−1
(
X2 − E

[
X2
])

dt

]
+
(
E
[
X2
])2

≤ 1

2

√
E
[∫ ∞

0

|∇t(X2)|2dt
]
E
[∫ ∞

0

∥∇tL−1 (X2 − E [X2]) ∥2dt
]
+
(
E
[
X2
])2

≤ 1

2
E
[∫ ∞

0

|∇t(X
2)|2dt

]
+
(
E
[
X2
])2

,

where we applied (2.8), (2.12) and (2.13). Since

(X ◦ Φt)∇tX = X∇tX + (X ◦ Φt −X)∇tX

12



= X∇tX +

(
∇tX −

(
X − 1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
X ◦ Φudu

))
∇tX,

by the relations (2.3)-(2.2) and the bound (a+ b+ c)2 ≤ 3 (a2 + b2 + c2), a, b, c ≥ 0, we have

E

[∫ ∞

0

|∇t(X
2)|2dt

]
= E

[∫ ∞

0

(
2(X ◦ Φt)∇tX − 1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

≤ 3E

[
4

∫ ∞

0

(X∇tX)2 dt+ 4

∫ ∞

0

((
∇tX −

(
X − 1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
X ◦ Φudu

))
∇tX

)2

dt

+
1

4

∫ ∞

0

(∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

= 12E

[∫ ∞

0

(X∇tX)2 dt

]

+ 12E

[∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

((
∇tX −

(
X ◦ Φv −

1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
X ◦ Φudu

))
∇tX

)2
dv

2
dt

]

+
3

4
E

[∫ ∞

0

(∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

= 12E

[
X2

∫ ∞

0

(∇tX)2 dt

]
+ 12E

[∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
(∇tX −∇vX)∇tX

)2dv
2

dt

]

+
3

4
E

[∫ ∞

0

(∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|∇tX|2 + |∇uX|2

)
du

)2

dt

]

≤ 12

√√√√E[X4 ]E

[(∫ ∞

0

|∇tX|2dt
)2
]
+ 12E

[∫ ∞

0

|∇tX|2
∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|∇tX|2 + |∇vX|2

)dv
2

dt

]

+ 3E
[∫ ∞

0

(∇tX)4dt

]

≤ 12

√√√√E[X4 ]E

[(∫ ∞

0

|∇tX|2dt
)2
]
+ 15E

[∫ ∞

0

(∇tX)4dt

]
.

Thus, we get

E
[
X4
]
≤ 6

√√√√E [X4]E

[(∫ ∞

0

|∇tX|2dt
)2
]
+

15

2
E
[∫ ∞

0

(∇tX)4dt

]
+
(
E
[
X2
])2

.

Denoting

a =

√√√√E

[(∫ ∞

0

|∇tX|2dt
)2
]
, b =

15

2
E
[∫ ∞

0

(∇tX)4dt

]
+
(
E
[
X2
])2

13



and x =
√

E [X4], we rewrite the last inequality as x2 ≤ 6ax + b, which gives x ≤ 3a +
√
9a2 + b and consequently x2 ≤ 2(9a2 + b) + 18a2 = 36a2 + 2b, which yields (2.22). □

3 General results

3.1 Statements and discussion

Our main result is a Berry-Esseen bound on the Kolmogorov distance dK(X,N ) between

the standard normal distribution N on R and a general functional X of the uniform i.i.d.

sequence (Uk)k∈N on [−1, 1], using the operators ∇ and L. This result extends Proposi-

tion 4.1 in Krokowski et al. (2017), see also Theorem 3.1 in Krokowski et al. (2016) and

Proposition 2.1 in Privault and Serafin (2020), from functionals of Bernoulli sequences to

more general functionals of independent random variables. We note that in comparison with

Theorem 4.2 of Lachièze-Rey and Peccati (2017), which is obtained in a discrete-time inte-

gration by parts setting, the variance term (3.2) in Theorem 3.1 can be easier to control,

in particular it vanishes when X = I1(f1) is a first chaos random variable. Before stating

our main result, let us mention that the Wasserstein distance has been approached in the

framework of this paper in Privault and Serafin (2018) and Privault and Serafin (2022),

which resulted in the bound (see Proposition 2.4 in Privault and Serafin (2022))

dW (X,N ) ≤ |1− E[X2]|+

√
Var

[∫ ∞

0

∇tX∇tL−1X
dt

2

]
(3.1)

+ 2

√
E[((−L)−1/2X)2]

∫ ∞

0

E [|∇tX|4] dt
2
.

Below, we present an extension of (3.1) to the Kolmogorov distance. This general result will

be specialized to sums of multiple stochastic integrals in the next two propositions. Those

results will be applied to general and degenerate U -statistics in Sections 4 and 5.

Theorem 3.1 Let X ∈ Dom(∇) be such that E[X] = 0. We have

dK(X,N ) ≤ |1− E[X2]|+

√
Var

[∫ ∞

0

∇tX∇tL−1X
dt

2

]
(3.2)

+
3

2

√
E
[∫ ∞

0

(∇tX)4dt

]((
E
[
X4
]
E

[(∫ ∞

0

|∇tL
−1X|2dt

)2
])1/4

+

√
π

2

√
E [((−L)−1/2X)2]

)

+ 4

(
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
|∇tX|2

))2
dt

]
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
(∇tL

−1X)2
))2

dt

])1/4

.
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Direct application of Theorem 3.1 might be quite cumbersome, however, this is rather typical

in the area. One difficulty is estimation of the variance term, the other one is involvement of

the operator L−1. The next proposition applies Theorem 3.1 to sums of multiple stochastic

integrals, which, as explained in Section 2.2, covers U -statistics in full generality. It extends

Theorem 3.1 of Privault and Serafin (2020) from functionals of Bernoulli sequences to func-

tionals of independent random variables, see also earlier results such as Proposition 3.7 in

Nourdin and Peccati (2009) in the case of multiple Wiener integrals. In the sequel, we denote

dW/K(X, Y ) := max {dW (X, Y ), dK(X, Y )}.

Proposition 3.2 For any X ∈ L2(Ω) written as a sum X =
∑d

k=1 Ik(fk) of multiple

stochastic integrals where fk ∈ L̂2(Rk
+) satisfies (2.6), k = 1, . . . , d, we have

dW/K(X,N ) ≤ E
[∣∣1− E[X2]

∣∣] (3.3)

+Cd

√ ∑
0≤l<i≤d

∥∥fi ⋆li fi∥∥2L2(Ri−l
+ )

+
∑

1≤l<i≤d

(∥∥fi ⋆ll fi∥∥2L2(R2(i−l)
+ )

+
∥∥fl ⋆ll fi∥∥2L2(Ri−l

+ )

)
,

for some Cd > 0.

We note that the constant Cd might be precisely calculated from the proof of Proposition 3.2.

The simplest example of application of Proposition 3.2 to sum of multiple stochastic integrals

is the quadratic form discussed in Section 5, which leads to the bound (5.8).

Next, due to the identity ∇tL
−1Id(fd) = Id−1 (fd(t, ∗)), d ≥ 1, the bound in Theorem

3.1 can be significantly simplified in the case of multiple stochastic integrals Id(fd), which

represent degenerate U -statistics.

Proposition 3.3 For X = Id(fd) a multiple stochastic integral of order d ≥ 1, we have

dW/K(X,N )

≤ |1− E[X2]|+ 1

d

√
Var

[∫ ∞

0

(∇tX)2
dt

2

]
+

12 + 5 4
√

E [X4]√
d

√
E
[∫ ∞

0

(∇tX)4dt

]

≤ |1− E[X2]|+

√
Var

[∫ ∞

0

(∇tX)2dt

]
+ 31

√
E
[∫ ∞

0

(∇tX)4dt

]
. (3.4)

The bound (3.4) has been obtained for the Wasserstein distance in Privault and Serafin

(2022) with different constants, see Proposition 2.4 therein. As an example, recall that by

(2.21), a sum of independent random variables Sn =
∑n

k=1Xk might be represented as a
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single stochastic integral I1(f1) of f1. Then, since the variance term in (3.4) vanishes for

X = I1(f1), for S̃n = (Sn − E[Sn])/
√

Var[Sn] we get

dW/K

(
S̃n,N

)
≤ 31∑n

k=1 Var[Xk]

√√√√ n∑
k=1

∫ 1

−1

(
F−1
Xk

(
x+1
2

)
− E[Xk]

)4
dx

=
31∑n

k=1 Var[Xk]

√√√√2
n∑

k=1

E
[
(Xk − E[Xk])

4],
which provides a quantitative bound with explicit constant in the Kolmogorov distance for

the L4 Lyapunov Central Limit Theorem, and implies the fourth moment bound

dW/K

(
S̃n,N

)
≤ 31

√
2

√∣∣E[S̃4
n

]
− 3
∣∣.

In order to formulate the bound (3.4) in a framework closer to e.g. Lachièze-Rey and Peccati

(2017), let us assume that X as written as X = f(U) with U = (U1, U2, U3, . . .) and let

∆jf(U,U
′) = f(U)− f

(
U1, . . . , Uj−1, U

′
j, Uj+1, . . .

)
,

where U ′ = (U ′
1, U

′
2, U

′
3, . . .) is an independent copy of U . Then, for j ∈ N and sufficiently

integrable h : R → R we have

E
[∫ 2j+2

2j

h(∇tf(U))
dt

2

]
= E

[
h
(
E[∆jf(U,U

′) | U ]
)]
,

hence (3.4) can be rewritten as

dW/K(X,N ) ≤|1− E[X2]|

+ 2

√√√√Var

[
∞∑
j=1

Ej

[(
E[∆jf(U,U ′)|U ]

)2]]
+ 31

√
2

√√√√ ∞∑
j=1

E
[(
E [∆jf(U,U ′)|U ]

)4]
,

where by Ej we denote the expectation with respect to Uj only.

3.2 Proofs

Proof of Theorem 3.1. The beginning of the proof of Theorem 3.1 follows the general

argument applied in the literature on the Stein method and the Malliavin calculus in discrete

settings, see Peccati et al. (2010), Nourdin et al. (2010a), Peccati and Thäle (2013), Privault

and Torrisi (2015), Krokowski et al. (2016), Krokowski et al. (2017). However, the rest

of the proof presents significant differences as specific arguments are needed to bound the
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remainder terms using the Kolmogorov distance. For any x ∈ R, let fx denote the unique

bounded solution of the Stein equation

f ′
x(z)− zfx(z) = 1{z≤x} − P (N ≤ x) , (3.5)

which is continuous, infinitely differentiable on R\{x}, and satisfies 0 < fx(z) <
√
π/8 and

|f ′
x(z)| ≤ 1, z ∈ R\{x}, see Lemmas 2.2 and 2.3 in Chen et al. (2011). From the Stein

equation (3.5) we have the bound

dK(X,N ) ≤ sup
x∈R

E[f ′
x(X)−Xfx(X)].

For every f ∈ C1(R), the finite difference operator ∇ satisfies

∇tf(X) =
1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(f(X ◦ Φt)− f(X ◦ Φs))ds

=
1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ X◦Φt−X

X◦Φs−X

f ′(X + u)duds

=
1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(∫ X◦Φt−X

X◦Φs−X

(f ′(X + u)− f ′(X))du+

∫ X◦Φt−X

X◦Φs−X

f ′(X)du

)
ds

= f ′(X)∇tX +
1

2

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ X◦Φt−X

X◦Φs−X

(f ′(X + u)− f ′(X))du ds, t ∈ R+.

Hence by the duality relation (2.9), we have

E[f ′(X)−Xf(X)] = E[f ′(X)− f(X)(−∇∗∇)L−1X]

= E
[
f ′(X)− 1

2

∫ ∞

0

∇tf(X)(−∇tL
−1X)dt

]
= E

[
f ′(X)

(
1− 1

2

∫ ∞

0

∇tX(−∇tL
−1X)dt

)]
+
1

4
E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ X◦Φt−X

X◦Φs−X

(f ′(X + u)− f ′(X))duds∇tL
−1Xdt

]
. (3.6)

By the covariance relation (2.23) applied with α = 0 and the fact that E[X] = 0, we have

E
[
X2
]
= E

[∫ ∞

0

(∇tX)(−∇tL
−1X)

dt

2

]
,

hence from the bound ∥f ′
x∥∞ ≤ 1 and Jensen’s inequality we obtain∣∣∣∣E [f ′(X)

(
1− 1

2

∫ ∞

0

∇tX(−∇tL
−1X)dt

)]∣∣∣∣
≤ E

[∣∣∣∣1− 1

2

∫ ∞

0

∇tX(−∇tL
−1X)dt

∣∣∣∣]
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≤ |1− E[X2]|+ E
[∣∣∣∣12

∫ ∞

0

∇tX(−∇tL
−1X)dt− E

[∫ ∞

0

(∇tX)(−∇tL
−1X)

dt

2

]∣∣∣∣]
≤ |1− E[X2]|+Var

[∫ ∞

0

∇tX(−∇tL
−1X)

dt

2

]
. (3.7)

Next, from the Stein equation (3.5) we have∫ X◦Φt−X

X◦Φs−X

(f ′
x(X + u)− f ′

x(X))du = As,t(x,X) +Bs,t(x,X), x ∈ R,

where

As,t(x,X) :=

∫ X◦Φt−X

X◦Φs−X

((X + u)fx(X + u)−Xfx(X))du

and

Bs,t(x,X) :=

∫ X◦Φt−X

X◦Φs−X

(
1{X+u≤x} − 1{X≤x}

)
du.

Thus, applying this and (3.7) to (3.6), we get

|E[f ′(X)−Xf(X)]| ≤ |1− E[X2]|+Var

[ ∫ ∞

0

∇tX(−∇tL
−1X)

dt

2

]
(3.8)

+
1

4

∣∣∣∣E[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋
As,t(x,X)ds∇tL

−1Xdt

]∣∣∣∣
+

1

4

∣∣∣∣E[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋
Bs,t(x,X)ds∇tL

−1Xdt

]∣∣∣∣.
Using the inequality

|(u+ w)fx(u+ w)− wfx(w)| ≤
(
|w|+

√
2π

4

)
|u|, u, w ∈ R,

see Lemma 2.3 in Chen et al. (2011), we estimate

|As,t(x,X)| ≤
∫ max(X◦Φs−X,X◦Φt−X)

min(X◦Φs−X,X◦Φt−X)

(
|X|+

√
2π

4

)
|u|du

≤

(√
2π

4
+ |X|

)∫ |X◦Φt−X|

|X◦Φs−X|
|u|du

=
1

2

(√
2π

4
+ |X|

)(
|X ◦ Φs −X|2 + |X ◦ Φt −X|2

)
.

Then, by the Cauchy-Schwarz inequality we have∣∣∣∣E[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋
As,t(x,X)ds∇tL

−1Xdt

]∣∣∣∣
≤ 1

2
E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(√
2π

4
+ |X|

)(
|X ◦ Φt −X|2 + |X ◦ Φs −X|2

)
|∇tL

−1X|ds dt
]
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≤ 1

2

√
E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|X ◦ Φt −X|2 + |X ◦ Φs −X|2

)2
ds dt

]

×

(√
π

2

√
E
[∫ ∞

0

(∇tL−1X)2dt

]
+

√
2E
[∫ ∞

0

(X∇tL−1X)2dt

])
. (3.9)

Next, by the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), a, b, c ≥ 0, formula (2.23) with α = 0

and the relation (2.3), we get

E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|X ◦ Φt −X|2 + |X ◦ Φs −X|2

)2
ds dt

]
=

1

2
E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|X ◦ Φt −X ◦ Φv|2 + |X ◦ Φs −X ◦ Φv|2

)2
dv ds dt

]
=

1

2
E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|∇tX −∇vX|2 + |∇sX −∇vX|2

)2
dv ds dt

]
≤ E

[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(
|∇tX|2 + |∇sX|2 + 2|∇vX|2

)2
dv ds dt

]
≤ 3E

[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ 2⌊t/2⌋+2

2⌊t/2⌋
(∇tX)4 + (∇sX)4 + 4(∇vX)4dv ds dt

]
= 72E

[∫ ∞

0

(∇tX)4dt

]
.

Furthermore, by Lemma 2.5 applied to X and (−L)−1X with α = 1/2, we have

E
[∫ ∞

0

(
∇tL

−1X
)2
dt

]
= 2E

[(
(−L)−1/2X

)2]
and

E
[∫ ∞

0

(X∇tL
−1X)2dt

]
≤

√√√√E [X4] E

[(∫ ∞

0

(∇tL−1X)2
)2

dt

]
.

Applying the last three inequalities to (3.9), we finally obtain∣∣∣∣∣E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋
As,t(x,X)ds∇tL

−1Xdt

]∣∣∣∣∣
≤ 6

√
E
∫ ∞

0

(∇tX)4dt

((
E
[
X4
]
E

[(∫ ∞

0

(∇tL
−1X)2

)2

dt

])1/4

+

√
π

2

√
E [((−L)−1/2X)2]

)
.

Regarding the last term in (3.8), we use (2.3) and the equivalence (∇tL
−1X) ◦ Φv =

(∇tL
−1X), which is valid for 2⌊t/2⌋ ≤ v < 2⌊t/2⌋+ 2, and get∣∣∣∣∣E
[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋
Bs,t(x,X)ds∇tL

−1Xdt

]∣∣∣∣∣
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=

∣∣∣∣E[ ∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋

(∫ X◦Φt

X◦Φs

(1{u≤x} − 1{X≤x})du

)
ds∇tL

−1Xdt

]∣∣∣∣
=

1

2

∣∣∣∣E[ ∫ ∞

0

(∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ X◦Φt

X◦Φs

(1{u≤x} − 1{X◦Φv≤x})duds dv

)
∇tL

−1Xdt

]∣∣∣∣
=

1

2

∣∣∣∣∣E
[

∞∑
m=0

∫ 2m+2

2m

Km(t,X)∇tL
−1Xdt

]∣∣∣∣∣, (3.10)

where

Km(t, x,X) :=

∫ 2m+2

2m

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φv≤x}

)
du ds dv, 2m ≤ t < 2m+ 2.

Next, we rewrite Km(t,X) as follows

Km(t, x,X) =

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

∫ 2m+2

2m

(
1{X◦Φt≤x} − 1{X◦Φv≤x}

)
dv du ds

+

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

∫ 2m+2

2m

(
1{u≤x} − 1{X◦Φt≤x}

)
dv du ds

= 4∇tX∇t1{X≤x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φt≤x}

)
du ds

= −4∇tX∇t1{X>x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φt≤x}

)
du ds, (3.11)

where we used the equality ∇t1{X≤x} = −∇t1{X>x}. Next, we consider two cases.

(i) If X ◦ Φt > x, we have

Km(t, x,X) = −4∇tX∇t1{X>x} + 2

∫ 2⌊t/2⌋+2

2⌊t/2⌋

∫ X◦Φt

X◦Φs

1{u≤x} du ds

= −4∇tX∇t1{X>x} + 2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
1{X◦Φs≤x}(x−X ◦ Φs) ds. (3.12)

Note that the last expression depends only on m := ⌊t/2⌋ and may be bounded for x <∫ 2m+2

2m
X ◦ Φu du/2 as follows

0 ≤
∫ 2⌊t/2⌋+2

2⌊t/2⌋
1{X◦Φs≤x}(x−X ◦ Φs) ds

= x

∫ 2m+2

2m

1{X◦Φs≤x} ds−
∫ 2m+2

2m

X ◦ Φudu+

∫ 2m+2

2m

1{X◦Φu>x}X ◦ Φudu

=

(
x− 1

2

∫ 2m+2

2m

X ◦ Φu du

)∫ 2m+2

2m

1{X◦Φs≤x} ds

+

∫ 2m+2

2m

1{X◦Φu>x}X ◦ Φudu− 1

2

∫ 2m+2

2m

1{X◦Φs>x}ds

∫ 2m+2

2m

X ◦ Φudu
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≤
∫ 2m+2

2m

(
1{X◦Φu>x} −

1

2

∫ 2m+2

2m

1{X◦Φs>x}ds

)
X ◦ Φudu

=

∫ 2m+2

2m

∇u1{X>x}X ◦ Φudu

=

∫ 2m+2

2m

∇u1{X>x}∇uXdu,

where we used (2.4) to obtain the last identity. Consequently, for x <
∫ 2m+2

2m
X ◦Φu du/2 we

get ∫ 2m+2

2m

1{X◦Φt>x}Km(t,X)∇tL
−1Xdt

≤ 4

∫ 2m+2

2m

∣∣∇tX∇t1{X>x}∇tL
−1X

∣∣ dt (3.13)

+ 2

∣∣∣∣∫ 2m+2

2m

∇uX∇u1{X>x}du

∣∣∣∣ ∣∣∣∣∫ 2m+2

2m

∇t1{X>x}∇tL
−1Xdt

∣∣∣∣ ,
where we also changed 1{X◦Φt>x} into ∇t1{X>x} in the last integral, which is justified by

(2.4). In order to obtain the same bound in the case x ≥
∫ 2m+2

2m
X ◦ Φu du/2, we rewrite

(3.12) as

Km(t, x,X) = −4∇tX∇t1{X>x} + 2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
1{X◦Φs≤x}(x−X ◦ Φt +∇tX −∇sX) ds

= 2

∫ 2⌊t/2⌋+2

2⌊t/2⌋
1{X◦Φs≤x}(x−X ◦ Φt −∇sX) ds

= 2

∫ 2m+2

2m

∇s1{X>x}∇sXds− 2

∫ 2m+2

2m

1{X◦Φs≤x} (X ◦ Φt − x) ds,

and we estimate the last integral by

0 ≤
∫ 2m+2

2m

1{X◦Φs≤x} (X ◦ Φt − x) ds

≤
∫ 2m+2

2m

1{X◦Φs≤x} ds

(
X ◦ Φt −

1

2

∫ 2m+2

2m

X ◦ Φu du

)
= −∇tX∇t1{X≤x} = ∇tX∇t1{X>x},

which shows that the inequality (3.13) is valid for all x ∈ R under the condition x <

X ◦ Φt. Thus, applying the Cauchy-Schwarz inequality several times and using the bound

|∇t1{X≤x}| ≤ 1, we obtain∣∣∣∣∣E
[

∞∑
m=0

∫ 2m+2

2m

1{X◦Φt>x}Km(t, x,X)∇tL
−1Xdt

]∣∣∣∣∣
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≤ 4

√√√√E

[
∞∑

m=0

∫ 2m+2

2m

∣∣∇u1{X>x}
∣∣ |∇uX|2du

]
E

[
∞∑

m=0

∫ 2m+2

2m

∣∣∇u1{X>x}
∣∣ (∇uL−1X)2du

]

+ 4

√√√√E

[
∞∑

m=0

∫ 2m+2

2m

(∇u1{X>x})2|∇uX|2du

]
E

[
∞∑

m=0

∫ 2m+2

2m

(∇u1{X>x})2(∇uL−1X)2du

]

≤ 8

√
E
[∫ ∞

0

∣∣∇u1{X>x}
∣∣ |∇uX|2du

]
E
[∫ ∞

0

∣∣∇u1{X>x}
∣∣ (∇uL−1X)2du

]
.

By the duality relation (2.9), Hölder’s inequality and the formula (2.10), we get

E
[∫ ∞

0

∣∣∇u1{X>x}
∣∣ |∇uX|2du

]
= E

[∫ ∞

0

∇u1{X>x}sgn(∇u1{X>x})|∇uX|2du
]

= 2E
[
1{X>x}∇∗ (sgn(∇u1{X>x})|∇uX|2

)]
≤ 2

√
E
[(
∇∗
(
sgn(∇u1{X>x})|∇uX|2

))2]
= 2

√
E
[∫ ∞

0

(∇uX)4dt

]
+ E

[∫ ∞

0

∫ ∞

0

(
∇s

(
sgn(∇u1{X>x})|∇uX|2

))2
ds du

]
. (3.14)

Next, we observe that by the covariance relation (2.23) with α = 1
2
, we have

E
[∫ ∞

0

∫ ∞

0

(
∇s

(
sgn(∇u1{X>x})|∇uX|2

))2
ds du

]
= E

[∫ ∞

0

1{∇u1{X>x}>0}

∫ ∞

0

(
∇s

(
|∇uX|2

))2
ds+ 1{∇u1{X>x}<0}

∫ ∞

0

(
∇s

(
−|∇uX|2

))2
ds du

]
≤ E

[∫ ∞

0

∫ ∞

0

(
∇s

(
|∇uX|2

))2
ds du

]
= 2E

[∫ ∞

0

(
(−L)1/2

(
|∇uX|2

))2
du

]
.

Applying this to (3.14), we get

E
[∫ ∞

0

∣∣∇u1{X>x}
∣∣ |∇uX|2du

]
≤ 2

√
E
[∫ ∞

0

((I + 2(−L)1/2) (|∇uX|2))2 du
]
,

and analogously we obtain

E
[∫ ∞

0

∣∣∇u1{X>x}
∣∣ (∇uL

−1X)2du

]
≤ 2

√
E
[∫ ∞

0

((I + 2(−L)1/2) ((∇uL−1X)2))
2
du

]
,

which eventually gives us∣∣∣∣∣E
[

∞∑
m=0

∫ 2m+2

2m

1{X◦Φt>x}Km(t, x,X)∇tL
−1Xdt

]∣∣∣∣∣ (3.15)
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≤ 16

(
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
|∇uX|2

))2
du

]

× E
[∫ ∞

0

((
I + 2(−L)1/2

)1/2 (
(∇uL

−1X)2
))2

du

])1/4

. (3.16)

(ii) In case X ◦ Φt ≤ x we observe that, denoting

K̃m(t, x,X) := −4∇tX∇t1{X≥x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u<x} − 1{X◦Φt<x}

)
du ds,

which comes from (3.11) by changing weak inequalities into strict ones and conversely, and

repeating all the above argument, we arrive at∣∣∣∣∣E
[

∞∑
m=0

∫ 2m+2

2m

1{X◦Φt≥x}K̃m(t, x,X)∇tL
−1Xdt

]∣∣∣∣∣ (3.17)

≤ 16

(
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
|∇uX|2

))2
du

]
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
(∇uL

−1X)2
))2

du

])1/4

.

Next, by (3.11) we have, for m = ⌊t/2⌋ and X ◦ Φt ≤ x,

Km(t, x,X) = −4∇tX∇t1{X>x} + 2

∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≤x} − 1{X◦Φt≤x}

)
du ds

= 4∇tX∇t1{X≤x} −
∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{u≥x} − 1{X◦Φt≥x}

)
du ds

= 4∇tX∇t1{−X≥−x} −
∫ 2m+2

2m

∫ X◦Φt

X◦Φs

(
1{−u≤−x} − 1{−X◦Φt≤−x}

)
du ds

= −4∇t(−X)∇t1{−X≥−x} +

∫ 2m+2

2m

∫ −X◦Φt

−X◦Φs

(
1{u≤−x} − 1{−X◦Φt≤−x}

)
du ds

= K̃m(t,−x,−X).

Thus, using (3.17) with −x and −X instead of x and X respectively, we get∣∣∣∣∣E
[

∞∑
m=0

∫ 2m+2

2m

1{X◦Φt≤x}Km(t, x,X)∇tL
−1Xdt

]∣∣∣∣∣
=

∣∣∣∣∣E
[

∞∑
m=0

∫ 2m+2

2m

1{−X◦Φt≥−x}K̃m(t,−x,−X)∇tL
−1(−X)dt

]∣∣∣∣∣
≤ 16

(
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
|∇uX|2

))2
du

]
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
(∇uL

−1X)2
))2

du

])1/4

.

(3.18)

Combining (3.15) and (3.18) with (3.10), we finally obtain

1

4

∣∣∣∣∣E
[∫ ∞

0

∫ 2⌊t/2⌋+2

2⌊t/2⌋
Bs,t(x,X)ds∇tL

−1Xdt

]∣∣∣∣∣
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=
1

8

∣∣∣∣∣E
[

∞∑
m=0

∫ 2m+2

2m

(
1{X◦Φt>x} + 1{X◦Φt≤x}

)
Km(t,X)∇tL

−1Xdt

]∣∣∣∣∣
≤ 4

(
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
|∇uX|2

))2
du

]
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
(∇uL

−1X)2
))2

du

])1/4

,

which ends the proof. □

Proof of Proposition 3.2. The bound for Wasserstein distance has been derived in The-

orem 3.2 in Privault and Serafin (2022), so we will focus of the Kolmogorov distance. Since

|∇tX|2 and (∇tL
−1X)2 are sums of multiple integrals of orders 2d− 2 and below, the rela-

tion (2.12) shows the bound

E
[ ((

I + 2(−L)1/2
) (

|∇tX|2
))2 ] ≤ 2dE

[
(∇tX)4

]
,

and

E
[ ((

I + 2(−L)1/2
) (

(∇tL
−1X)2

))2 ] ≤ 2dE
[ (

∇tL
−1X

)4 ]
.

Additionally, by (2.12) we also have

E
[
((−L)−1/2X)2

]
≤ E

[
X2
]
≤
√
E [X4].

Applying these inequalities to (3.2) in Theorem 3.1, we get

dK(X,N ) ≤ |1− E[X2]|+

√
Var

[∫ ∞

0

∇tX∇tL−1Xdt

]

+
3

2

(
E
[
X4
])1/4√E

∫ ∞

0

(∇tX)4dt

(
1 +

(
E

[(∫ ∞

0

(∇tL
−1X)2dt

)2
])1/4)

+ 6d

√
E
[∫ ∞

0

(∇tX)4 dt

]
E
[∫ ∞

0

(∇tL−1X)4 dt

]
.

Denoting

RX :=
∑

1≤i≤j≤d

i∑
k=1

k∑
l=0

1{i=j=k=l}c
∥∥fi ⋆lk fj∥∥2L̂2(Ri+j−k−l

+ )
,

it follows from the proof of Theorem 3.2 in Privault and Serafin (2022) that

RX ≤ cd

( ∑
0≤l<i≤d

∥∥fi ⋆li fi∥∥2L2(Ri−l
+ )

+
∑

1≤l<i≤d

(∥∥fi ⋆ll fi∥∥2L2(R2(i−l)
+ )

+
∥∥fl ⋆ll fi∥∥2L2(Ri−l

+ )

))
,

(3.19)
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and

Var

[∫ ∞

0

∇tX∇tL
−1Xdt

]
≤ cdRX , E

[∫ ∞

0

(∇tX)4dt

]
≤ cdRX , (3.20)

for some cd ≥ 0. Taking L−1X as X in the last inequality, we also have

E
[∫ ∞

0

(∇tL
−1X)4dt

]
≤ c′dRX ,

for some c′d ≥ 0. Furthermore, since

∇tL
−1X =

d−1∑
k=0

Ik (fk+1(t, ·))

and the functions fk satisfy (2.6), the multiplication formula (2.16) gives∫ ∞

0

(∇tL
−1X)2dt =

∫ ∞

0

∑
0≤i≤j<d−1

i∑
k=0

k∑
l=0

ci,j,l,kIi+j−k−l

(
fi+1(t, ·) ⋆̃lkfj+1(t, ·)

)
dt

=
∑

0≤i≤j<d−1

i∑
k=0

k∑
l=0

ci,j,l,kIi+j−k−l

(∫ ∞

0

fi+1(t, ·) ⋆̃lkfj+1(t, ·)dt
)

for some ci,j,l,k ≥ 0, and consequently

E

[(∫ ∞

0

(∇tL
−1X)2dt

)2
]
≤ cd

∑
0≤i≤j<d

i∑
k=0

k∑
l=0

∥∥∥∥(∫ ∞

0

fi+1(t, ·) ⋆lkfj+1(t, ·)dt
)∥∥∥∥2

L2(Ri+j−k−l
+ )

= cd
∑

0≤i≤j<d

i∑
k=0

k∑
l=0

∥∥(fi+1 ⋆
l+1
k+1fj+1

)∥∥2
L2(Ri+j−k−l

+ )

= cd

( ∑
1≤i≤j<d

i∑
k=1

k∑
1=0

1{i=j=k=l}c
∥∥(fi ⋆lkfj)∥∥2L2(Ri+j−k−l

+ )
+

d∑
i=1

(
fi ⋆

i
ifi
)2)

≤ cd
(
RX + (E[X2])2

)
.

Similarly, we get for some Ci,j,k,l ≥ 0

E
[
X4
]
≤ cdE

( ∑
0≤i≤j<d

i∑
k=0

k∑
l=0

Ci,j,l,kIi+j−k−l

(
fi ⋆̃

l
kfj

))2


≤ cd
∑

0≤i≤j<d

i∑
k=0

k∑
l=0

∥∥fi ⋆lkfj∥∥2L2(Ri+j−k−l
+ )

= cd

(
RX +

d∑
i=1

(
fi ⋆

i
ifi
)2

+
∑

1≤i≤j≤d

∥∥fi ⋆00fj∥∥2L2(Ri+j
+ )

)
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= cd

(
RX +

d∑
i=1

∥fi∥4L2(Ri) +
∑

1≤i≤j≤d

∥fi∥2L2(Ri) ∥fj∥
2
L2(Rj)

)
≤ cd

(
RX + (E[X2])2

)
.

This finally gives us

dK(X,N ) ≤ |1− E[X2]|+ cd
√

RX

(
1 +

(
(RX + E[X2])1/4 + 1

)2 )
.

Since dK(X,N ) ≤ 1, we may assume that E[X2] and RX are bounded, which implies

dK(X,N ) ≤ |1− E[X2]|+ cd
√
RX ,

and the assertion of the corollary follows from (3.19). □

Proof of Proposition 3.3. First, let us observe that we have

(−L)1/2Id(fd) =
1√
d
Id(fd),

and, by the covariance identity (2.23) applied with α = 0,

E[X2] =
1

d
E
[∫ ∞

0

|∇tX|2dt
]
. (3.21)

Then, Theorem 3.1 and the bound (3.1) give us

dW/K(X,N ) ≤ |1− E[X2]|+ 1

d

√
Var

[∫ ∞

0

|∇tX|2dt
2

]

+
3

2
√
d

√
E
∫ ∞

0

(∇tX)4dt

((
E
[
X4
]( 1

d2
Var

[∫ ∞

0

|∇tX|2dt
]
+ 4(E[X2])2

))1/4

+

√
π

2

√
E [X2]

)

+
4

d

(
E
[∫ ∞

0

((
I + 2(−L)1/2

) (
|∇tX|2

))2
dt

])1/2

.

Since dK(X,N ) ≤ 1 by definition, we may assume that
√
Var

[∫∞
0

|∇tX|2dt/2
]
≤ d and

E [X2] ≤ 2. Hence we get(
E
[
X4
]( 1

d2
Var

[∫ ∞

0

|∇tX|2dt
]
+ 4(E[X2])2

))1/4

+

√
π

2

√
E [X2]

≤ 4
√
E [X4]

(
4
√
18 +

√
π

2

)
≤ 10

3
4
√

E [X4].
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Furthermore, since |∇uX|2 is a sum of multiple integrals of orders 2d−2 and below, we have

by (2.12)

E
[((

2(−L)1/2 + I
)
(|∇tX|2)

)2] ≤ (2√2d− 2 + 1
)2

E
[
(∇tX)4

]
≤ 9dE

[
(∇tX)4

]
.

Combining all together we obtain the first inequality from the assertion. Next, applying

Proposition 2.4 and enlarging some constants, we get

dW/K(X,N )

≤ |1− E[X2]|+

√
Var

[∫ ∞

0

|∇tX|2dt
]
+

√
E
[∫ ∞

0

(∇tX)4dt

]

×

(
12 +

5√
d

((
36E

[(∫ ∞

0

|∇tX|2dt
)2
]
+ 15E

[∫ ∞

0

(∇tX)4dt

])
+ 2

(
E[X2]

)2)1/4)
.

Using once again the inequality dK(X,N ) ≤ 1, we may assume
√

Var
[∫∞

0
|∇tX|2dt

]
≤ 1,√

E
[∫∞

0
(∇tX)4dt

]
≤ 1

17
and E[X2] ≤ 2. Employing additionally (3.21), we get

12 +
5√
d

((
36E

[(∫ ∞

0

|∇tX|2dt
)2
]
+ 15E

[∫ ∞

0

(∇tX)4dt

])
+ 2

(
E[X2]

)2)1/4

= 12 +
5√
d

((
36Var

[(∫ ∞

0

|∇tX|2dt
)2
]
+ 15E

[∫ ∞

0

(∇tX)4dt

])
+ (2 + 36d2)

(
E[X2]

)2)1/4

≤ 12 + 5

(
36 +

15

17
+ 4(2 + 36)

)1/4

≤ 12 + 5
4
√
189 < 31,

which ends the proof. □

4 Applications to U-statistics

4.1 General U-statistics

The next Theorem 4.1 is a consequence of Proposition 3.2, using the fact that any random

variable can be represented in distribution as a function of a uniformly distributed random

variable, and makes more precise the central limit theorem of de Jong (1987; 1990). In

comparison with Theorem 1.3 in Döbler and Peccati (2017), see also Theorem 3.7 in Döbler

(2020), Theorem 4.1 is stated for the Kolmogorov distance instead of the Wasserstein dis-

tance, it applies to Hoeffding decompositions in full generality and not only to degenerate
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U -statistics for which |J | is constrained to a fixed value |J | = d for some d ∈ {1, . . . , n} in

the sum (2.17).

Theorem 4.1 Let 1 ≤ d ≤ n. For any Wn ∈ L4(Ω) admitting the Hoeffding decomposition

(2.17) with |J | ≤ d, and such that E [W 2
n ] = 1, we have

dW/K(Wn,N ) ≤ Cd

 ∑
0≤l<i≤d

∑
|J |=i−l

E

[( ∑
|K|=l,K∩J=ϕ

E
[
(WJ∪K)

2 | FJ

])2]

+
∑

1≤l<i≤d

∑
|J1|=|J2|=i−l

J1∩J2=ϕ

E

[( ∑
|K|=l,K1∩(J1∪J2)=ϕ

E
[
WJ1∪KWJ2∪K | FJ1∪J2

])2]

+
∑

1≤l<i≤d

∑
|J |=i−l

E

[( ∑
|K|=l,K∩J=ϕ

E
[
WKWJ∪K | FJ

])2]1/2

, (4.1)

where Cd > 0 depends only on d.

Proof. By representing Xi as Xi
d
= F−1

i ((Ui + 1)/2) where F−1
i is the generalized inverse

of the cumulative distribution function Fi of Xi, i = 1, . . . , n, we rewrite (2.20) as the sum

of multiple stochastic integrals

Wn
d
=

d∑
k=1

Ik(fk),

where

fk(x1, . . . , xk) := (4.2)

1

k!

∑
J={i1,...,ik}⊂[n]

gJ

(
F−1
i1

(x1

2
−
⌊x1

2

⌋)
, . . . , F−1

ik

(xk

2
−
⌊xk

2

⌋))
1[2i1−2,2i1)×···×[2ik−2,2ik)(x1, . . . , xk),

(x1, . . . , xk) ∈ Rk
+. Next, denoting

N̂m :=
{
(k1, . . . , km) : k1, . . . , km ≥ 1, ki ̸= kj if i ̸= j, 1 ≤ i, j ≤ m

}
,

we have

∥fi ⋆li fi∥2L2(Ri−l
+ )

=
1

22l

∑
j∈N̂i−l

∫
[2j1−2,2j1)×···×[2ji−l−2,2ji−l)

∑
k∈N̂l

∫
[2k1−2,2k1)×···×[2kl−2,2l)

(fi(x1, . . . , xi))
2dx1 · · · dxl

2
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dxl+1 · · · dxi

≤ (i− l)!(l!)2
∑

|J |=i−l
J={j1,...,ji−l}

∫
[2j1,2j1+2)×···×[2ji−l,2ji−l+2)

 ∑
|K|=l

K={k1,...,kl}

∫
[2k1,2k1+2)×···×[2kl,2l+2)

(
fi(x1, . . . , xi)

)2
dx1 · · · dxl


2

dxl+1 · · · dxi

≤ C
∑

|J |=i−l

E

[( ∑
|K|=l,K∩J=ϕ

E
[
(WJ∪K)

2 | FJ

])2]
,

for some C = C(d). Similarly, we get

∥∥fi ⋆ll fi∥∥2L2(R2(i−l)
+ )

≤ C
∑

|J1|=|J2|=l−i
J1∩J2=ϕ

E

[( ∑
|K|=l,K∩(J1∪J2)=ϕ

E
[
WJ1∪KWJ2∪K | FJ1∪J2

])2]

and

∥∥fl ⋆ll fi∥∥2L2(Ri−l
+ )

≤ C
∑

|J |=i−l

E

[( ∑
|K|=l,K∩J=ϕ

E
[
WKWJ∪K | FJ

])2]
, 1 ≤ l < i ≤ d.

We conclude by applying the above to Proposition 3.2, which yields the required bound.

□

4.2 Degenerate U-statistics

In this section we narrow our attention to the degenerate U -statistics of a given order d ≥ 1,

which are random variables Wn,d admitting the Hoeffding decomposition (2.17) with |J | = d.

Theorem 4.2 For any degenerate U-statistics Wn,d ∈ L4(Ω) of order d ≥ 1, and such that

E
[
W 2

n,d

]
= 1, we have

dW/K(Wn,d,N ) ≤

√√√√Var

[
∞∑
k=1

E
[ (

Wn,d − E
[
Wn,d|{Xk}c

])2 |{Xk}c
]]

+ 24

√√√√2E
∞∑
k=1

E
[(
Wn,d − E

[
Wn,d|{Xk}c

])4]

≤ Cd

( ∑
0≤l<d

∑
|J |=d−l

E

[( ∑
|K|=l,K∩J=ϕ

E
[
(WJ∪K)

2 | FJ

])2]

29



+
∑
1≤l<d

∑
|J1|=|J2|=d−l

J1∩J2=ϕ

E

[( ∑
|K|=l,K1∩(J1∪J2)=ϕ

E
[
WJ1∪KWJ2∪K | FJ1∪J2

])2])1/2

,

where {Xk}c = {X1, . . . , Xk−1, Xk+1, . . . , Xn} and Cd > 0 depends only on d.

Proof. The first bound is just the latter bound from Proposition 3.3 rewritten in a different

form. Namely, it is enough to take fd as in (4.2) and then we have for t ∈ [2k, 2k + 2)

∇tWn,d = E [Wn,d | {Xk}c, Xk = t]− E [Wn,d | {Xk}c] .

The other bound in the assertion follows from Proposition 3.3 in view of (3.20), (3.19) –

where the last sum is vanishing – and the proof of Theorem 4.1. □

Weighted U-statistics

As an example, we consider degenerate weighted U -statistics. Precisely, given (X1, . . . , Xn)

an i.i.d. sequence of random variables with distribution ν, we define

Un,d =

(
n

d

)−1 ∑
1≤k1<···<kd≤n

w(k1, . . . , kd)g (Xk1 , . . . , Xkd) , 1 ≤ d ≤ n, (4.3)

where w(k1, . . . , kd) ∈ R is symmetric and vanishes on diagonals, and g (xk1 , . . . , xkd) ∈
L2(Rd

+, ν
⊗d), 1 ≤ k1 < · · · < kd ≤ n, is symmetric and satisfies

E [g (X1, x2, . . . xd)] = 0, (x2, . . . , xd) ∈ Rd−1. (4.4)

The variance σ2 of Un,d is given by

σ2 := Var[Un,d] =

(
n

d

)−2

∥g∥2L2(Rd,ν⊗d)

∑
1≤k1<···<kd≤n

w2(k1, . . . , kd).

The assumption (4.4) plays a technical role, which helps in simplifying the derivations.

Nevertheless, it covers important examples of U -statistics such as quadratic forms and their

multidimensional generalizations. Sharp bounds have been provided in Chen and Shao (2007)

in case (4.4) is not satisfied, but only in the case of classical (i.e. non-weighted) U -statistics.

See also Krokowski et al. (2016) for weighted first order U -statistics based on symmetric

Rademacher sequences, and Nourdin et al. (2016) for a fourth moment type central limit

theorem in case g(x1, . . . , xn) = x1 · · ·xn and X1 has a vanishing third moment.
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In order to formulate the next result, given ν a probability measure on R+ we use the

notation

fn
(ν)
⋆ k

l gm(y1, . . . , yn−l, z1, . . . , zm−k) :=
1

2l

∫
Rl
+

fn(x1, . . . , xl, y1, . . . , yn−l) (4.5)

×gm(x1, . . . , xl, y1, . . . , yk−l, z1, . . . , zm−k)ν(dx1) · · · ν(dxl),

where fn ∈ L2(Rn
+, ν

⊗n), gm ∈ L2(Rn
+, ν

⊗m), which is a generalization of (2.15). Nevertheless,

the two definitions are used in different contexts since ν is a probability measure and (4.5)

can be interpreted as an expected value of function of a random vector, while the contraction

(2.15) can be used to compute the expected value of a stochastic integral.

Theorem 4.3 Let Un,d be a degenerate weighted U-statistics of the form (4.3). We have

dW/K

(
Un,d

σ
,N
)

≤ Cd

max1≤l≤d−1

{
∥g

(ν)
⋆ l

l g∥L2(Rd,ν⊗(d−l))

√∑
k,r∈Nd−l

(∑
m∈Nl w(k,m)w(r,m)

)2}
∥g∥2

L2(Rd,ν⊗d)

∑
1≤k1,...,kd≤nw

2(k1, . . . , kd)

≤ Cd

∥g∥2
L4(Rd,ν⊗d)

∥g∥2
L2(Rd,ν⊗d)

max1≤l≤d−1

√∑
k,r∈Nd−l

(∑
m∈Nl w(k,m)w(r,m)

)2∑
m∈Nd w2(m)

for some Cd > 0 depending only on d ∈ {1, . . . , n}, where ν denotes the distribution of X1.

Proof. By Theorem 4.2, we have

dW/K

(
Un,d

σ
,N
)

≤ cd
σ2

(
n

d

)−2
( ∑

0≤l≤d−1

∫
Rd−l

(∫
Rl

g2(x, y)ν⊗l(dx)

)2

ν⊗(d−l)(dy)
∑

k∈Nd−l

(∑
m∈Nl

w2(k,m)

)2

+
∑

1≤l≤d−1

∫
Rd−l

∫
Rd−l

(∫
Rl

g(x, y)g(x, z)ν⊗l(dx)

)2

ν⊗(d−l)(dy)ν⊗(d−l)(dz)

×
∑

k,r∈Nd−l

(∑
m∈Nl

w(k,m)w(r,m)

)2)1/2

.

Applying the inequality

∑
k∈Nd−l

(∑
m∈Nl

w2(k,m)

)2

≤
∑

k,r∈Nd−l

(∑
m∈Nl

w(k,m)w(r,m)

)2

,
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to the terms in the first sum, as well as the inequality∫
Rd−l

∫
Rd−l

(∫
Rl

g(x, y)g(x, z)ν⊗l(dx)

)2

ν⊗(d−l)(dy)ν⊗(d−l)(dz)

=

∫
Rd−l

∫
Rd−l

∫
Rl

g(x1, y)g(x1, z)ν
⊗l(dx1)

∫
Rl

g(x2, y)g(x2, z)ν
⊗l(dx)ν⊗(d−l)(dy)ν⊗(d−l)(dz)

=

∫
Rl

∫
Rl

(∫
Rd−l

g(x1, y)g(x2, y)ν
⊗(d−l)(dy)

)2

ν⊗l(dx1)ν
⊗l(dx2)

=

∫
Rl

∫
Rl

∫
Rd−l

g2(x1, y)g
2(x2, y)ν

⊗(d−l)(dy)ν⊗l(dx1)ν
⊗l(dx2)

=

∫
Rd−l

(∫
Rl

g2(x, y)ν⊗l(dx1)

)2

ν⊗(d−l)(dy) = ∥g
(ν)
⋆ l

l g∥2L2(Rd,ν⊗(d−l)),

where we used Jensen’s inequality, to the terms in the latter sum, we arrive at

dW/K

(
Un,d

σ
,N
)

≤ c′d
σ2

(
n

d

)−2
( ∑

0≤l≤d−1

∥g
(ν)
⋆ l

l g∥2L2(Rd,ν⊗(d−l))

∑
k,r∈Nd−l

(∑
m∈Nl

w(k,m)w(r,m)

)2)1/2

≤ Cd

max1≤l≤d−1

{
∥g

(ν)
⋆ l

l g∥L2(Rd,ν⊗(d−l))

√∑
k,r∈Nd−l

(∑
m∈Nl w(k,m)w(r,m)

)2}
∥g∥2

L2(Rd,ν⊗d)

∑
1≤k1,...,kd≤nw

2(k1, . . . , kd)
,

which is the first bound from the assertion. To obtain the other one, it is enough to employ

Jensen’s inequality once again as follows

∥g
(ν)
⋆ l

l g∥L2(Rd,ν⊗(d−l)) =

∫
Rd−l

(∫
Rl

g2(x, y)ν⊗l(dx)

)2

ν⊗(d−l)(dy)

≤
∫
Rd−l

∫
Rl

g4(x, y)ν⊗l(dx)ν⊗(d−l)(dy) = ∥g∥4L4(Rd,ν⊗d).

This ends the proof. □

Taking w ≡ 1, we have for 1 ≤ l ≤ d− 1√√√√ ∑
k,r∈Nd−l

(∑
m∈Nl

w(k,m)w(r,m)

)2

≈
∑

1≤k1,...,kd≤n

w2(k1, . . . , kd) ≈ nd

as n tends to infinity, where f ≈ g for non-negative functions f, g means that there is

a constant C > 0 depending on d such that f/C ≤ g ≤ C f . Applying the above equivalence

to the first inequality of Theorem 4.3, we immediately obtain the next corollary.
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Corollary 4.4 Let Un,d be a degenerate weighted U-statistics of the form

Un,d =

(
n

d

)−1 ∑
1≤k1<···<kd≤n

g (Xk1 , . . . , Xkd) , 1 ≤ d ≤ n.

We have

dW/K

(
Un,d

σ
,N
)

≤ Cd max
1≤l≤d−1

∥g
(ν)
⋆ l

l g∥L2(Rd,ν⊗(d−l))

∥g∥2
L2(Rd,ν⊗d)

.

An analogous result dealing only with the Wasserstein distance has been provided in The-

orem 3.3 of Döbler and Peccati (2019). Although the explicit values of constants have not

been provided for simplicity in Theorem 4.3 and Corollary 4.4, they can be fully computed

from the proof arguments.

4.3 Random graphs

Consider the Erdős and Rényi (1959) random graph Gn(p) constructed by independently

retaining any edge in the complete graph Kn on n vertices with probability p ∈ (0, 1). Here,

we assign an independent sample of a random weight X to every edge in Gn(pn), and we

define the weight of a graph contained in Gn(pn) as the sum of weights of its edges. Then,

consider the renormalized random weight

W̃G
n :=

WG
n − E[WG

n ]√
Var[WG

n ]
,

where WG
n denotes the combined weight of graphs in Gn(pn) that are isomorphic to a fixed

graph G. By writing the combined weight WG
n of graphs in Gn(pn) that are isomorphic to

a fixed graph G as a sum of multiple stochastic integrals (which is equivalent to finding its

Hoeffding decomposition) we obtain the following result as in Privault and Serafin (2022),

by replacing the use of Theorem 5.1 therein with Theorem 3.2 above.

Theorem 4.5 Let G be a graph without isolated vertices. The renormalized weight W̃G
n of

graphs in Gn(pn) that are isomorphic to G satisfies

dW/K

(
W̃G

n ,N
)
≤ C

√
E
[
(X − E[X])4

]
+ (1− p)(E[X])2

Var[X] + (1− p)(E[X])2

(
(1− p) min

H⊂G
eH≥1

nvHpeH

)−1/2

,

for some constant C = C(eG) > 0, where vH , eH denotes the numbers of vertices and edges,

respectively, of a graph H.
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Theorem 4.5 extends other Kolmogorov distance bounds previously obtained for triangle

counting in Ross (2011), and in Krokowski et al. (2017) using the Malliavin approach to the

Stein method, see also Röllin (2021) for triangle counting, Privault and Serafin (2020) for

arbitrary subgraph counting, and Krokowski et al. (2016) for weighted first order Rademacher

U -statistics in the symmetric case p = 1/2. As a consequence, if pn satisfies pn < c < 1,

n ≥ 1, we have

dW/K

(
W̃G

n ,N
)
≤ C

√
E [X4]

E[X2]

(
(1− pn) min

H⊂G
eH≥1

nvHpeHn

)−1/2

, (4.6)

and for pn > c > 0, n ≥ 1, it holds

dW/K

(
W̃G

n ,N
)
≤ C

√
E [X4]

n
√
1− pnVar[X]

. (4.7)

In particular, when X ≡ 1 is a constant, (4.6) and (4.7) recover the Wasserstein and Kol-

mogorov bounds of Theorem 2 in Barbour et al. (1989) and Theorem 4.2 in Privault and

Serafin (2020). Applications to cycle graphs, complete graphs trees can be treated as in

Privault and Serafin (2022) by replacing the Kolmogorov distance with the Wasserstein

distance.

5 Quadratic forms

5.1 Context and results

We consider the quadratic form Qn defined as

Qn =
∑

1≤i,j≤n
i ̸=j

aijXiXj +
n∑

k=1

akk
(
X2

k − E[X2
k ]
)
,

where An = (aij)1≤i,j≤n is a symmetric matrix, n ≥ 1, and (Xk)k≥1 denotes i.i.d. copies

of a given random variable X satisfying E [X] = 0. In the sequel, we let µk := E[Xk],

µ̃k := E
[
(X2 − E[X2])

k/2 ]
, k ≥ 2, and

σ2
n := Var[Qn] = E

[
Q2

n

]
= 2µ2

2

∑
1≤i,j≤n

i ̸=j

a2ij + µ̃4

n∑
i=1

a2ii.

Many papers in the literature are devoted to asymptotical normality of quadratic forms. The

best known convergence rates in the general case where the diagonal of A may not vanish
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are given in Götze and Tikhomirov (2002), as

dK

(
Qn

σn

,N
)

≤ C(γ)
(E [|X|3])2 + γE[X6]√∑

1≤i,j≤n a
2
ij

|λ1|, (5.1)

see Theorem 1.1 therein, where λ1 denotes the largest absolute eigenvalue of An, γ =∑n
i=1 a

2
ii/
∑

1≤i,j≤n a
2
ij, and the constant C(γ) blows up when γ tends to one, i.e. when

the linear part is dominating.

Vanishing diagonals

More is known if we assume the diagonal of An to be empty, in which case de Jong (1987)

proved the asymptotic normality of Qn/σn under the conditions

E
[
(Qn/σn)

4] −→ 3 and
1

σ2
n

max
1≤i≤n

n∑
j=1

a2ij −→ 0. (5.2)

In addition, for (Xk)k≥1 a Rademacher sequence, Theorem 1.1 in Döbler and Krokowski

(2019) restricted to double integrals gives the corresponding bound

dK

(
Qn

σn

,N
)

≤ C

√∣∣E [(Qn/σn)4]− 3
∣∣+ 1

σn

√
max
1≤i≤n

∑
1≤j≤1

a2ij

 . (5.3)

The same bound may be concluded from Döbler and Peccati (2017) for (Xk)k≥1 being any

i.i.d. sequence, but only in Wasserstein distance. Note that the quantity max
1≤i≤n

n∑
j=1

a2ij corre-

sponds to “maximal influence”, see Mossel et al. (2010), Nourdin et al. (2010b).

The bound

dW

(
Qn

σn

,N
)

≤ C
µ4

σ2
n


√√√√ n∑

i=1

(
n∑

k=1

a2ik

)2

+

√√√√ n∑
i,j=1

(
n∑

k=1

aikakj

)2
 . (5.4)

has been provided for Rademacher sequences using the Wasserstein distance in Proposi-

tion 3.1 of Chatterjee (2008), and has been recently extended to arbitrary i.i.d. sequences

using the Kolmogorov distance in Shao and Zhang (2019), Theorem 3.1.

Corollary 5.1 recovers this bound as an immediate consequence of Theorem 4.3 by taking

d = 2, w(k1, k2) = ak1k2 , 1 ≤ k1, k2 ≤ n, k1 ̸= k2, and g(y1, y2) = y1y2. Note however that

only the second term is significant in the right-hand side of (5.4), making the conjecture at

the end of Section 3.1 in Shao and Zhang (2019) pointless.
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Corollary 5.1 Assume aii = 0, i = 1, . . . , n. Then, there exists a constant C > 0 such that

dK

(
Qn

σn

,N
)

≤ C
µ4

σ2
n

√√√√ n∑
i,j=1

(
n∑

k=1

aikakj

)2

= C
µ4

σ2
n

√
Tr(A4

n), n ≥ 1.

Corollary 5.1 also improves (5.1) for matrices An with empty diagonal, since

√
Tr(A4

n) =

√√√√ n∑
k=1

λ4
k ≤ |λ1|

√√√√ n∑
k=1

λ2
k ≤ |λ1|

√√√√ n∑
i,j=1

a2ij ≤
σn

µ2

|λ1|. (5.5)

Non-empty diagonals

Theorem 5.2 below generalizes and improves all the aforementioned results. First, in compar-

ison with the above bound (5.1) of Götze and Tikhomirov (1999; 2002), it gives better rates

under weaker assumptions, as noted in (5.5). Furthermore, it extends every other result by

applying as well to non-vanishing diagonals. In addition, it completes Corollary 5.1 with an

additional bound related to the so-called fourth moment phenomenon (Nualart and Peccati

(2004)), and it also extends (5.3) from the Rademacher case to any distribution. Finally, it

deals with the Kolmogorov distance instead of the Wasserstein distance considered in Döbler

and Peccati (2017). See also Theorem 3.11 in Bally and Caramellino (2019) for some bounds

in total variation and Kolmogorov distances, which however provide worse rates and require

slightly stronger assumptions.

Theorem 5.2 There exist absolute constants C1, C2 > 0 such that

dW/K

(
Qn

σn

,N
)

≤ C1

√∣∣E [(Qn/σn)4]− 3
∣∣+ αn

σn

√
max
1≤i≤n

∑
1≤j≤1

a2ij

 , (5.6)

and

dK

(
Qn

σn

,N
)

≤ C2
βn

σ2
n

√
Tr(A4

n), (5.7)

where

αn := µ2 +
µ4

µ2

1{
a211+···+a2nn>0

}, and βn = µ4 +
√
µ8 1

{
a211+···+a2nn>0

}.
Contrary to what is stated on page 1590 of Chatterjee (2008), the conditions σ−2

n

√
Tr(A4

n) →
0 and E [(Qn/σn)

4] → 3 are not equivalent as n tends to infinity, and therefore fourth moment

convergence is not sufficient for the central limit theorem to hold for quadratic functionals.

The next proposition clarifies this point via inequalities between the quantities appearing in

Theorem 5.2. In the sequel, we let a ∧ b := min(a, b), a, b ∈ R.
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Proposition 5.3 There exist absolute constants C1, C2, C3 > 0 such that

C1
µ4
2 ∧ µ̃8

σ4
n

Tr(A4
n) ≤

∣∣E [(Qn/σn)
4
]
− 3
∣∣+ α2

n

σ2
n

max
1≤i≤n

∑
1≤j≤n

a2ij

≤ C2

(
β2
n

σ4
n

Tr(A4
n) +

α2
n

σ2
n

max
1≤i≤n

∑
1≤j≤n

a2ij

)
≤ C3

β2
n

µ2
2σ

2
n

√
Tr(A4

n),

where αn, βn are as in Theorem 5.2

Theorem 5.2 and Lemma 5.3 immediately imply

Corollary 5.4 Assume (Xi)i∈N is a fixed i.i.d. sequence with zero means and finite 8th

moments. The following two conditions are equivalent:

a) E [(Qn/σn)
4] −→ 3 and σ−2

n max1≤i≤n

∑n
j=1 a

2
ij −→ 0,

b) σ−4
n Tr(A4

n) −→ 0,

and they imply Qn/σn
L−→ N with the Kolmogorov rates (5.6) and (5.7).

This extends (5.2) for any matrix An and completes it with the equivalent condition in terms

of the trace of An.

5.2 Proofs

Proof of Theorem 5.2. The quadratic form Qn admits the Hoeffding decomposition

Qn =
∑

1≤i,j≤n

W{i,j} +
n∑

k=1

W{k},

where

W{i,j} = 2aijXiXj, W{k} = akk
(
X2

k − E
[
X2

k

])
.

Thus, Theorem 4.1 gives

dW/K

(
Qn

σn

,N
)

≤ C

σ2
n

(
µ̃8

n∑
i=1

a4ii + 2µ2
4

∑
1≤i,j≤n

i ̸=j

a4ij + 2µ2
2µ4

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2ija
2
ik (5.8)

+ µ4
2

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

+ µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2)1/2

.
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Next, we estimate this bound by means of E [Q4
n] and max

1≤i≤n

∑
1≤j≤n

a2ij. A direct calculation

shows that

E
[
Q4

n

]
= S1 + 3S2 + 4S3,

where

S1 := µ̃8

n∑
i=1

a4ii + 16µ2
4

∑
1≤i<j≤n

a4ij + 48µ2
2µ4

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2ija
2
ik

+ 48µ4
2

∑
1≤i1,i2,i3,i4≤n
ik ̸=il if k ̸=l

ai1i2ai2i3ai3i4ai4i1 + 48µ2
3µ2

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

aiiajjaikakj

+ 48µ2
3µ2

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2kjaikaij,

and

S2 := µ̃2
4

∑
i ̸=j

a2iia
2
jj + 4µ̃4µ

2
2

∑
1≤i,j,k≤n
j ̸=k, j,k ̸=i

a2iia
2
jk + 4µ4

2

∑
1≤i1,i2,i3,i4≤n
ik ̸=il if k ̸=l

a2i1i2a
2
i3i4

,

and

S3 := 3µ̃2
4

∑
1≤i,j≤n

i ̸=j

aiiajja
2
ij + 8µ3 (µ5 − µ3µ2)

∑
i ̸=j

aiia
3
ij + 6µ2 (µ̃6 + µ̃4µ2)

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij

+ 12µ2
3µ2

∑
1≤i,j,k≤n

i ̸=j,j ̸=k,i̸=k

aiiaija
2
jk + 24µ2

2µ̃4

∑
1≤i,j,k≤n

i ̸=j,j ̸=k,i̸=k

aiiaijaikakj.

The sum S1 is to dominate the right-hand side of (5.8), S2 is approximating σ2, and S3

contains remainder terms that are more difficult to handle due to their unknown sign. Note

also that S3 vanishes if the diagonal of A is empty. First, by

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

=
∑

1≤i1,i2,i3,i4≤n
ik ̸=il if k ̸=l

ai1i2ai2i3ai3i4ai4i1 +
∑

1≤i,j,k≤n
i ̸=j,i̸=k,j ̸=k

a2ika
2
kj

and
n∑

i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2

=
∑

1≤i,j,k≤n
i ̸=j,i̸=k,j ̸=k

aiiajjaikakj +
∑

1≤i,j≤n
i ̸=j

a2iia
2
ij,

we get

S1 := µ̃8

n∑
i=1

a4ii + 16µ2
4

∑
1≤i<j≤n

a4ij + 48µ2
2µ4

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2ija
2
ik
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+ 48µ4
2

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

+ 48µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2

− 48µ4
2

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2ika
2
kj − 48µ2

3µ2

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij + 48µ2

3µ2

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2kjaikaij.

The first two lines dominate the right-hand side of (5.8) with substantial surplus, which will

be used to deal with the last term of S1 and some terms of S3. Indeed, by µ2
3µ2 ≤ µ4µ

2
2 and

the inequality of arithmetic and geometric means, we have

48µ2
3µ2

∣∣∣∣∣∣∣∣
∑

1≤i,j,k≤n
i ̸=j,i̸=k,j ̸=k

a2kjaikaij

∣∣∣∣∣∣∣∣
≤ 46µ4µ

2
2

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

1

2

(
(akjaik)

2 + (akjaij)
2
)
+

∑
1≤k,j≤n

k ̸=j

(
(µ4a

2
kj)

2 +

(
µ2
2

∑
1≤i≤n
i ̸=j,k

aikaij

)2)

= 46µ2
2µ4

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2ija
2
ik + µ2

4

∑
1≤i<j≤n

a4ij + µ4
2

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

. (5.9)

Since, additionally∣∣∣∣∣∣∣∣µ
4
2

∑
1≤i,j,k≤n

i ̸=j,i̸=k,j ̸=k

a2ika
2
kj + µ2

3µ2

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij

∣∣∣∣∣∣∣∣
≤ σ2

nµ
2
2 max
1≤i≤n

n∑
j=1

a2ij + σ2
n

µ2
3

µ2

1{
a211+···+a2nn>0

} max
1≤i≤n

n∑
j=1

a2ij ≤ σ2
nα

2
n max
1≤i≤n

n∑
j=1

a2ij, (5.10)

we arrive at

dW/K

(
Qn

σn

,N
)

≤ C

σ2
n

(
S1 + 48σ2

nα
2
n max
1≤i≤n

n∑
j=1

a2ij

+46µ4
2

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

+ 47µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2)1/2

≤ C

σ2
n

(
E
[
Q4

n

]
− 3σ4

n + 48σ2
nα

2
n max
1≤i≤n

n∑
j=1

a2ij + 3(σ4
n − S2)

−4S3 − 24µ4
2

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

− 24µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2)1/2

. (5.11)
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Next, in order to bound 3(σ4
n − S2), we calculate

σ4
n =

(
2µ2

2

∑
1≤i,j≤n

i ̸=j

a2ij + µ̃4

n∑
i=1

a2ii

)2

= 4µ4
2

( ∑
1≤i,j≤n

i ̸=j

a2ij

)2

+ µ̃2
4

(
n∑

i=1

a2ii

)2

+ 4µ2
2µ̃4

( ∑
1≤i,j≤n

i ̸=j

a2ij

)(
n∑

i=1

a2ii

)

= 4µ4
2

(
2
∑

1≤i,j≤n
i ̸=j

a4ij +
∑

1≤i1,i2,i3,i4≤n
ik ̸=il if k ̸=l

a2i1i2a
2
i3i4

+ 2
∑

1≤i,j,k≤n
j ̸=k, j,k ̸=i

a2ija
2
ik

)

+ µ̃2
4

(
n∑

i=1

a4ii +
n∑

1≤i,j≤n
i ̸=j

a2iia
2
jj

)
+ 4µ2

2µ̃4

(
2
∑

1≤i,j≤n
i ̸=j

a2iia
2
ij +

∑
1≤i,j,k≤n
j ̸=k, j,k ̸=i

a2iia
2
jk

)
,

hence

3
∣∣σ4

n − S2

∣∣ = 24µ4
2

( ∑
1≤i,j≤n

i ̸=j

a4ij +
∑

1≤i,j,k≤n
j ̸=k, j,k ̸=i

a2ija
2
ik

)
+ 3µ̃2

4

n∑
i=1

a4ii + 24µ2
2µ̃4

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij

≤ max
1≤i≤n

∑
1≤j≤n

a2ij

(
48µ4

2

∑
1≤i,j≤n

i ̸=j

a2ij + 27µ4µ̃41
{
a211+···+a2nn>0

} n∑
i=1

a2ii

)

≤ σ2
n

(
48µ2

2 + 27
µ2
4

µ2
2

1{
a211+···+a2nn>0

}) max
1≤i≤n

∑
1≤j≤n

a2ij. (5.12)

Regarding S3, we have∣∣∣∣∣∣∣∣µ̃
2
4

∑
1≤i,j≤n

i ̸=j

aiiajja
2
ij

∣∣∣∣∣∣∣∣ ≤ µ̃2
4

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij ≤ σ2

n max
1≤i≤n

∑
1≤j≤n

a2ij,

and

8µ3 (µ5 − µ3µ2)
∑

1≤i,j≤n
i ̸=j

aiia
3
ij + 6µ2 (µ̃6 + µ̃4µ2)

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij

= 2E

4 ∑
1≤i,j≤n

i ̸=j

aiia
3
ij

(
X2

i − E
[
X2

i

] )
X3

i X
3
j + 3

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij

(
X2

i − E
[
X2

i

] )2
X2

i X
2
j



= 6E

 ∑
1≤i,j≤n

i ̸=j

(
aii
(
X2

i − E
[
X2

i

] )
+

2

3
aijXiXj

)2

a2ijX
2
i X

2
j

− 8

3
E

 ∑
1≤i,j≤n

i ̸=j

a4ijX
4
i X

4
j
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≥ −8

3
µ2
4

∑
1≤i,j≤n

i ̸=j

a4ij ≥ −4

3
σ2
n

(
µ4

µ2

)2

max
1≤i≤n

∑
1≤j≤n

a2ij.

Furthermore, using the correction terms from (5.11), we get

12µ2
3µ2

∑
1≤i,j,k≤n

i ̸=j,j ̸=k,i̸=k

aiiaija
2
jk + 6µ2

3µ2

n∑
i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2

= 6µ2
3µ2

n∑
i=1

( ∑
1≤k≤n
k ̸=i

a2ik +
∑

1≤j≤n
j ̸=i

ajjaij

)2

− 6µ2
3µ2

n∑
i=1

( ∑
1≤k≤n
k ̸=i

a2ik

)2

≥ −6µ2
3µ2

(
max
1≤i≤n

∑
1≤j≤n

a2ij

)
n∑

i=1

∑
1≤k≤n
k ̸=i

a2ik ≥ −3σ2
n

(
µ4

µ2

)2

max
1≤i≤n

∑
1≤j≤n

a2ij,

as well as

24µ2
2µ̃4

∑
1≤i,j,k≤n

i ̸=j,j ̸=k,i̸=k

aiiaijaikakj + 6µ4
2

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

= 6
∑

1≤i,j≤n
i ̸=j

(
2µ̃4aiiaij + µ2

2

∑
1≤k≤n
k ̸=i,j

aikakj

)2

− 24µ̃2
4

∑
1≤i,j≤n

i ̸=j

a2iia
2
ij

≥ −24µ̃2
4

(
max
1≤i≤n

∑
1≤j≤n

a2ij

) ∑
1≤i,j≤n

i ̸=j

a2ii ≥ −24σ2
nµ4 max

1≤i≤n

∑
1≤j≤n

a2ij.

Hence, we arrive at

S3 + 6µ2
3µ2

n∑
i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2

+ 6µ4
2

∑
1≤i,j≤n

i ̸=j

( ∑
1≤k≤n
k ̸=i,j

aikakj
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≥ −Cσ2
n

(
µ4

µ2

)2

1{
a211+···+a2nn>0

} max
1≤i≤n

∑
1≤j≤n

a2ij

for some C > 0, since S3 vanishes if a11 = · · · = ann = 0. Applying this and (5.12) to (5.11),

we obtain the first inequality from the assertion. To prove the other one, we use (5.8) and

write

dW/K

(
Qn

σn

)
≤ C

σ2
n

µ2
4

∑
1≤i,j≤n

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

+ µ8

n∑
i=1

a4ii + µ8

n∑
i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2


1/2

.
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Next, we bound

∑
1≤i,j≤n

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

=
∑

1≤i,j≤n

( ∑
1≤k≤n

aikakj − aiiaij − aijajj

)2

≤
∑

1≤i,j≤n

2( ∑
1≤k≤n

aikakj

)2

+ 4a2iia
2
ij

 ≤ 2Tr(A4
n) + 4

∑
1≤i≤n

( ∑
1≤k≤n

a2ik

)2

≤ 6Tr(A4
n),

(5.13)

and, by the inequality ab ≤ (a2 + b2)/2,

n∑
i=1

a4ii +
n∑

i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2

=
n∑

i=1

a4ii +
n∑

i=1

∑
1≤j,k≤n

i ̸=j

(aijakk)(aikajj)

≤
n∑

i=1

a4ii +
∑

1≤i,j,k≤n
i ̸=j

(aijakk)
2 ≤ 2

∑
1≤i≤n

( ∑
1≤k≤n

a2ik

)2

≤ 2Tr(A4
n). (5.14)

This ends the proof. □

Proof of proposition 5.3. The proof of Theorem 5.2 shows that the right hand side of

(5.6) is larger than the right hand side of (5.8) up to an absolute multiplicative constant,

hence we have

∣∣E [(Qn/σn)
4
]
− 3
∣∣+ α2

nσ
2
n max
1≤i≤n

∑
1≤j≤n

a2ij ≥ C
µ4
2 ∧ µ̃8

σ4
n

(
n∑
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a4ii +
∑
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( ∑
1≤k≤n
k ̸=i,j

aikakj

)2)
.

Employing the inequalities (a+ b)2 ≤ 2a2 + 2b2 and ab ≤ (a2 + b2)/2, a, b ≥ 0, we get

∑
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( ∑
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aikakj
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=
∑

1≤i,j≤n

( ∑
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≤
∑
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( ∑
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2
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=
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( ∑
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+ 8
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∑
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≤ 5
∑

1≤i,j≤n

( ∑
1≤i,j≤n
k ̸=i,j

aikakj

)2

+ 12
∑

1≤i≤n

a4ii,

which gives the first inequality in the assertion. In order to justify the latter one, we will

show ∣∣E [(Qn/σn)
4
]
− 3
∣∣ ≤ C

(
β2
n

σ4
n

Tr(A4
n) +

α2
n

σ2
n

max
1≤i≤n

∑
1≤j≤n

a2ij

)
, (5.15)

for some C > 0. Following notation from the proof of Theorem 5.2, we have
∣∣E [(Qn/σn)

4]−
3
∣∣ ≤ (|S1|+ 3|S2 − σ4

n|+ 4|S3|) /σ4
n. By (5.9), (5.10), (5.12) and bounding terms from the

first three sums in S3 by a2iia
2
ij + a4ij and the last two sums from S3 by

n∑
i=1

[( ∑
1≤k≤n
k ̸=i

a2ik

)2

+

( ∑
1≤j≤n
j ̸=i

ajjaij

)2]
,

and ∑
1≤i,j≤n

i ̸=j

[
a2iia

2
ij +

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2]
,

respectively, we arrive at∣∣E [(Qn/σn)
4
]
− 3
∣∣

≤ C
β2
n

σ4
n

[
n∑

i=1

a4ii +
∑

1≤i,j≤n

( ∑
1≤k≤n
k ̸=i,j

aikakj

)2

+
n∑

i=1

( ∑
1≤j≤n
i ̸=j

ajjaij

)2]
+ α2

nσ
2
n max
1≤i≤n

∑
1≤j≤n

a2ij,

and (5.15) follows from (5.13) and (5.14). Finally, the last bound in the assertion is a

consequence of

max
1≤i≤n

n∑
j=1

a2ij ≤

√√√√ n∑
i=1

(
n∑

j=1

a2ij

)2

≤
√
Tr(A4

n),

and

Tr(A4
n) ≤

n∑
i,j=1

(
n∑

k=1

a2ik

)(
n∑

k=1

a2kj

)
≤ σ4

n

µ4
2

.
□
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C. Döbler and K. Krokowski. On the fourth moment condition for Rademacher chaos. Ann. Inst. Henri
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(2):577–601, 1997.

N. Privault. Stochastic analysis in discrete and continuous settings: with normal martingales, volume 1982
of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2009.

45



N. Privault and G. Serafin. Stein approximation for functionals of independent random sequences. Electron.
J. Probab., 23:Paper No. 4, 34, 2018.

N. Privault and G. Serafin. Normal approximation for sums of discrete U -statistics - application to Kol-
mogorov bounds in random subgraph counting. Bernoulli, 26(1):587–615, 2020.

N. Privault and G. Serafin. Normal approximation for generalized U-statistics and weighted random graphs.
Stochastics, 94(3):432–458, 2022.

N. Privault and G.L. Torrisi. Probability approximation by Clark-Ocone covariance representation. Electron.
J. Probab., 18:1–25, 2013.

N. Privault and G.L. Torrisi. The Stein and Chen-Stein methods for functionals of non-symmetric Bernoulli
processes. ALEA Lat. Am. J. Probab. Math. Stat., 12:309–356, 2015.
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