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Abstract
We derive normal approximation bounds for generalized U-statistics of the form
Snk(f) = > F(Xsay - Xy, Ya1),602)5 - - Yack—1),6(8))
1<B(1),....B(k)<n

B()#B(F), 1<i#j<k

where {X;}<i<n and {Y;;}1<i<j<n are independent sequences of i.i.d. random vari-
ables. Our approach relies on moment identities and cumulant bounds that are derived
using partition diagram arguments. Normal approximation bounds in the Kolmogorov
distance and moderate deviation results are then obtained by the cumulant method.
Those results are applied to subgraph counting in the binomial random-connection
model, which is a generalization of the Erdés-Rényi model.
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1 Introduction

Second-order U-statistics can be viewed as quadratic random functionals of the form
> VXX (1.1)
1<i#j<n
which are used to model potentials and partition functions in the framework of the Gaussian

Unitary Ensemble in statistical mechanics, where (Y j)1<;zj<n is a possibly random adjacency
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matrix made of independent entries, and (X;)1<i<, is a sequence of independent identically
distributed random variables. Cumulant bounds of (1.1) have been obtained in [KhoO§]
when (Y; j)1<izj<n represents the adjacency matrix of the Erdés-Rényi random graph, and
general approximation results in distribution have been recently obtained in [BDMM24]
when (Y; j)1<izj<n is deterministic. On the other hand, more general pair interactions can

be modeled using U-statistics of the form

> XL X)),

1<i#j<n
while higher-order U-statistics can model nonlinear interactions in non-Gaussian frameworks.

In this paper, we derive normal approximation results and cumulant bounds for general-

ized U-statistics of the form

Sna(f) = > F(Xsy - Xamy Yo @ -5 Yasm, Yo@).6) - - Yate-1),50 )

1<B(1),...,B(k)<n
B()#B(4), 1<iF#j<k

(1.2)
which have been introduced in [JN91] as a powerful tool for studying the normal and non-
normal asymptotic distributions of subgraph counts in inhomogeneous random graphs. Here,
{Xit<i<n and {Y; ; }1<i<j<n are two independent sequences of i.i.d. random elements taking
values respectively in a Borel space S and a measurable space M, and f : S¥ x M*E-1D/2 R

is a measurable function, £ > 2, with Y, ; =Y, if 1 < j < < n.

In Corollary 4.3, we obtain a Kolmogorov distance bound of the form

sup |P (Sp(f) < z) — ®(z)| < CUk) n>4(k—1),

ek nl/(2tak)’

for the normalized generalized U-statistics

_ o Smk(f) - ﬁl(Sn,k(f))
Sni(f) 2 on )

where ® is the cumulative distribution function of the standard normal distribution and

?

C(f,k) > 0 depends only on f and on £ > 2. Our approach relies on moment identi-
ties and cumulant bounds for generalized U-statistics established in Theorems 3.2 and 4.1.
Berry-Esseen bounds for the normal approximation of general functionals of binomial point
processes have been obtained in [LRP17], with application to U-statistics and set approxima-

tion for random tessellations. However, generalized U-statistics of the form (1.2) include an



additional layer of randomness due to the random sequence {Y; ;}1<;<j<n. In Corollary 4.4

we obtain a moderate deviation result for the normalized U-statistics S, x(f).

Starting with Section 5, we apply our normal approximation results for generalized
U-statistics to subgraph counting in the binomial random-connection model. Random-
connection models (RCMs) are random graphs which are based on randomly located vertices
which are independently connected with a location-dependent probability. As a generaliza-
tion of the Erddés-Rényi model, the binomial RCM has gained significant attention and
has been studied under different names, for example as inhomogeneous random graphs, c.f.
[DF14, Penl18, HPC21], and as graphon-based random graphs c.f. [CGR16, Zha22, BCJ23].

Distributional approximations for count statistics on random-connection models whose
vertices are generated according to a Poisson point process, have been investigated in a
number of recent works, including vertices counts [Penl8|, component counts [LNS21], and
subgraph counts [CT22, LP24a]. Recently, Poisson approximation with bounds for subgraph
counts in general random-connection models have been derived in [LLX25], and the cumu-

lant method has been applied to subgraph counting weighted random connection models in
[HHO25].

More formally, let &, = {Xi,...,X,} denote a family of i.i.d. random points with
a common distribution p on § = R? for some n > 2. Given H : R? x R? — [0,1]
a symmetric measurable connection function, the binomial random-connection model with
connection function H is the random graph on the binomial point process &,, = {X3,..., X,,}
constructed by adding edges independently with probability H(X;, X;), to each distinct pair
(X, X;) of vertices, 1 <i# j <n.

When the connection function is taken as H(z,y) = L{ja—y|<r}s %Y € R? for some
r > 0, vertices are connected in a deterministic way, and the binomial RCM becomes a
random geometric graph, or Gilbert graph, c.f. [Pen03]. When H(z,y) = p,, =,y € RY,
the binomial RCM recovers the classical Erdés-Rényi random graph. In this case, subgraph
counting in the binomial RCM is a natural extension of the subgraph counting problem in

the Erdés-Rényi model, see [JLR00, FMN16].

Although the asymptotic behavior of subgraph counts in the binomial RCM was studied
in detail in [JN91, Jan97, BCJ23], convergence rates for the distributional approximation
of subgraph counts have only been recently discussed, see [KR21, Zha22]. In [DST16], the

Poisson approximation of standard (not generalized) U-statistics has been considered in the
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binomial model. More recently, general approximation results for standard second-order
U-statistics have been obtained in [BDMM24]|. However, none of those works, including
[Zha22], consider the case where the probabilities of connecting two vertices tends to zero as

n tends to infinity, as is typical in the Erdos-Rényi model.

In contrast with the centered subgraph counts considered in [KR21], we allow the con-
nection probability of any distinct pair (X;, X;) of vertices in the binomial RCM to be of
the form p,H(X;, X;) where p, € (0,1), 1 < i # j < n. We consider in particular the
case where p, may tend to zero as n tends to infinity, and study the corresponding normal

approximation of subgraph counts.

In Theorem 5.2 we derive upper bounds on the cumulants of subgraph counts in the
binomial random-connection model. Note that related cumulant bounds have been obtained
in the Erdds-Rényi model in [KhoO8] for the counts of line and cycle graphs, and in [FMN16]
for general subgraph counts. In comparison with the Poisson random-connection model
considered in [LP24a, 1.P24b], cumulants admit no simplified expression using sums over
connected non-flat partitions in the binomial random-connection model. For this reason,

cumulant bounds have to be derived using specific arguments.

Then, by combining Theorem 5.2 with variance lower bounds obtained in Proposition 6.1,
in Theorem 7.5 we obtain cumulant growth rates for the counts of strongly balanced con-
nected graphs. Our proof relies on dependency graph methods and the convex analysis of
planar diagrams, which were introduced in [LR92] to study the behaviour of the variance of

subgraph counts in the Erdds-Rényi model.

Cumulant growth rates for the normalized counts of strongly balanced connected graphs
are then obtained in Corollary 7.8 under Assumption 4.1 in the case where p, = o(1), using
the variance lower bound for subgraph counts established in Proposition 7.7. Note however
that Assumption 4.1 is valid in the binomial RCM, and is not satisfied in the Erdés-Rényi

model.

Using the cumulant method and the Statulevicius condition, see Appendix A, Kolmogorov

distance rates of the form

C
- L/ 2+40(G))
sup |P(Ng < z) — ®(2)| < C

when n—(v(G)—l)/e(G) < P,

. (@)~ 1)/e(C)
= (n(@ D) BTG when p, <n !

n
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n > 4(v(G) — 1), are obtained in Corollary 7.9 for the normalized subgraph count
Voo Ng — k1(Neg)
k2 (Ne)
of a strongly balanced connected graph G with v(G) vertices. This extends the results of
[PS18] and [ER23] for the approximation of subgraph counts from the Erdds-Rényi model to
the binomial RCM. Although the convergence rates in the Kolmogorov distance obtained in
do not match the optimal rate obtained in [Zha22], they allow us to consider the case where
pn = o(1). In Corollary 7.11, we investigate the threshold phenomenon for the containment

of subgraphs in the binomial RCM.

In Corollary 7.10 we obtain moderate deviation results for the normalized subgraph
count N, see also [DE09, Theorem 1.1], [DE13, Theorem 2.3], [FMN16, Theorem 10.0.2],
[AcdOG25, Theorem 1.5] for moderate deviation results in the Erdés-Rényi model. In Corol-
lary 7.11, we investigate the threshold phenomenon for the containment of subgraphs in the

binomial RCM.

The paper is organized as follows. In Section 2 we recall some notation and definitions
related to set partitions and diagrams. In Section 3 we derive moment identities for gener-
alized U-statistics. Section 4 gives cumulant bounds for generalized U-statistics and further
obtains normal approximation results via the cumulant method. In Section 5, we obtain cu-
mulant bounds for subgraph counts in the binomial random-connection model, which allows
the connection probability between pairs of vertices to be significantly small. In Section 6,
we derive lower bounds on the variance of subgraph counts in the binomial RCM. This is
crucial for proving the results in Section 7. In Section 7 we obtain normal approximation for
subgraph counts in the binomial RCM through a refined analysis on the cumulant growth
rates and a threshold phenomenon for subgraph containment. In the Appendix A, we provide

a brief review of the Statulevicius condition and its application to the cumulant method.

2 Set partitions and diagrams

In what follows, we let [n] := {1,2,...,n} for n > 1, and let II(b) denote the collection of
set partitions of any finite set b. Given two set partitions py, ps € I1(b), we say that p; is
coarser than py (i.e. py is finer than p;), and we write py < py, if and only if each block of
po is contained in a block of p;. We use p; V py for the finest partition which is coarser than

both p; and ps, and denote by p; A py the coarsest partition which is finer than both of p;
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and po. We also let 1:= {b} denote the single-block coarsest partition of b, whereas 0 stands
for the partition made of singletons. Given k > 2 and j > 1, we let m := {m, ..., 7;} denote

the partition of [j] x [k] defined as
mio={00,0):1<l<k}, i=1,...,].

For j,k > 1 we also let m, := (7;)ie, € lI(n x [k]) denote the partition made of |n| blocks
of size k. A partition p € II([j] x [k]) is said to be non-flat if p A 7w = 0, see Chapter 4 of
[PT11] and Figure 1.

fig] [

1 2 3 4

(a) Non-flat partition. (b) Flat partition.

Figure 1: Examples of partition diagrams with n = 3 and r = 4.

A partition p € II([j] x [k]) is said to be connected if p\V 7 =1, see Figure 2.

3 e 3 e o
: g
5 I 5 I ————
1 2 3 4 1 2 3 4
(a) Connected partition. (b) Non-connected partition.

Figure 2: Examples of partition diagrams with n =5 and r = 4.

We also let II;([j] x [k]) denote the collection of all connected partitions of [j] x [k], and
denote by

CNF(j, k) == {p: p € I([j] x [k]), p A7 =0}
the set of all connected and non-flat partitions of [j] x [k], for j, k > 1. Let [n]’;é denote the

collection of distinct k-fold indexes
s == {8 = (B(1),..., B(k)) € )" : BG) £ B(G) for 1< i £ <k}, k=1
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The role of the partition M(«a) introduced in Definition 2.1 is to group each set of identical
entries in a family of k-tuples into a partition block. Later on, it will be used to identify the
common random variables appearing in repeated copies of (X7, ..., X,,) for the computation

of joint cumulants.

Definition 2.1 Given a sequence

a=| =] ¢ i lehlhxxhl
a; a;(1) - a(k)
we let M(«) denote the partition of [j] x [k] such that each block of M(«) is made of elements
(1,0) that correspond to a same value of o;({).

Next is an example of a sequence a € [n]% x - x [n]% and of the partition M(a) of [5] x [k]

it generates.

Example 2.2 Tokingn =30, j =5, k=4, and

o 26 15 25 23
Qo 19 23 17 5
a=|a3 | =124 18 12 20 |,
oy 15 17 7 2
Qs 2 26 27 30

the partition M(a) of [5] x [4] is given in Figure 3 by

N(e) = {{(1,1), (5,2},{(1,2), 4, D}, {(1,3)},{(1,4), (2,2)}, {(2, D}, {(2,3), (4,2)},
{291 DIAG2FAG 3G, 491 {(4,3)}{(4.4), 5. D)} {(5,3)} {(5,4)} }-

1) ® ® ®) !
2(19 @) @) ® 2
JDICICID) 3
1 OIGI0O) '
0000 5

(a) a=[ag,...,as]". (b) Partition M(a).

Figure 3: Example for the mapping M with 7 =5 and k& = 4.



We let v(G) := |Vi| and e(G) := |Eg| be the number of vertices and the number of edges of
any graph G = (Vg, E¢) with vertex set Vi and edge set Fg. A subgraph of G is a graph
H = (Vy, Ey) such that Vg C Vg and Ey C Eg, and H is an induced subgraph of G, if
Epy consists of all edges of G having both endpoints in V. Two graphs G = (V, Fg) and
H = (Vyg, Eg) are isomorphic if there is a bijection T : Viz — Vi such that {u,v} € Eg if
and only if {T'(u),T'(v)} € Eg for any u # v € Vg, in which case we write H = T(G). The
permutations « of Vi such that o(G) = G form a group called the automorphism group,

and we let a(G) denote the cardinality of this group.

Definition 2.3 Consider Gy,...,G; copies of a connected graph G with v(G) = k > 2
vertices, respectively built on m,...,m;, 5 > 1, and let p € II([j] x [k]) be a partition of
[j] x [K].

1. We let pg denote the contraction multigraph of the graph G®7 constructed on the blocks
of p by adding an edge between two blocks py, ps of the partition p whenever there exist
(1,01) € p1 and (i,13) € pe such that (I1,1s) is an edge in G;.

2. We let pg be the graph constructed on the blocks of p by removing redundant edges in pg,

so that at most one edge remains between any two blocks p1, pa € p.
Example 2.4 Consider p € I1([3] x [3]) of the form

p={11),2, 1} {(1,2),3,2)}{(1,3),(3,3)}.{(2.3)},{(2,2). 3. 1)} }

= {plv P2, P35 P4, 105}7

and let G be a triangle on the vertex set Vg = [3]. Figure j presents the multigraph pe and
corresponding graph pg, where p € I1([3] x [3]) is non-flat and connected.

P2

P1 P3

(371.) (3’2) (373) P5 P4

(a) Multigraph pg before merging edges and vertices.  (b) Graph pg after merging edges and vertices.

Figure 4: Example of graph pg with 7 =3 and k£ = 3.
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The contraction multigraph pg constructed in Definition 2.3 is also denoted by G®7 in
[FMN16, Page 104], where G®7 stands for the graph made of j components isomorphic to G.
We will use the following standard notation for the asymptotic behavior of the relative

order of magnitude of two functions f(n) and g(n) > 0 as n tends to infinity. We write
e f(n) 2 g(n)if liminf, . f(n)/g(n) >0,
o f(n) < g(n), or g(n) > f(n),if f(n) >0, g(n) >0, and lim, o f(n)/g(n) = 0.

We close this section by recalling the following lemma, see Lemma 2.8 in [L.LP24a] or Propo-

sition 6.1 in [ST24].

Lemma 2.5 a) The cardinality of the set CNF(j,k) of connected non-flat partitions of
[7] x [k] satisfies
[ONF(j, k)| < ¥RV~ Gk > 1

b) The cardinality of the set M(j,k) of mazimal connected non-flat partitions of [j] x [k]

satisfies
j—1

MG R =[O+ (k=1)i),  jk>1,
i=1
with the bounds

(k= DkY G = DS IMGR) < (k= DEYL 5> 1 k>2

3 Moments of generalized U-statistics

In this section, we prove a moment identity for generalized U-statistics, see [JN91]| and
[Jan97, Chapter 11], by combining multiple integrals with set partitions. Let M and S be

respectively a measurable space and a Borel space.

Definition 3.1 Given f : S* x ME=DE/2 4R g bounded measurable function, k > 2, Y =
{Y; ; hi<icj<n a sequence of independent M-valued random variables with common probability
distribution Q, and X = {X; }1<i<n a sequence of independent S-valued random variables with

continuous distribution p, we let S, ;(f) denote the generalized U-statistics defined as

Suk(F) =D F(Xa - Koy Yoys@) - Yo.a00: Ya@8): - Yak-1.60), (3.1)

B€E[n ’;:

where Y; ; =Y if j > 4.



Note that the function f is not required to be symmetric as in [JN91] or [Zha22]. For any
B=(BQ),...,5(k) € [n]%, we also let

(X5, Ys) = f( Xy, - Xawy Ya),2) - - - Ya—1),60))

for shortness of notation. Letting pg, denote the contraction graph of the complete graph
K}, on k vertices, see Definition 2.3, for any set partition p = {b1,...,b,} € I([j] x [k]) we

consider the function

J
<® f) : S|P‘ X Me(PKk) SR
=1 p

defined as
j j '
<® f) qu}lgvg\p\v {y(u,v)}(u,v)eEpKk) = H f<x§z)’ .- $S)7 yy)% e 7y](glzl’k>7
=1/, i=1

where xéi) = ux, if (,¢) € b, for 1 < v < |p|, and g, = Y,s) if (4,u) € by and (i,v) € by,
s,t =1,...,]b|. In Theorem 3.2 we provide a moment identity for the generalized U-statistics

Sk (f) using the partition diagram language of Definition 2.3.

Theorem 3.2 Let f : S¥ x MEDk2 5 R be a bounded measurable function with k > 2.

For any j,n > 1, we have

E[(Sur(HY]= D (H_L'W /S e (@f) (x, y) P (dx) Q1) (dy).

pEII([j]x[k])
PAT= 0

Proof. From the definition of M(«), we have

11X Ya»]

=1

E [(S.x(f))] = > E

a1€[n]§£ ..... oz,]-G['rL]’;E

-y ¥ =

Hf(Xa“YaJ]

pEIl([j]X[K]) ar€Mmlky,..azemlt  Li=1
pAT=0 M(a)=p
= 2 Jovone <®f> % Y (d) Q0 (dy)
e(p
peTI([j]x Dalem ..... et T SMUT G2
pAT=0 T\(a):p
= > Gilp / ctorc,) <®f> x, y) P (dx)QPre) (dy),
pETI([j]x k) SIPDAMETERT N i

pAT=0
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where
n!

Cn(p) =7y PE H([]] X [kba
(n —p])!
denotes the count of the a = [ay,...,a;]" € [n]% x -+ x [n]% such that M(a) = p, j, k > 1,
with p non-flat. 0
In particular, since 0 € II([1] x [k]) is the only non-flat partition of [1] x [k], we have

E[Sux(f)] = (ni—'k), /S - Rics y) & (dx) QD2 (dy). (3.2)

Moments of standard U-statistics

Given j > 1 and f® : (R))* - R, i=1,...,j, measurable functions, we let
j . j .
<® f(z)> (.Tl’l, Ce 71’1,k7 C.e 7$j71, ce ;xj,k) = H f(l)(l’i’l, Ce ,.’17@].6),
i=1 i=1

and for p € TI([j] x [k]) we denote by

(r) -

the function obtained by equating any two variables whose indexes belong to a same block
of p. In Corollary 3.3, as a consequence of Theorem 3.2, we obtain a moment identity for

standard U-statistics of order k > 1, of the form

= Y F(Xey - Xa)-
pelnlk
Corollary 3.3 Let f : (RY)* — R, k > 1, be a bounded, not necessarily symmetric, mea-

surable function. For any j,n > 1, we have

E[(S.(HY] = > W /( <®f) (21, s wp)(da) - plday).

PEII([5]% [K]) i=1
p/\7r:0
Proof. Since the sequence (Xj,...,X,) is i.i.d., we have

E [(Sa(f))'] = > E

J
H f(Xays - - 7Xai(k:))]

ale[n}i ..... aje[n]’; i=1
= Z Cn ,0 / <®f) xl""’x|P|)M(d‘T1)"'N<d$|p|)-
PETI([5] % [k]) RO\ =1
PAT= 0
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Remark 3.4 For the V -statistics

= F(Xsy- - X))

Be[n]k

with possible repeated indices, for j,n > 1, we have the similar moment identity

/]Rd o] <® f) L1 ’I|ﬂ|)ﬂ(d$1) ce ,u(dx|p|). (3.3)

The proof of (3.3) is almost the same, except for the removal of the non-flat restriction, i.e.

E[(Var(£)]= > (—

peTI([7] < [K]) z

J

H f(Xoci(l)7 s 7X04i(k))]

B Z (—/]Rd ol <® f) (@1, mp) () - - pldy).

peTI([]x [k]) ]!

E[(Vix(H)Y]= > E

4 Cumulant bounds for generalized U-statistics

To study the asymptotic behaviour of U-statistics and generalized U-statistics, a common
practice is to use Hoeffding decompositions [Hoe61], [DM83]. Through the orthogonal decom-
position, one finds the asymptotic distribution of U-statistics is determined by the “smallest”
component appearing in its decomposition, see [JN91, Lemma 2| and also [Jan97, The-
orem 11.3]. In what follows, we consider the case where the asymptotic distribution of
Sni(f) is normal. Assumption 4.1 will be needed for the derivation of cumulant estimates

for the generalized U-statistics S, x(f) in Theorem 4.1.

Assumption 4.1 Let f : S¥* x M*—DE/2 4 R be a bounded measurable function with k > 2.

We assume that

Var

Zf(é)()ﬁ)] > 0. (4.1)

where

faoy(z) = / F ) {day - daogdwgyy - dog JQETDR2{dy )
Sk—1y AM(k—1)k/2

fori=1,... k, and x = (1,...,Ti—1, %, Tit1,...,Tk).

Assumption 4.1 amounts to saying that the principal degree of f equals 1, see [JN91]. In
most of the existing literature, including [JN91], [KR21], [Zha22], the asymptotic normality
of generalized U-statistics relies on orthogonal decomposition on certain L, spaces. However,

in practice the orthogonal decomposition of count statistics can be intractable in general.
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Theorem 4.1 Let f : S* x ME=DF2 4 R be a measurable function, with k > 2. Then, for
n > 1 the j-th cumulant of the generalized U-statistics S, i (f) satisfies the bound

|15 (S ()] < DI A GO R, > 1 (4.2)

In addition, if the function f satisfies Assumption 4.1, then we have

Cn!
K2 (S (f)) > (n—2k+ 1)

where C(f, k) >0 and N(f,k) > 1 depend only on f and on k > 2.

n > N(f k), (4.3)

Proof.  From Property C in [MM91, Page 29], we know that if @ = [ay,...,qa;]" €
[n]h x -+ x [n]% is disconnected, i.e. if there exists a partition {A, B} of [j] such that
{0} aneaxm N {ai(O} oexm =0,

then the joint cumulant x(f(Xa,, Ya,), .-, f(Xa;, Ya,)) vanishes. Hence, we have

I{j(sn,k(f)) = Z '%(f(XquYoq)’"-af(onijaj))

= Z '%(f(XOcUYoq)v"'7f(X04j’Yaj))

a1€[n]l; ..... aje[n]’;
connected

= S (f(Kan Yo, F(Xe,, Yo, (4.4)

PECNF (k) a=[a1,....0;]T €(fn]%)?

M(e)=p
By the cumulant-moment relation (A.1) we have, for any [ay, ..., a;]" € [n]5 x -+ x [n]%,
!
6 (f(Xays Yar ), o0 [(Xa,, Ya,))| < > (=] |E Hf(xae,yw)] ‘
o={b1,..., b }eII([5]) =1 Leb;
< Yoo =Dl
o={b1,....br }II([j])
J
= [If I (= 1)1SG.0)
=1
TRy gy,
S 0o - . ja
j= (G-
= I fIl25"~, (4.5)

where S(j,1) is the Stirling number of the second kind. Therefore, from (4.4) we obtain

| . .
RSk <Y

_ |
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1+(k—1)j

n! .
= Y ot o M
r=k " peCNF(4,k)
lol=r

< ! TEIY FI2,7HONE (7, K),

which yields (4.2) from Lemma 2.5-(a). Letting j = 2 in (4.4), we have

KQ(Sn,k(f» = Z Z K(f(XCYl?Yal)? f(Xa27Yaz))

pECNF(2,k) a:[al,az]TG([n]i)Q

M(a)=p
= Z Z COV(f(Xoﬂ ) Yoq)? f(Xam Ya2))
pECNF (2,k) a=[a1,a2] T €([n])?
M(a)=p
=R+ ) S Cov(f(Xay. Yar) f(Xas, Yao),  (4.6)
pEONF (2,k) a=[a1,a2] T €([n]%)?
lp|=2k—1 MN(a)=p
where
R = Z Z COV(f(X-a17Ya1)7f(Xa27YCV2>>‘
PECNF(2,k) a=[a1,a2] " €([n]k)?
|p|<2k—2 M(a)=p
Because {Xi,...,X,} and {Y;,}1<i<j<n are both ii.d. random elements, we have, for any

a = [a, )" € ([n]%)?, B = [B1, B " € ([n]%)?
Cov(f(Xay, Yau ), f(Xays Ya,)) = Cov(f(Xg,, Ya,), f(Xp,, Y5,)),
if M(a) = N(B). Let o € CNF(2,k) with |o| = 2k — 1 and {(1,s), (2,t)} €0, 1 < s £t < k.
Taking o = [ay, 5] € ([n]5)2 such that M(a) = o we have a;(s) = as(t), hence
Cov(f(Xar, Yai), f(Xass Yay))
=E[f(Xa, Yau) [ (Xaz, Ya,)] = E[f(Xay, Yo, )] = E[f(Xay, Yas)]

[E Xal,Yal )f(Xass Yo )Xo ] = E [E[f (Xar, Yau )| Xays)]] B [E[f (Xas, Ya,) | Xa
E [ fis)( fiy(Xas)] = E [f5)(Xar)] E [ty (Xaw )]
E [f5)(X1) fio (X1)] = E [fioy(X0)] E [ f(X1)]

= COV(f(s)(Xl% f(t)(Xl))

Therefore, the second term in (4.6) becomes

> S Cov(f(Xay Ya), F(Xay Yau)
peCNF(2,k) a=[a1,ozz]T€([n}’;)2
lp|=2k—1 N(a)=p

14

2(t)H



:Z Z Tp

PECNF(2,k) a=la1,a2] T €([n]%)?

lp|=2k—1 M(e)=p
> =
= —_—r
_ [
SN o) (n—2k+1)!
lo|=2k—1
n!
~(n— DI
(n—2k+1)! pECNF(2,k)
lp|=2k—1
- (n_2k+ Z Cov(f, ), fiy (X1))
1<s A<k

_(n—2k+1

Z 0 (X1) ] : (4.7)

On the other hand, from (4.5), we have

’R‘ < Z Z ’COV(f(XCKl?YOél)?f(XOlQ?YaQ))’
PECNF (2k) a=[o 2] T €([n]%)?
lp|<2k—2 M(a)=p

n! 9
< > TRk

pECNF(2,k)
|p|<2k—2

< 2| f|I3n*2|CNF (2, k)]
< 2| fIIAn*F 22k k! (4.8)

Finally, we bound Var[S, x(f)] from below using (4.6), (4.7) and (4.8), as

Hz(Sn,k(f)) = E E COV(f(Xal,Ym), f(Xa27Ya2)) + R
pECNF(2,k) a=[a1,a2]T€([n]l;)2
|p|:2k_1 ﬂ(a):p
n!
>—V E (X1)| —2 2 n2k=29k L
e T A PR 1] e

. i
B n! 2| fI|2 n?F—22F k!
" (n—2k+1)! <Var ;f“)(Xl) nl/(n— 2k +1)!
- -
n! 2| fl|2 n? 22 k!
> _
= (n—2k+ 1) (Var 2 Jio () (n/22-1 "

which yields (4.3) by choosing




for
2| F112 k!

n k)= |
> N(f,k) Var[ Y7, fiy(X1)]

As a consequence of Theorem 4.1, we have the following result.

Corollary 4.2 Let f : 8¥ x M* D2 4 R be a measurable function with k > 2, such that
f satisfies Assumption 4.1. Then, for n > 4(k — 1), the j-th cumulant of the normalized

U-statistics Si(f) = K1(Sur(f))
gn _ n.k — R1(On,k
#(f) K2 (S f)

satisfies the bound

. (3!
Rj Sn,k f S ~ i/9—-1"
(Sni(F) BB

j >3, where é(f, k) > 0 depends only on f and on k > 2.

Proof. Combining the inequalities

n! 2%k—1 __ 2k — 2\ %! 2k—1 n\ 21
- — > = .
(n—2k+1)! = z(n-2k+2) (1 n " _<2> ’ (4.9)
n > 4(k —1), and
i U= s 4.10
j Jo © < izl (4.10)
with the bounds (4.2) and (4.3) for j > 3, we have
moy _ Ki (Sak(f))
K (Snie) = Ko (Sn k()72
) s
< Hr
S (nlC(f,k)/(n — 2k + D)7
e it (k=1)j
< I G R (RN T .
< I G (k) o
n(-2)/2 C(f7 kj)]/Q
G (kD)
< Hf”oo (j 2 /2 C(f, k')J/Q
1 k+1
<__Uh -
(nC(f,k))’
where 5(f, k) > 0 depends only on f and on k > 2. O
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From Corollary 4.2, we check that the cumulants of the normalized U-statistics S, , satisfy

the Statulevicius growth condition (A.2) with v := k and
~ 1/2
A, = (TLC(f, k)) / )

where 6’( f,k) > 0 depends only on f and on k > 2. Therefore, from Proposition A.1-i) we

have the following results.

Corollary 4.3 (Kolmogorov bound). Let f : S* x M*=VE/2 5 R be a measurable function
satisfying Assumption 4.1, with k > 2. Forn > 4(k — 1), we have

_ C(f, k
up B (S,alf) < ) — 0(a)] < 2L

rz€eR

where C(f, k) > 0 depends only on f and on k > 2.
By Corollary 4.2 and Proposition A.1-ii), we also have the following result.

Corollary 4.4 (Moderate deviation principle). Let f : S¥ x M*=DF2 5 R be a measurable
function satisfying Assumption 4.1, with k > 2. Let (a,),>1 be a sequence of real numbers

tending to infinity, and such that a, < n"/?+4%)  Then, (a;lgn,k(f)) satisfies a moderate

n>1

deviation principle with speed a? and rate function x*/2.

5 Upper bounds on subgraph count cumulants

From this section, we focus on the subgraph count in the binomial RCM Gg(X,). Let
X, = {X1,...,X,,} be a set of i.i.d. random points on the carrier space S = R? with a
common continuous distribution . A symmetric measurable function H : R x RY — [0, 1] is
called a connection function. We consider the binomial random-connection model generated
as follows: given &, we connect each pair of points/nodes X;, X; € X,, 1 < i # j < n,
independently with probability p,H(X;, X;), 0 < p, < 1. The resulting random graph is
denoted by Gy (X,,).

Given G = (Vg, Eg) a connected graph with v(G) = k > 2 vertices, let

._ k
Ip = H X~ B €Nl
(l,j)EEG

where X, ~ X indicates there is an edge between X, and X, i.e. Iy = 1 if and only if the
graph with vertices Xgn), ..., Xgu) in the binomial RCM G g(A,) is isomorphic to G.

17



We let X
NG = m Z ]ﬁ (51)

Beln]Y,
denote the number of injective subgraphs of Gy (&) isomorphic to G, where X; ~ X;
indicates that there is an edge between X; and X;.

In order to incorporate with generalized U-statistics in Section 3, we can also write the

subgraph count Ng as

Na=Sui(£) = D F(Xs)- - Xow) Yays0 - Yo, Ya@.56) - Yae-1),60)
selnlk

with f: (R?)* x [0, 1]*~D#/2 5 R given by

1
fly, oy, Y1) k) ::m H Ly, <pnH(z02)}> (5.2)
(lvj)eEG

where {Y; ;}1<icj<n are 1.i.d. uniform random variables on M = [0, 1].

Next, using dependency graphs and the convex analysis of planar diagrams, we consider
the cumulant growth of the subgraph count Ng when p, = o(1). Before we proceed, we need
to introduce some notation. Since the random variables X7, ..., X,, are i.i.d. and edges are

added independently according to
Lix,oxy = Yy y<pnH(x0 X)) 1 <1< <n,
the sets of random vectors
{(Ioy, .- Ioy) : ([an, ..., 5] ") = p}

are identically distributed and have the same dependency structure for every p € TI([j] x [k]),
which justifies the following definition.

Definition 5.1 Let j,k > 1. Given p € II([j] x [k]), we let
k(L) == k(lay, - 1La,),
for any element [av, ..., a;]" of [n]% x - x [n]% such that N(a) = p.

As a consequence of (3.2), we have

nl pz(G)
4 (No) = s /(Rd)k( T # oty - udz), (53)

Z,])EEG

18



while the growth of higher order cumulants can be controlled as follows. See Example 6.19
in [JLROO] and Proposition 10.1.2 and § 10.3.3 of [FMN16] for related cumulant bounds in
the Erdds-Rényi model.

Theorem 5.2 Let G = (Vg, Eg) be a connected graph with v(G) = k > 2 vertices. We have
the cumulant bound

jj” 1+(k—1)j '
oy 2 Gk, 2, (5.4)

r=

|1 (Ng)| <

e

where C(j, k,r) represents the collection of all partitions p on [j] X [k] connected, non-flat

and having precisely r blocks, and

d(j, k,r) :=min {e(pc) : p € CNF(j, k), |p| =71}. (5.5)
Proof. The random variables
Ig, = H LX)~ X5, pp a0d g, 1= H Uy Xayp)r Po B2 € ]2,
(na)€Ec (na)€Ec
are independent if
{B1(i) - i € [k]} N {Ba(i) i € [k]} = 0.
Hence, by Property C in [MM91, Page 29] we have

1
mj<NG):a(G)j > ey 1ay)

- a(é)j Z K’(qua . ,[aj)

- G(G)J Z H(I(X17"'7L)¢j), ] Z 27

where

% % -+ x [n]% connected}

={a=lor,...,05]" € n]l x -+ x [n]& : MI(a) € CNF(j,k)} .

1
k;j(Ng) = e > > K(Lngs -+ Loy

PECNF(4.k) [a1,...,a] T €A(n k)
N(fets-a5] T )=p
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~@ 2 Gl
1

pECNF(j,)
n!
=— Y  ——k(,)
_ | P
T
= , ' I 5.6
a(G)? Z (n—r)! Z Fllp), (56)
r=k pECNF(j,k)
lol=r
hence
T L
(Ng)| < , ——|C(j, k L)l 5.7
|"£]( G)l = CL(G)J ; (n_r)'l (]; 7T>|p€rcl%%?€{,r)’m( P)| ( )
Due to the cumulant-moment relation (A.1), we have, for each o = [y, ..., ;] € Aj(n, k),

Loy, Tay) = Y > (=1)* (s — 1)IE

s>1 o={by,...,bs }II([5])

+) > ()T (s - E

s>2 o':{b1 ..... bS}EH([jD

I,
i€bs
11 [ai] .
i€bg

H Iai] X oo x E
Moreover, denoting by M(«)g the connected graph built on M(«) € TI([j] x [k]) in Defini-

Hlai] X oo xE

i€by

=K

J
1.

i=1

i€by

tion 2.3, we have

j j
H]ai] =k H H L{X e, ~ Xy}

i=1 i=1 \ (L)) €B(G)

E

= pz(m(a)c) / dy|m H H(xu l’e),u(d%l) T /L(d$|r|(a)|)
®RHD yeEM(@)e)

< pz(”(a)c)’

where the last inequality is due to the facts that 0 < H <1 and g is a probability measure
on R%. For each p € II([j] x [k]) and b C [j], we denote pp := pjir, : icpy the partition of

U;ep; obtained restricting p on U;epm;, i.e.

pp =1{anN (Vi) : a € p}.

Therefore, for any o = {by,...,b.} € II([j]) with r > 2 we have, letting p := M(a),

I [T | =TT I TT tovn
= €b;

=1 Leb; \ (1,9)€E(G)
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_ﬁ e((pbim)/
= Dn
i=1 (

Rd)|p\bi

Il  H@ zopde) - p(dzy,, )
(OEE((pp;)a)

< p%:;ﬂ e((ppp;)c)
< pr(PG)

e(N(@)g)

:pn

Next, we have

IN

J
max |k(I d(zk.r) s — 1)!
max (L) < ST Y (-

s=1 o={b1,...,bs }II([§])

J
= PR (s = 1IS(s)
s=1

pd(j,k,r) J

< P STG).80,s)
J s=1
S pd(j,k,r)jjflj

where S(7,7) is the Stirling number of the second kind. Therefore, together with (5.7), we

obtain
1 1+(k—1)j n' ' '
ko)l < Sy 2 G gl CU R
< §i-1 H(i_:l)j‘c(' . - d)
< a0 = gy k)" p
which proves (5.4). O

6 Variance lower bounds for subgraph counts

To prove Theorem 7.5, we shall derive a variance lower bound for the subgraph count Ng
in the binomial RCM. For this purpose, we need to introduce some notation. Recall f from

(5.2), we further denote, for 1 < ¢ < k,

1
Jole) = Tk Il toocpnxn|Xe=2
(Zvj)EEG

-/ Flx ¥
(Rd)k—l X [0,1](k—1)k/2

®(k_1)(dl‘1, o ,dxz—h dl‘g+1, - ,dxk)dy
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z(G)

_P / H H(z,,z)p®* D (day, ... deey,daesy, ..., dag),  (6.1)
a(G) (R4)k—1 (1.0)E B(G)

where x = (z1,. .., %0 1,2, Tps1, .-, Tk)-

Proposition 6.1 Suppose that the function f in (5.2) satisfies Assumption 4.1. Then, we

have the following variance lower bound for subgraph counts:

C n! n!
Var[Nol 2~ ((n Pt ) : (6.2)

where C' > 0 is a constant independent of n > 2k — 1.

Proof. We reuse the notation

o k
Ig = H Lixgn~Xap B €Nl
(lzj)EEG
Because the indicator random variable Ig, 8 € [n]’;, indicates that there is a copy of G on

{Xg(l), . ,Xﬁ(k)}, it is easy to see that for any aq, ay € [n]’;,é we have
E[Ial ’ Lo, = 1] = E[[m]v

hence

Cov(la; Lay) >0, ap, a2 € [n]%.

This further implies x(I,) > 0 for any p € CNF(2,k). For any p € CNF(2,k) with |p| =
2k — 1, there is only one block containing exactly two elements in p and the rest 2k — 2
blocks containing exactly one element. Without loss of generality, we assume p € CNF(2, k)
with |p| =2k — 1 and {(1,1),(2,t)} € p for some ¢ € [k]. Then, we have

2

k(I,) = E IT txexy IT toexy || = (B T texex

(1.9)€EG (1.0)€EG (1,9)€EG

= a(G)*(E[fu)(X1) iy (X1)] = E[fry (X1)]),

where {X7,..., X, } are i.i.d. copies of X ~ p, independent of {X1,..., X;}, with X] being
replaced by X;. From Assumption 4.1, we have

Y. w(I,) = a(G)|E <Zf(i)(X1)) — FE[fo) (X))

peCNF(2,k)
|p|=2k—1

22



= a(G)*Var

k
Z f(i)(Xl)] > 0.

On the other hand, combining the above with (6.1), we find that

> k() =a(G)*Var Zf(w(Xl)]

pECNF(2,k)
lo|=2k—1
k
= p2@Var Z T / H H(z,,z)p®* D (day, ... de; g, degy, ..., dag)
i=1  JE®Yen@)
= Cup ), (6.3)
where
Cy:=Cy(p, H)
k
= Var Z fa) / H H(x,, xj),u@’(k_l)(dxl, cooydrog,dagg, . dag) | >0
=1 TE® en@)
is a constant independent of n > 1 and x = (x1,..., 201, X1, Tos1, - -, Tk)-

Taking j = 2 in (5.6), together with (6.3), we obtain the following lower bound for the

variance of subgraph counts:

2k—1
1 n!
Var[Ng] = a(G)? Z (n—r)! Z r(L,)
r=k pECNF(2,k)
|pl=r
> 1 LN | S SN < S
< 2 Y P _ u Flte
a(G) (n —k)! pECNF(2,k) (n -2k +1)! pECNF(2,k)
lol=k |p|=2k—1
> 1 m)+ i > k(L)
k(1) + ———— K
- 2 - | 4 . | 14 )
a(G)? | (n—k)! (n—2k+1)! eCNT )
lo|=2k—1

where p is the partition p = {{(1,1),(2,1)},...,{(1,k),(2,k)}} of [2] x [k] Next, for any
B=[51,0]" € ([n]’;f such that M(3) = p, we have

k(1) = Var[I5] = 0pr (1 — 0pl,) = 0p2D (1 — OplD))

n

where

::/ H H(z,,z,)p®*(day, ..., dzy),
®Y* ( )eB@G)
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hence

Ngl > 0D (1 — (@ e 2e(G)
Var[Ng] > L ((n—k:)! e ( jn )+(n—2k+1)!clpn
Cg n' 2¢(G) n' (@)
> € €
= WG ((n—2k+1)!p” T )
with Cy := min (C, 6(1 — pi9)). O

7 Growth rates of subgraph count cumulants

The general cumulant upper bound of the subgraph count Ng established in Theorem 5.2
does not yield an explicit asymptotic growth order. In this section, we perform a more
detailed analysis of cumulant growth rates by identifying the leading terms of the form

n’ ﬁ(j’k’r) in(b4),r==%k, ... . 1+(k—1)7, whered(4, k,r) is defined in (5.5), with in particular
p ) ) ) j? .]7 ) ) p
dk = 6(G)7 d1+(k71)j = je(G) (71)

To this end, we start by deriving cumulant growth rates via the convex analysis of planar
diagrams used in [LP24b] in the random-connection model and introduced in [JLRO00] for

the Erd6s-Rényi model. Firstly, we adopt some notation from [LP24b].

Definition 7.1 Let G be a connected graph with k > 2 vertices. For j > 1, we let

) 5,(€) = {((pe) ¥(pe)) = (jk — vpc), e(G) — elpe)) : p € CNF(j, k)
where for each p € TI([j] X [k]), pa is the graph associated to p by Definition 2.3;

ii) and we let ij(G) denote the upper boundary of the convex hull of ¥;(G).

Remark 7.2 According to (7.1), we can see that two endpoints of the upper boundary of the
convez hull of ¥;(G) have coordinates (j — 1,0) and ((j — 1)k, (j — 1)e(G)).

The following example was considered in [LP24b, Example 5.2] in the Poisson random-

connection model.

Example 7.3 Let G = C5 be a triangle, i.e. v(G) = e(G) = 3. We have

%5(Cs) = {(3,3),(2,1), (1,0},

Y3(C5) = {(6,6), (5,4),(4,3),(5,3),(4,2),(4,1),(3,1),(3,0),(2,0) },

24(Cs) = {(9,9),(8,7),(7,6), (8,6), (7,5), (7, 4), (6,4), (6,3), (5,3), (7, 3),
(6,2),(5,2),(7,2),(6,1),(5,1), (4,1),(6,0), (5,0), (4,0), (3,0)},



see Figure 5-(a) with j =3, k =3, e(G) = 3, and Figure 5-(b) j =4, k =3, e(G) = 3.

=N Wk OO 00 O

=N Wk oo

z 1234567897
(a) Plot of ¥3(C3). (b) Plot of ¥4(Cs5).

Figure 5: Set ¥,(C5) and upper boundary of its convex hull (in red) for n = 3, 4.

From Figure 5 we can also check that

We recall the following definition.

Definition 7.4 [LR92], [JLRO0, pages 64-65] A graph G is strongly balanced if

e(H) e(G
o(H) =1 = o(G) =1

HCG. (7.2)

Theorem 7.5 Let G be a strongly balanced connected graph.
a) If n=W@=D/e@) <« pthen for n large enough we have

1 VGV e 4
5 (Na)| < 1 O, (73)

b) If p, < n~ @O0/ then for n large enough we have

v(G)! -
(@) EL—(C)?)J' n'@pel@ 5> 9, (7.4)

Proof. We let k := v(G). According to [LLP24b, Proposition 6.4], if G is a strongly balanced

|15 (Ne)| < 577151

graph, then the upper boundary of the convex hull of 3,(G), j > 2, is a line segment, whose
endpoints are (j—1,0) and ((j—1)k, (j —1)e(G)), see Remark 7.2 and Figure 6 for j = k = 3.
Then, for any r € {k +1,...,(k — 1)j}, the asymptotic order of summands appearing in
the upper bound of (5.4) is corresponding to a point (jk — r, je(G) — d(j, k,r)) denoted by
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the blue dots in Figure 6. For every such point (jk — r,je(G) — d(j,k,r)) located within
the convex hull, comparing the ratio of a line segment that connects itself with the right
endpoint ((j — 1)k, (j — 1)e(G)) of the upper boundary of the convex hull with the ratio of
the upper boundary, we have
(J — De(G) — (je(G) — d(j, k,7))
=Dk —(jk—r)

hence, choosing j > 2,

(—De@ (@)
G-Dk—G-1D k-1

>

d(]> k? 7’) — €(G) > €(G)
r—k k-1
see for example the dashed line in Figure 6-(a) with j = k =¢(G) =3, r =5 and d(3,3,5) =

(7.5)

8, in the framework of Example 2.4.

Yy Yy
61 6 1
51 5 |
41 41
31 5 ]
21 9 |
11 1|
1 x 1 x
(a) Plot of ¥3(C3). (b) Plot of ¥3(C5).
Figure 6: Set 33(C3) and upper boundary of its convex hull (in red).
Similarly, for any » € {k+1,...,(k — 1)j}, when comparing ratio of line segment between

point (jk —r,je(G) —d(j, k,r)) and the left endpoint of the upper boundary (j — 1,0) with
the ratio of the upper boundary ij(G), if (jk—r,je(G)—d(j,k,7)) € f]j(G), then we have

je(@) —d(j.k.r) _ (j—1e(G)
hr—G-0  G-Dk-(G-1)

hence

]e(G) — d(]? k,?‘) _ Q(G)

jk—r—(G -1 k-1 (7.6)
On the other hand, if (jk —r, je(G) — d(j,k,7)) ¢ f]j(G), we have

]6<G) _ d(]? k,?") < B(G) (77)

jk—r—(G—1) k-1

see for example the dashed line in Figure 6-(b) with j = k =e(G) = 3, r =5 and d(3,3,5) =
8, as in Example 2.4.

26



a) When n~(=D/e(@) « 5 using (7.6) and (7.7), for any r € {k,...,(k —1)j} we have

plt(k— 1)jpn( )

nr pZ(J k)

= plH=Di=r pie(G)=dGikr)
je(G)=d(kr) \ 1H(k=1)j—r
= (npn1+(kl>JT )

e\ 1+(k—1)j—r
2 (npé“‘l )

> 1. (7.8)

Therefore, after combining with (5.4), for n large enough we have

joq (=D
m(No)| < > G kIt
< Vi L+ (E=1)i 7e(@) H(i:l)jw(. f
S el a2 e 1)l
_ T e @ :
= a " P |CNE (5, k)|
<j,kk,g 1 J +(k— 1)]p;e

a(G)J

where the last inequality is from Lemma 2.5.

b) When p,, < n~* =D/ for any r € {k+1,...,(k —1)j + 1}, by (7.5) we have

e(G k) —e —(r—k
nkpn( ) _( d(],k;zk (G)) (r—Fk)

nrpg(jvkvr) B npn
( @)\ ~(r=k)
e np/fl)
> 1. (7.9)

Hence, from (5.4), for n large enough we have

g (k=)
I (Ne)| < aj(G)j ; C( k) " pl )
< 7! kt(c:) e
<@ 2 CGk)
— jj_l k. e(G) .
-1
GIFEN~ 1aj(G) n*pel@)
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The proof is complete. O

By inspection of the proof of Theorem 7.5, see (7.8) and (7.9) therein, we note that its

conclusions also hold under the following alternative conditions.
Proposition 7.6 Let G' be a strongly balanced connected graph.

a) If n~WE=D/e@) < p n > 1, then we have

171
, i1 .,D(G)U(G)- 14+ ((G)-1)5,.je(G) :

b) If pp < n~@EO=V/eC) > 1 then we have

. 17—1
|k (Ne)| sﬂ*%!“@&n”@pz‘@) i>2 n>1

Proposition 7.7 is a straightforward consequence of Proposition 6.1. Note that (6.2) in
Assumption 4.1 is valid in the binomial RCM, but it is not satisfied in the Erdos-Rényi
model. Indeed, the principal degree of f equals 2 in the Erdés-Rényi model, see § 9 in
[JNO91].

Proposition 7.7 Let G be a strongly balanced connected graph. Suppose that the function
fin (5.2) satisfies Assumption 4.1.

a) If n= W(@)=1/e(G) « p,.. we have the lower bound

C n! 2%(G)
¢ >1 1
(G2 (n+1—20@)m =" (7.10)

ka(Ng) >
where C' > 0 is a constant independent of n > 2v(G) — 1.
b) If pp < n~WAO=V/EE) e have the lower bound

|
¢ o (@ j>1, (7.11)

) 2 S e

where C' > 0 is a constant independent of n > 2v(G) — 1.

As a consequence of Theorem 7.5 and 7.7, we have the following corollary in the binomial
RCM.
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Corollary 7.8 Let G be a strongly balanced connected graph. Suppose that the function f
in (5.2) satisfies Assumption 4.1. Then, for n > 1 large enough, the j-th cumulant of the

normalized subgraph count

Ny = Ng — £1(Ng)
KJQ(Ng)
satisfies
'!1+U(G)
W when n~C@E-V/EG) & p
Kj (NG) < j!1+v(G)

when  p, < n-®@-D/e@)

(Cn”(G)pZ(G))j/2_1
j >3, where C' is a constant independent of n > 1.

Proof. We let k = v(G). When n~*=D/e(@) <« p_ from the inequalities (4.9), (4.10), (7.3)
and (7.10), we have

<\ _  ri(Ne)
Rj (NG) - Kg(Ng)j/Q
i1 —j/2
< jiogp-1 2 preaenipie) (_C e
- a(G)J " a(G)? (n—2k+1)1""
i—1 qkpgi—1,, 14+ (k—1)j n! e
= g (o
I " ( (n—2k+1)!>
_1\ —J/2
< I g i1y 1 () (C’ (2)21@ 1)
- 2
— ﬂejku—lc—j/?y(k—lﬂ)
Cop-2)/27 :

Similarly, when p,, < n~*=1/¢@ from the inequality

iz k= (1 e ()

and (7.4)-(7.11), we have
v _ (Vo)
Kj (NG) = Ka(Ng )i/

i c ~i/2
< qtkpi—1 k(@) P @)

) : |
= LIkl L pe(©) (Oﬁpi@

—j/2
< (.7 - 1)!€jj'kk'j—1nkpe(G) C 3_” kpe(G) !
T Vet " !
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—j/2
‘ ‘ 3n\"
< of jIRHI N1k pe(©) (c (f) pf@)

jlkHled fli—1 - 3\ ¥ i/
e e ))

From Corollary 7.8, we can see that the cumulants of the normalized subgraph count N¢

O

satisfy the Statulevicius growth condition (A.2) with v := v(G) and

(Cn)'/? when n~ O/ 4

- (Cn*@pe @2 when  p, < n~(EOD/AG)
where C'is a constant independent of n > 1. Therefore, from Proposition A.1-i) we have the

following results.

Corollary 7.9 (Kolmogorov bound). Let G be a strongly balanced connected graph. Suppose
that the function f in (5.2) satisfies Assumption 4.1. For n > 1 large enough the normalized

subgraph count N¢ satisfies

C
B N1/ (2+40(G))
sup ‘IP’(NG < x) — (ID(a:)| < 8.

z€R when  p, < n~CE=D/G),
(nv(©) p;(G)) 1/(2+40(G))

for some C' > 0.
By Corollary 7.8 and Proposition A.1-ii), we also have the following result.

Corollary 7.10 (Moderate deviation principle). Let G be a strongly balanced connected
graph. Suppose that the function f in (5.2) satisfies Assumption 4.1. Let (an)n>1 be a

sequence of real numbers tending to infinity, and such that

a, < 1/ (2+40(G)) when n~WE-D/e(C) D,

e(G)) 1/(2+40(G))

n < (”v(G)pn when  p, < n~@E=D/EG),

Then, (a;lﬁg)n>1 satisfies a moderate deviation principle with speed a? and rate function
z?/2.

Another direct consequence of Theorem 7.5 is the following threshold phenomenon of sub-

graph containment in the binomial RCM.
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Corollary 7.11 Let GG be a strongly balanced connected graph, and suppose that the function
f in (5.2) satisfies Assumption 4.1. We have

a) lim,_,oo P (Ng = 0) = 1 if p, < n~(G)/e@)
b) lim, oo P (Ng = 0) = 0 if p, > n~V(@)/e@),
Proof. We let k = v(G). When p,, > n%/% from (7.3) we have

21! 1 2(k=1), 26(G)
N < e
’%Q( G) = (G)2 pn )

hence by (5.3) we have
. Ka(Ng)
1 —_—
nl—g)lo lil(Ng)Z 07

and

LOENG? L (Vo)
n—oo  E[NZ] n—o0 ka(Ne) + k1(Ng)?

On the other hand, if p, < n 7%/ from (5.3), we have

n—0o0

We conclude by the first and second moment methods, see [JLR00, Page 54], which state
that

(E[Ng])®
~— 7 < P(N, < E|Ng|. 12
O
A Cumulant method
Given (X;);>1 a sequence of random variables, for any subset b of {1,...,n} we consider a

family
Xy = (Xi)ien

indexed by b C [n]. Taking b := {ji,...,Jr}, the joint characteristic function of the vector

X, is defined as
exp ( Ztg >] ,

In ©¥Xx, (tl, cee 7tk)‘t1:“':tk:0'

prb@la Ce ,tk)

and the the joint cumulant of X, is defined as

ak

K(Xp) = (—i)k—at1 T
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For any random variable &, we let & := (,...,£) denote the random vector with |b| entries
identical to &, and write () := k(¢[,) for the n-th order cumulant of {. From Theorem 1

in [Luk55], see also [LS59], [Mal80], we have the relation

R(Xy) = Y (1) (s =] E

o€ll(b) aco

IIx] (A1)

lea

between the joint moments and cumulants of the random vector Xy, b C [n]. The following

results are summarized from the “main lemmas” in Chapter 2 of [SS91] and [DE13].

Proposition A.1 Let (X,),>1 be a family of random variables with mean zero and unit
variance for all n > 1. Suppose that for all n > 1, all moments of the random variable X,

exist and that the cumulants of X,, satisfy

U™ s (A.2)

S e 2

where v > 0 depends only on n > 1, while A,, € (0,00) may depend on n > 1. Then, the

following assertions hold.

i) (Kolmogorov bound, [SS91, Corollary 2.1] and [DJS22, Theorem 2.4]) One has

C(v)
L IPCn = ) =R = v

for some C() > 0 depending only on ~.

ii) (Moderate deviation principle, [DE13, Theorem 1.1] and [DJS22, Theorem 3.1]). Let

(an)n>1 be a sequence of real numbers tending to infinity, and such that
a, < (An)l/(lJr?v).

Then, (a,'X,),>1 satisfies a moderate deviation principle with speed a? and rate func-

tion x* /2.

iii) (Concentration inequality, corollary of [SS91, Lemma 2.4] and [DJS22, Theorem 2.5]).
For any x > 0 and sufficiently large n > 1,

2

LI 1/(149)
]P)(’Xn‘ > 3:) < 2€Xp (_Z min (21_+77 (xAn) :
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iv) (Normal approzimation with Cramér corrections, [SS91, Lemma 2.3]). There exists a

constant ¢ > 0 such that for alln > 1 and x € (0, c(A,)Y 320 we have

% - (1 +0 (WZLM)) exp (L(x)),

where L(x) is related to the Cramér-Petrov series.
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