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Abstract

We derive normal approximation bounds for generalized U -statistics of the form

Sn,k(f) :=
∑

1≤β(1),...,β(k)≤n
β(i)̸=β(j), 1≤i ̸=j≤k

f
(
Xβ(1), . . . , Xβ(k), Yβ(1),β(2), . . . , Yβ(k−1),β(k)

)
,

where {Xi}1≤i≤n and {Yi,j}1≤i<j≤n are independent sequences of i.i.d. random vari-
ables. Our approach relies on moment identities and cumulant bounds that are derived
using partition diagram arguments. Normal approximation bounds in the Kolmogorov
distance and moderate deviation results are then obtained by the cumulant method.
Those results are applied to subgraph counting in the binomial random-connection
model, which is a generalization of the Erdős-Rényi model.

Keywords : Generalized U -statistics, binomial random-connection model, inhomogeneous
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1 Introduction

Second-order U -statistics can be viewed as quadratic random functionals of the form∑
1≤i ̸=j≤n

Yi,jXiXj (1.1)

which are used to model potentials and partition functions in the framework of the Gaussian

Unitary Ensemble in statistical mechanics, where (Yi,j)1≤i ̸=j≤n is a possibly random adjacency
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matrix made of independent entries, and (Xi)1≤i≤n is a sequence of independent identically

distributed random variables. Cumulant bounds of (1.1) have been obtained in [Kho08]

when (Yi,j)1≤i ̸=j≤n represents the adjacency matrix of the Erdős-Rényi random graph, and

general approximation results in distribution have been recently obtained in [BDMM24]

when (Yi,j)1≤i ̸=j≤n is deterministic. On the other hand, more general pair interactions can

be modeled using U -statistics of the form∑
1≤i ̸=j≤n

f(Xi, Xj),

while higher-order U -statistics can model nonlinear interactions in non-Gaussian frameworks.

In this paper, we derive normal approximation results and cumulant bounds for general-

ized U -statistics of the form

Sn,k(f) :=
∑

1≤β(1),...,β(k)≤n
β(i)̸=β(j), 1≤i̸=j≤k

f
(
Xβ(1), . . . , Xβ(k), Yβ(1),β(2), . . . , Yβ(1),β(k), Yβ(2),β(3), . . . , Yβ(k−1),β(k)

)
,

(1.2)

which have been introduced in [JN91] as a powerful tool for studying the normal and non-

normal asymptotic distributions of subgraph counts in inhomogeneous random graphs. Here,

{Xi}1≤i≤n and {Yi,j}1≤i<j≤n are two independent sequences of i.i.d. random elements taking

values respectively in a Borel space S and a measurable space M, and f : Sk×Mk(k−1)/2 → R
is a measurable function, k ≥ 2, with Yi,j = Yj,i if 1 ≤ j < i ≤ n.

In Corollary 4.3, we obtain a Kolmogorov distance bound of the form

sup
x∈R

∣∣P (Sn,k(f) ≤ x
)
− Φ(x)

∣∣ ≤ C(f, k)

n1/(2+4k)
, n ≥ 4(k − 1),

for the normalized generalized U -statistics

Sn,k(f) :=
Sn,k(f) − κ1(Sn,k(f))√

κ2(Sn,k(f))
,

where Φ is the cumulative distribution function of the standard normal distribution and

C(f, k) > 0 depends only on f and on k ≥ 2. Our approach relies on moment identi-

ties and cumulant bounds for generalized U -statistics established in Theorems 3.2 and 4.1.

Berry-Esseen bounds for the normal approximation of general functionals of binomial point

processes have been obtained in [LRP17], with application to U -statistics and set approxima-

tion for random tessellations. However, generalized U -statistics of the form (1.2) include an
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additional layer of randomness due to the random sequence {Yi,j}1≤i<j≤n. In Corollary 4.4

we obtain a moderate deviation result for the normalized U -statistics Sn,k(f).

Starting with Section 5, we apply our normal approximation results for generalized

U -statistics to subgraph counting in the binomial random-connection model. Random-

connection models (RCMs) are random graphs which are based on randomly located vertices

which are independently connected with a location-dependent probability. As a generaliza-

tion of the Erdős-Rényi model, the binomial RCM has gained significant attention and

has been studied under different names, for example as inhomogeneous random graphs, c.f.

[DF14, Pen18, HPČ21], and as graphon-based random graphs c.f. [CGR16, Zha22, BCJ23].

Distributional approximations for count statistics on random-connection models whose

vertices are generated according to a Poisson point process, have been investigated in a

number of recent works, including vertices counts [Pen18], component counts [LNS21], and

subgraph counts [CT22, LP24a]. Recently, Poisson approximation with bounds for subgraph

counts in general random-connection models have been derived in [LX25], and the cumu-

lant method has been applied to subgraph counting weighted random connection models in

[HHO25].

More formally, let Xn = {X1, . . . , Xn} denote a family of i.i.d. random points with

a common distribution µ on S = Rd, for some n ≥ 2. Given H : Rd × Rd → [0, 1]

a symmetric measurable connection function, the binomial random-connection model with

connection function H is the random graph on the binomial point process Xn = {X1, . . . , Xn}
constructed by adding edges independently with probability H(Xi, Xj), to each distinct pair

(Xi, Xj) of vertices, 1 ≤ i ̸= j ≤ n.

When the connection function is taken as H(x, y) = 1{∥x−y∥≤r}, x, y ∈ Rd for some

r > 0, vertices are connected in a deterministic way, and the binomial RCM becomes a

random geometric graph, or Gilbert graph, c.f. [Pen03]. When H(x, y) ≡ pn, x, y ∈ Rd,

the binomial RCM recovers the classical Erdős-Rényi random graph. In this case, subgraph

counting in the binomial RCM is a natural extension of the subgraph counting problem in

the Erdős-Rényi model, see [J LR00, FMN16].

Although the asymptotic behavior of subgraph counts in the binomial RCM was studied

in detail in [JN91, Jan97, BCJ23], convergence rates for the distributional approximation

of subgraph counts have only been recently discussed, see [KR21, Zha22]. In [DST16], the

Poisson approximation of standard (not generalized) U -statistics has been considered in the
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binomial model. More recently, general approximation results for standard second-order

U -statistics have been obtained in [BDMM24]. However, none of those works, including

[Zha22], consider the case where the probabilities of connecting two vertices tends to zero as

n tends to infinity, as is typical in the Erdős-Rényi model.

In contrast with the centered subgraph counts considered in [KR21], we allow the con-

nection probability of any distinct pair (Xi, Xj) of vertices in the binomial RCM to be of

the form pnH(Xi, Xj) where pn ∈ (0, 1), 1 ≤ i ̸= j ≤ n. We consider in particular the

case where pn may tend to zero as n tends to infinity, and study the corresponding normal

approximation of subgraph counts.

In Theorem 5.2 we derive upper bounds on the cumulants of subgraph counts in the

binomial random-connection model. Note that related cumulant bounds have been obtained

in the Erdős-Rényi model in [Kho08] for the counts of line and cycle graphs, and in [FMN16]

for general subgraph counts. In comparison with the Poisson random-connection model

considered in [LP24a, LP24b], cumulants admit no simplified expression using sums over

connected non-flat partitions in the binomial random-connection model. For this reason,

cumulant bounds have to be derived using specific arguments.

Then, by combining Theorem 5.2 with variance lower bounds obtained in Proposition 6.1,

in Theorem 7.5 we obtain cumulant growth rates for the counts of strongly balanced con-

nected graphs. Our proof relies on dependency graph methods and the convex analysis of

planar diagrams, which were introduced in [ LR92] to study the behaviour of the variance of

subgraph counts in the Erdős-Rényi model.

Cumulant growth rates for the normalized counts of strongly balanced connected graphs

are then obtained in Corollary 7.8 under Assumption 4.1 in the case where pn = o(1), using

the variance lower bound for subgraph counts established in Proposition 7.7. Note however

that Assumption 4.1 is valid in the binomial RCM, and is not satisfied in the Erdős-Rényi

model.

Using the cumulant method and the Statulevičius condition, see Appendix A, Kolmogorov

distance rates of the form

sup
x∈R

|P(NG ≤ x) − Φ(x)| ≤


C

n1/(2+4v(G))
when n−(v(G)−1)/e(G) ≪ pn,

C(
nv(G)p

e(G)
n

)1/(2+4v(G))
when pn ≪ n−(v(G)−1)/e(G),
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n ≥ 4(v(G) − 1), are obtained in Corollary 7.9 for the normalized subgraph count

NG :=
NG − κ1(NG)√

κ2(NG)

of a strongly balanced connected graph G with v(G) vertices. This extends the results of

[PS18] and [ER23] for the approximation of subgraph counts from the Erdős-Rényi model to

the binomial RCM. Although the convergence rates in the Kolmogorov distance obtained in

do not match the optimal rate obtained in [Zha22], they allow us to consider the case where

pn = o(1). In Corollary 7.11, we investigate the threshold phenomenon for the containment

of subgraphs in the binomial RCM.

In Corollary 7.10 we obtain moderate deviation results for the normalized subgraph

count NG, see also [DE09, Theorem 1.1], [DE13, Theorem 2.3], [FMN16, Theorem 10.0.2],

[AcdOG25, Theorem 1.5] for moderate deviation results in the Erdős-Rényi model. In Corol-

lary 7.11, we investigate the threshold phenomenon for the containment of subgraphs in the

binomial RCM.

The paper is organized as follows. In Section 2 we recall some notation and definitions

related to set partitions and diagrams. In Section 3 we derive moment identities for gener-

alized U -statistics. Section 4 gives cumulant bounds for generalized U -statistics and further

obtains normal approximation results via the cumulant method. In Section 5, we obtain cu-

mulant bounds for subgraph counts in the binomial random-connection model, which allows

the connection probability between pairs of vertices to be significantly small. In Section 6,

we derive lower bounds on the variance of subgraph counts in the binomial RCM. This is

crucial for proving the results in Section 7. In Section 7 we obtain normal approximation for

subgraph counts in the binomial RCM through a refined analysis on the cumulant growth

rates and a threshold phenomenon for subgraph containment. In the Appendix A, we provide

a brief review of the Statulevičius condition and its application to the cumulant method.

2 Set partitions and diagrams

In what follows, we let [n] := {1, 2, . . . , n} for n ≥ 1, and let Π(b) denote the collection of

set partitions of any finite set b. Given two set partitions ρ1, ρ2 ∈ Π(b), we say that ρ1 is

coarser than ρ2 (i.e. ρ2 is finer than ρ1), and we write ρ2 ⪯ ρ1, if and only if each block of

ρ2 is contained in a block of ρ1. We use ρ1 ∨ ρ2 for the finest partition which is coarser than

both ρ1 and ρ2, and denote by ρ1 ∧ ρ2 the coarsest partition which is finer than both of ρ1
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and ρ2. We also let 1̂ := {b} denote the single-block coarsest partition of b, whereas 0̂ stands

for the partition made of singletons. Given k ≥ 2 and j ≥ 1, we let π := {π1, . . . , πj} denote

the partition of [j] × [k] defined as

πi := {(i, ℓ) : 1 ≤ ℓ ≤ k}, i = 1, . . . , j.

For j, k ≥ 1 we also let πη := (πi)i∈η ∈ Π(η × [k]) denote the partition made of |η| blocks

of size k. A partition ρ ∈ Π([j] × [k]) is said to be non-flat if ρ ∧ π = 0̂, see Chapter 4 of

[PT11] and Figure 1.

1

2

3

1 2 3 4

(a) Non-flat partition.

1

2

3

1 2 3 4

(b) Flat partition.

Figure 1: Examples of partition diagrams with n = 3 and r = 4.

A partition ρ ∈ Π([j] × [k]) is said to be connected if ρ ∨ π = 1̂, see Figure 2.

1

2

3

4

5

1 2 3 4

(a) Connected partition.

1

2

3

4

5

1 2 3 4

(b) Non-connected partition.

Figure 2: Examples of partition diagrams with n = 5 and r = 4.

We also let Π1̂([j] × [k]) denote the collection of all connected partitions of [j] × [k], and

denote by

CNF(j, k) :=
{
ρ : ρ ∈ Π1̂([j] × [k]), ρ ∧ π = 0̂

}
the set of all connected and non-flat partitions of [j] × [k], for j, k ≥ 1. Let [n]k̸= denote the

collection of distinct k-fold indexes

[n]k̸= := {β = (β(1), . . . , β(k)) ∈ [n]k : β(i) ̸= β(j) for 1 ≤ i ̸= j ≤ k}, k ≥ 1.
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The role of the partition ⊓(α) introduced in Definition 2.1 is to group each set of identical

entries in a family of k-tuples into a partition block. Later on, it will be used to identify the

common random variables appearing in repeated copies of (X1, . . . , Xn) for the computation

of joint cumulants.

Definition 2.1 Given a sequence

α =

 α1
...
αj

 =

 α1(1) · · · α1(k)
...

. . .
...

αj(1) · · · αj(k)

 ∈ [n]k̸= × · · · × [n]k̸=,

we let ⊓(α) denote the partition of [j]× [k] such that each block of ⊓(α) is made of elements

(i, ℓ) that correspond to a same value of αi(ℓ).

Next is an example of a sequence α ∈ [n]k̸= × · · · × [n]k̸= and of the partition ⊓(α) of [j] × [k]

it generates.

Example 2.2 Taking n = 30, j = 5, k = 4, and

α =


α1

α2

α3

α4

α5

 =


26 15 25 23
19 23 17 5
24 18 12 20
15 17 7 2
2 26 27 30

 ,

the partition ⊓(α) of [5] × [4] is given in Figure 3 by

⊓(α) =
{
{(1, 1), (5, 2)}, {(1, 2), (4, 1)}, {(1, 3)}, {(1, 4), (2, 2)}, {(2, 1)}, {(2, 3), (4, 2)},

{(2, 4)}, {(3, 1)}, {(3, 2)}, {(3, 3)}, {(3, 4)}, {(4, 3)}, {(4, 4), (5, 1)}, {(5, 3)}, {(5, 4)}
}
.

1

2

3

4

5

1 2 3 4

2 26 27 30

15 17 7 2

24 18 12 20

19 23 17 5

26 15 25 23

(a) α = [α1, . . . , α5]⊤.

1

2

3

4

5

1 2 3 4

(b) Partition ⊓(α).

Figure 3: Example for the mapping ⊓ with j = 5 and k = 4.
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We let v(G) := |VG| and e(G) := |EG| be the number of vertices and the number of edges of

any graph G = (VG, EG) with vertex set VG and edge set EG. A subgraph of G is a graph

H = (VH , EH) such that VH ⊂ VG and EH ⊂ EG, and H is an induced subgraph of G, if

EH consists of all edges of G having both endpoints in VH . Two graphs G = (VG, EG) and

H = (VH , EH) are isomorphic if there is a bijection T : VG → VH such that {u, v} ∈ EG if

and only if {T (u), T (v)} ∈ EH for any u ̸= v ∈ VG, in which case we write H = T (G). The

permutations α of VG such that α(G) = G form a group called the automorphism group,

and we let a(G) denote the cardinality of this group.

Definition 2.3 Consider G1, . . . , Gj copies of a connected graph G with v(G) = k ≥ 2

vertices, respectively built on π1, . . . , πj, j ≥ 1, and let ρ ∈ Π([j] × [k]) be a partition of

[j] × [k].

1. We let ρG denote the contraction multigraph of the graph G⊗j constructed on the blocks

of ρ by adding an edge between two blocks ρ1, ρ2 of the partition ρ whenever there exist

(i, l1) ∈ ρ1 and (i, l2) ∈ ρ2 such that (l1, l2) is an edge in Gi.

2. We let ρG be the graph constructed on the blocks of ρ by removing redundant edges in ρG,

so that at most one edge remains between any two blocks ρ1, ρ2 ∈ ρ.

Example 2.4 Consider ρ ∈ Π([3] × [3]) of the form

ρ =
{
{(1, 1), (2, 1)}, {(1, 2), (3, 2)}, {(1, 3), (3, 3)}, {(2, 3)}, {(2, 2), (3, 1)}

}
= {ρ1, ρ2, ρ3, ρ4, ρ5},

and let G be a triangle on the vertex set VG = [3]. Figure 4 presents the multigraph ρG and

corresponding graph ρG, where ρ ∈ Π([3] × [3]) is non-flat and connected.

(3,1) (3,2) (3,3)

(1,1) (1,2) (1,3)

(2,1)
(2,2)

(2,3)

(a) Multigraph ρG before merging edges and vertices.

ρ2

ρ5

ρ1 ρ3

ρ4

(b) Graph ρG after merging edges and vertices.

Figure 4: Example of graph ρG with j = 3 and k = 3.
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The contraction multigraph ρG constructed in Definition 2.3 is also denoted by G⊗j in

[FMN16, Page 104], where G⊗j stands for the graph made of j components isomorphic to G.

We will use the following standard notation for the asymptotic behavior of the relative

order of magnitude of two functions f(n) and g(n) > 0 as n tends to infinity. We write

• f(n) ≳ g(n) if lim infn→∞ f(n)/g(n) > 0,

• f(n) ≪ g(n), or g(n) ≫ f(n), if f(n) ≥ 0, g(n) > 0, and limn→∞ f(n)/g(n) = 0.

We close this section by recalling the following lemma, see Lemma 2.8 in [LP24a] or Propo-

sition 6.1 in [ST24].

Lemma 2.5 a) The cardinality of the set CNF(j, k) of connected non-flat partitions of

[j] × [k] satisfies

|CNF(j, k)| ≤ j!kk!j−1, j, k ≥ 1.

b) The cardinality of the set M(j, k) of maximal connected non-flat partitions of [j] × [k]

satisfies

|M(j, k)| = kj−1

j−1∏
i=1

(1 + (k − 1)i), j, k ≥ 1,

with the bounds

((k − 1)k)j−1(j − 1)! ≤ |M(j, k)| ≤ ((k − 1)k)j−1j!, j ≥ 1, k ≥ 2.

3 Moments of generalized U-statistics

In this section, we prove a moment identity for generalized U -statistics, see [JN91] and

[Jan97, Chapter 11], by combining multiple integrals with set partitions. Let M and S be

respectively a measurable space and a Borel space.

Definition 3.1 Given f : Sk ×M(k−1)k/2 → R a bounded measurable function, k ≥ 2, Y =

{Yi,j}1≤i<j≤n a sequence of independent M-valued random variables with common probability

distribution Q, and X = {Xi}1≤i≤n a sequence of independent S-valued random variables with

continuous distribution µ, we let Sn,k(f) denote the generalized U-statistics defined as

Sn,k(f) :=
∑

β∈[n]k̸ =

f(Xβ(1), . . . , Xβ(k), Yβ(1),β(2), . . . , Yβ(1),β(k), Yβ(2),β(3), . . . , Yβ(k−1),β(k)), (3.1)

where Yi,j = Yj,i if j > i.
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Note that the function f is not required to be symmetric as in [JN91] or [Zha22]. For any

β = (β(1), . . . , β(k)) ∈ [n]k̸=, we also let

f(Xβ,Yβ) = f
(
Xβ(1), . . . , Xβ(k), Yβ(1),β(2), . . . , Yβ(k−1),β(k)

)
for shortness of notation. Letting ρKk

denote the contraction graph of the complete graph

Kk on k vertices, see Definition 2.3, for any set partition ρ = {b1, . . . , b|ρ|} ∈ Π([j] × [k]) we

consider the function (
j⊗

i=1

f

)
ρ

: S |ρ| ×Me(ρKk
) → R

defined as(
j⊗

i=1

f

)
ρ

(
{xν}1≤ν≤|ρ|, {y(ν,υ)}(ν,υ)∈EρKk

)
:=

j∏
i=1

f
(
x
(i)
1 , . . . , x

(i)
k , y

(i)
1,2, . . . , y

(i)
k−1,k

)
,

where x
(i)
ℓ := xν if (i, ℓ) ∈ bν for 1 ≤ ν ≤ |ρ|, and y

(i)
u,v := y(t,s) if (i, u) ∈ bt and (i, v) ∈ bs,

s, t = 1, . . . , |b|. In Theorem 3.2 we provide a moment identity for the generalized U -statistics

Sn,k(f) using the partition diagram language of Definition 2.3.

Theorem 3.2 Let f : Sk ×M(k−1)k/2 → R be a bounded measurable function with k ≥ 2.

For any j, n ≥ 1, we have

E
[
(Sn,k(f))j

]
=

∑
ρ∈Π([j]×[k])

ρ∧π=0̂

n!

(n− |ρ|)!

∫
S|ρ|×Me(ρKk

)

(
j⊗

i=1

f

)
ρ

(x,y)µ⊗|ρ|(dx)Qe(ρKk
)(dy).

Proof. From the definition of ⊓(α), we have

E
[
(Sn,k(f))j

]
=

∑
α1∈[n]k̸=,...,αj∈[n]k̸=

E

[
j∏

i=1

f(Xαi
,Yαi

)

]

=
∑

ρ∈Π([j]×[k])

ρ∧π=0̂

∑
α1∈[n]k̸=,...,αj∈[n]k̸=

⊓(α)=ρ

E

[
j∏

i=1

f(Xαi
,Yαi

)

]

=
∑

ρ∈Π([j]×[k])

ρ∧π=0̂

∑
α1∈[n]k̸=,...,αj∈[n]k̸=

⊓(α)=ρ

∫
S|ρ|×Me(ρKk

)

(
j⊗

i=1

f

)
ρ

(x,y)µ⊗|ρ|(dx)Qe(ρKk
)(dy)

=
∑

ρ∈Π([j]×[k])

ρ∧π=0̂

Cn(ρ)

∫
S|ρ|×Me(ρKk

)

(
j⊗

i=1

f

)
ρ

(x,y)µ⊗|ρ|(dx)Qe(ρKk
)(dy),
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where

Cn(ρ) :=
n!

(n− |ρ|)!
, ρ ∈ Π([j] × [k]),

denotes the count of the α = [α1, . . . , αj]
⊤ ∈ [n]k̸= × · · · × [n]k̸= such that ⊓(α) = ρ, j, k ≥ 1,

with ρ non-flat. □

In particular, since 0̂ ∈ Π([1] × [k]) is the only non-flat partition of [1] × [k], we have

E [Sn,k(f)] =
n!

(n− k)!

∫
Sk×M(k−1)k/2

f(x,y)µ⊗k(dx)Q(k−1)k/2(dy). (3.2)

Moments of standard U-statistics

Given j ≥ 1 and f (i) : (Rd)k → R, i = 1, . . . , j, measurable functions, we let(
j⊗

i=1

f (i)

)
(x1,1, . . . , x1,k, . . . , xj,1, . . . , xj,k) :=

j∏
i=1

f (i)(xi,1, . . . , xi,k),

and for ρ ∈ Π([j] × [k]) we denote by(
j⊗

i=1

f (i)

)
ρ

: (Rd)|ρ| → R

the function obtained by equating any two variables whose indexes belong to a same block

of ρ. In Corollary 3.3, as a consequence of Theorem 3.2, we obtain a moment identity for

standard U -statistics of order k ≥ 1, of the form

Sn(f) :=
∑

β∈[n]k̸=

f
(
Xβ(1), . . . , Xβ(k)

)
.

Corollary 3.3 Let f : (Rd)k → R, k ≥ 1, be a bounded, not necessarily symmetric, mea-

surable function. For any j, n ≥ 1, we have

E
[
(Sn(f))j

]
=

∑
ρ∈Π([j]×[k])

ρ∧π=0̂

n!

(n− |ρ|)!

∫
(Rd)|ρ|

(
j⊗

i=1

f

)
ρ

(x1, . . . , x|ρ|)µ(dx1) · · ·µ(dx|ρ|).

Proof. Since the sequence (X1, . . . , Xn) is i.i.d., we have

E
[
(Sn(f))j

]
=

∑
α1∈[n]k̸=,...,αj∈[n]k̸=

E

[
j∏

i=1

f
(
Xαi(1), . . . , Xαi(k)

)]

=
∑

ρ∈Π([j]×[k])

ρ∧π=0̂

Cn(ρ)

∫
(Rd)|ρ|

(
j⊗

i=1

f

)
ρ

(x1, . . . , x|ρ|)µ(dx1) · · ·µ(dx|ρ|).

□
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Remark 3.4 For the V -statistics

Vn,k(f) :=
∑
β∈[n]k

f
(
Xβ(1), . . . , Xβ(k)

)
with possible repeated indices, for j, n ≥ 1, we have the similar moment identity

E
[
(Vn,k(f))j

]
=

∑
ρ∈Π([j]×[k])

n!

(n− |ρ|)!

∫
(Rd)|ρ|

(
j⊗

i=1

f

)
ρ

(x1, . . . , x|ρ|)µ(dx1) · · ·µ(dx|ρ|). (3.3)

The proof of (3.3) is almost the same, except for the removal of the non-flat restriction, i.e.

E
[
(Vn,k(f))j

]
=

∑
α1,...,αj∈[n]k

E

[
j∏

i=1

f
(
Xαi(1), . . . , Xαi(k)

)]

=
∑

ρ∈Π([j]×[k])

n!

(n− |ρ|)!

∫
(Rd)|ρ|

(
j⊗

i=1

f

)
ρ

(x1, . . . , x|ρ|)µ(dx1) · · ·µ(dx|ρ|).

4 Cumulant bounds for generalized U-statistics

To study the asymptotic behaviour of U -statistics and generalized U -statistics, a common

practice is to use Hoeffding decompositions [Hoe61], [DM83]. Through the orthogonal decom-

position, one finds the asymptotic distribution of U -statistics is determined by the “smallest”

component appearing in its decomposition, see [JN91, Lemma 2] and also [Jan97, The-

orem 11.3]. In what follows, we consider the case where the asymptotic distribution of

Sn,k(f) is normal. Assumption 4.1 will be needed for the derivation of cumulant estimates

for the generalized U -statistics Sn,k(f) in Theorem 4.1.

Assumption 4.1 Let f : Sk×M(k−1)k/2 → R be a bounded measurable function with k ≥ 2.

We assume that

Var

[
k∑

ℓ=1

f(ℓ)(X1)

]
> 0. (4.1)

where

f(i)(x) :=

∫
Sk−1×M(k−1)k/2

f(x,y)µ⊗(k−1){dx1 · · · dxi−1dxi+1 · · · dxk}Q(k−1)k/2{dy}

for i = 1, . . . , k, and x = (x1, . . . , xi−1, x, xi+1, . . . , xk).

Assumption 4.1 amounts to saying that the principal degree of f equals 1, see [JN91]. In

most of the existing literature, including [JN91], [KR21], [Zha22], the asymptotic normality

of generalized U -statistics relies on orthogonal decomposition on certain L2 spaces. However,

in practice the orthogonal decomposition of count statistics can be intractable in general.
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Theorem 4.1 Let f : Sk ×M(k−1)k/2 → R be a measurable function, with k ≥ 2. Then, for

n ≥ 1 the j-th cumulant of the generalized U-statistics Sn,k(f) satisfies the bound

|κj(Sn,k(f))| ≤ n1+(k−1)j∥f∥j∞jj−1(j!)k(k!)j−1, j ≥ 1. (4.2)

In addition, if the function f satisfies Assumption 4.1, then we have

κ2(Sn,k(f)) ≥ Cn!

(n− 2k + 1)!
, n ≥ N(f, k), (4.3)

where C(f, k) > 0 and N(f, k) ≥ 1 depend only on f and on k ≥ 2.

Proof. From Property C in [MM91, Page 29], we know that if α = [α1, . . . , αj]
⊤ ∈

[n]k̸= × · · · × [n]k̸= is disconnected, i.e. if there exists a partition {A,B} of [j] such that{
αi(ℓ)}(i,ℓ)∈A×[k] ∩

{
αi(ℓ)}(i,ℓ)∈B×[k] = ∅,

then the joint cumulant κ(f(Xα1 ,Yα1), . . . , f(Xαj
,Yαj

)) vanishes. Hence, we have

κj(Sn,k(f)) =
∑

α1,...,αj∈[n]k̸=

κ(f(Xα1 ,Yα1), . . . , f(Xαj
,Yαj

))

=
∑

α1∈[n]k̸=,...,αj∈[n]k̸=
connected

κ(f(Xα1 ,Yα1), . . . , f(Xαj
,Yαj

))

=
∑

ρ∈CNF(j,k)

∑
α=[α1,...,αj ]

⊤∈([n]k̸=)j

⊓(α)=ρ

κ(f(Xα1 ,Yα1), . . . , f(Xαj
,Yαj

)). (4.4)

By the cumulant-moment relation (A.1) we have, for any [α1, . . . , αj]
⊤ ∈ [n]k̸= × · · · × [n]k̸=,

∣∣κ(f(Xα1 ,Yα1), . . . , f(Xαj
,Yαj

)
)∣∣ ≤ ∑

σ={b1,...,bl}∈Π([j])

(l − 1)!
l∏

i=1

∣∣∣∣∣E
[∏
ℓ∈bi

f(Xαℓ
,Yαℓ

)

]∣∣∣∣∣
≤

∑
σ={b1,...,bl}∈Π([j])

(l − 1)!∥f∥j∞

= ∥f∥j∞
j∑

l=1

(l − 1)!S(j, l)

≤ ∥f∥j∞
1

j

j∑
l=1

j!

(j − l)!
S(j, l)

= ∥f∥j∞jj−1, (4.5)

where S(j, l) is the Stirling number of the second kind. Therefore, from (4.4) we obtain

κj(Sn,k(f)) ≤
∑

ρ∈CNF(j,k)

n!

(n− |ρ|)!
∥f∥j∞jj−1
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=

1+(k−1)j∑
r=k

n!

(n− r)!

∑
ρ∈CNF(j,k)

|ρ|=r

∥f∥j∞jj−1

≤ n1+(k−1)j∥f∥j∞jj−1|CNF(j, k)|,

which yields (4.2) from Lemma 2.5-(a). Letting j = 2 in (4.4), we have

κ2(Sn,k(f)) =
∑

ρ∈CNF(2,k)

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

κ(f(Xα1 ,Yα1), f(Xα2 ,Yα2))

=
∑

ρ∈CNF(2,k)

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2))

= R +
∑

ρ∈CNF(2,k)
|ρ|=2k−1

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2)), (4.6)

where

R :=
∑

ρ∈CNF(2,k)
|ρ|≤2k−2

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2)).

Because {X1, . . . , Xn} and {Yi,j}1≤i<j≤n are both i.i.d. random elements, we have, for any

α = [α1, α2]
⊤ ∈ ([n]k̸=)2, β = [β1, β2]

⊤ ∈ ([n]k̸=)2

Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2)) = Cov(f(Xβ1 ,Yβ1), f(Xβ2 ,Yβ2)),

if ⊓(α) = ⊓(β). Let σ ∈ CNF(2, k) with |σ| = 2k − 1 and {(1, s), (2, t)} ∈ σ, 1 ≤ s ̸= t ≤ k.

Taking α = [α1, α2]
⊤ ∈ ([n]k̸=)2 such that ⊓(α) = σ we have α1(s) = α2(t), hence

Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2))

= E [f(Xα1 ,Yα1)f(Xα2 ,Yα2)] − E [f(Xα1 ,Yα1)] − E [f(Xα2 ,Yα2)]

= E
[
E[f(Xα1 ,Yα1)f(Xα2 ,Yα2)|Xα1(t)]

]
− E

[
E[f(Xα1 ,Yα1)|Xα1(s)]

]
E
[
E[f(Xα2 ,Yα2)|Xα2(t)]

]
= E

[
f(s)(Xα1(s))f(t)(Xα1(t))

]
− E

[
f(s)(Xα1(s))

]
E
[
f(t)(Xα1(t))

]
= E

[
f(s)(X1)f(t)(X1)

]
− E

[
f(s)(X1)

]
E
[
f(t)(X1)

]
= Cov(f(s)(X1), f(t)(X1))

=: rσ.

Therefore, the second term in (4.6) becomes∑
ρ∈CNF(2,k)
|ρ|=2k−1

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2))
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=
∑

ρ∈CNF(2,k)
|ρ|=2k−1

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

rρ

=
∑

ρ∈CNF(2,k)
|ρ|=2k−1

n!

(n− 2k + 1)!
rρ

=
n!

(n− 2k + 1)!

∑
ρ∈CNF(2,k)
|ρ|=2k−1

rρ

=
n!

(n− 2k + 1)!

∑
1≤s,t≤k

Cov(f(s)(X1), f(t)(X1))

=
n!

(n− 2k + 1)!
Var

[
k∑

ℓ=1

f(ℓ)(X1)

]
. (4.7)

On the other hand, from (4.5), we have

|R| ≤
∑

ρ∈CNF(2,k)
|ρ|≤2k−2

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

|Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2))|

≤
∑

ρ∈CNF(2,k)
|ρ|≤2k−2

n!

(n− |ρ|)!
2∥f∥2∞

≤ 2∥f∥2∞n2k−2|CNF(2, k)|

≤ 2∥f∥2∞n2k−22kk!. (4.8)

Finally, we bound Var[Sn,k(f)] from below using (4.6), (4.7) and (4.8), as

κ2(Sn,k(f)) =
∑

ρ∈CNF(2,k)
|ρ|=2k−1

∑
α=[α1,α2]⊤∈([n]k̸=)2

⊓(α)=ρ

Cov(f(Xα1 ,Yα1), f(Xα2 ,Yα2)) + R

≥ n!

(n− 2k + 1)!
Var

[
k∑

ℓ=1

f(ℓ)(X1)

]
− 2∥f∥2∞n2k−22kk!

=
n!

(n− 2k + 1)!

(
Var

[
k∑

ℓ=1

f(ℓ)(X1)

]
− 2∥f∥2∞n2k−22kk!

n!/(n− 2k + 1)!

)

≥ n!

(n− 2k + 1)!

(
Var

[
k∑

ℓ=1

f(ℓ)(X1)

]
− 2∥f∥2∞n2k−22kk!

(n/2)2k−1

)
,

which yields (4.3) by choosing

C(f, k) :=
1

2
Var

[
k∑

ℓ=1

f(ℓ)(X1)

]
,
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for

n ≥ N(f, k) :=
23k+1∥f∥2∞k!

Var
[∑k

ℓ=1 f(ℓ)(X1)
] .

□

As a consequence of Theorem 4.1, we have the following result.

Corollary 4.2 Let f : Sk ×M(k−1)k/2 → R be a measurable function with k ≥ 2, such that

f satisfies Assumption 4.1. Then, for n ≥ 4(k − 1), the j-th cumulant of the normalized

U-statistics

Sn,k(f) :=
Sn,k(f) − κ1(Sn,k(f))√

κ2(Sn,k(f))

satisfies the bound

κj

(
Sn,k(f)

)
≤ (j!)k+1(

nC̃(f, k)
)j/2−1

,

j ≥ 3, where C̃(f, k) > 0 depends only on f and on k ≥ 2.

Proof. Combining the inequalities

n!

(n− 2k + 1)!
≥ (n− 2k + 2)2k−1 =

(
1 − 2k − 2

n

)2k−1

n2k−1 ≥
(n

2

)2k−1

, (4.9)

n ≥ 4(k − 1), and

jj−1 <
(j − 1)!√

2πj
ej < ejj!, j ≥ 1, (4.10)

with the bounds (4.2) and (4.3) for j ≥ 3, we have

κj

(
Sn,k

)
=

κj (Sn,k(f))

κ2(Sn,k(f))j/2

≤ ∥f∥j∞jj−1(j!)k(k!)j−1 n1+(k−1)j

(n!C(f, k)/(n− 2k + 1)!)j/2

≤ ∥f∥j∞jj−1(j!)k(k!)j−1 n1+(k−1)j

(C(f, k)(n/2)2k−1)j/2

= ∥f∥j∞
jj−1(j!)k

n(j−2)/2

(k!)j−1

C(f, k)j/2

≤ ∥f∥j∞
(j!)k+1

n(j−2)/2

(k!)j−1ej

C(f, k)j/2

≤ (j!)k+1(
nC̃(f, k)

)j/2−1
,

where C̃(f, k) > 0 depends only on f and on k ≥ 2. □
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From Corollary 4.2, we check that the cumulants of the normalized U -statistics Sn,k satisfy

the Statulevičius growth condition (A.2) with γ := k and

∆n :=
(
nC̃(f, k)

)1/2
,

where C̃(f, k) > 0 depends only on f and on k ≥ 2. Therefore, from Proposition A.1-i) we

have the following results.

Corollary 4.3 (Kolmogorov bound). Let f : Sk ×M(k−1)k/2 → R be a measurable function

satisfying Assumption 4.1, with k ≥ 2. For n ≥ 4(k − 1), we have

sup
x∈R

∣∣P (Sn,k(f) ≤ x
)
− Φ(x)

∣∣ ≤ C(f, k)

n1/(2+4k)
,

where C(f, k) > 0 depends only on f and on k ≥ 2.

By Corollary 4.2 and Proposition A.1-ii), we also have the following result.

Corollary 4.4 (Moderate deviation principle). Let f : Sk×M(k−1)k/2 → R be a measurable

function satisfying Assumption 4.1, with k ≥ 2. Let (an)n≥1 be a sequence of real numbers

tending to infinity, and such that an ≪ n1/(2+4k). Then,
(
a−1
n Sn,k(f)

)
n≥1

satisfies a moderate

deviation principle with speed a2n and rate function x2/2.

5 Upper bounds on subgraph count cumulants

From this section, we focus on the subgraph count in the binomial RCM GH(Xn). Let

Xn = {X1, . . . , Xn} be a set of i.i.d. random points on the carrier space S = Rd with a

common continuous distribution µ. A symmetric measurable function H : Rd×Rd → [0, 1] is

called a connection function. We consider the binomial random-connection model generated

as follows: given Xn, we connect each pair of points/nodes Xi, Xj ∈ Xn, 1 ≤ i ̸= j ≤ n,

independently with probability pnH(Xi, Xj), 0 < pn < 1. The resulting random graph is

denoted by GH(Xn).

Given G = (VG, EG) a connected graph with v(G) = k ≥ 2 vertices, let

Iβ :=
∏

(ı,ȷ)∈EG

1{Xβ(ı)∼Xβ(ȷ)}, β ∈ [n]k̸=,

where Xı ∼ Xȷ indicates there is an edge between Xı and Xȷ, i.e. Iβ = 1 if and only if the

graph with vertices Xβ(1), . . . , Xβ(k) in the binomial RCM GH(Xn) is isomorphic to G.
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We let

NG :=
1

a(G)

∑
β∈[n]k̸=

Iβ (5.1)

denote the number of injective subgraphs of GH(Xn) isomorphic to G, where Xi ∼ Xj

indicates that there is an edge between Xi and Xj.

In order to incorporate with generalized U -statistics in Section 3, we can also write the

subgraph count NG as

NG = Sn,k(f) =
∑

β∈[n]k̸=

f
(
Xβ(1), . . . , Xβ(k), Yβ(1),β(2), . . . , Yβ(1),β(k), Yβ(2),β(3), . . . , Yβ(k−1),β(k)

)
,

with f : (Rd)k × [0, 1](k−1)k/2 → R given by

f(x1, . . . , xk, y1,2, . . . , y(k−1),k) :=
1

a(G)

∏
(ı,ȷ)∈EG

1{yı,ȷ≤pnH(xı,xȷ)}, (5.2)

where {Yi,j}1≤i<j≤n are i.i.d. uniform random variables on M = [0, 1].

Next, using dependency graphs and the convex analysis of planar diagrams, we consider

the cumulant growth of the subgraph count NG when pn = o(1). Before we proceed, we need

to introduce some notation. Since the random variables X1, . . . , Xn are i.i.d. and edges are

added independently according to

1{Xi∼Xj} = 1{Yi,j≤pnH(Xi,Xj)}, 1 ≤ i < j ≤ n,

the sets of random vectors

{(Iα1 , . . . , Iαj
) : ⊓

(
[α1, . . . , αj]

⊤) = ρ}

are identically distributed and have the same dependency structure for every ρ ∈ Π([j]× [k]),

which justifies the following definition.

Definition 5.1 Let j, k ≥ 1. Given ρ ∈ Π([j] × [k]), we let

κ(Iρ) := κ(Iα1 , . . . , Iαj
),

for any element [α1, . . . , αj]
⊤ of [n]k̸= × · · · × [n]k̸= such that ⊓(α) = ρ.

As a consequence of (3.2), we have

κ1(NG) =
n!

(n− k)!

p
e(G)
n

a(G)

∫
(Rd)k

∏
(ı,ȷ)∈EG

H(xı, xȷ)µ(dx1) · · ·µ(dxk), (5.3)
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while the growth of higher order cumulants can be controlled as follows. See Example 6.19

in [J LR00] and Proposition 10.1.2 and § 10.3.3 of [FMN16] for related cumulant bounds in

the Erdős-Rényi model.

Theorem 5.2 Let G = (VG, EG) be a connected graph with v(G) = k ≥ 2 vertices. We have

the cumulant bound

|κj(NG)| ≤ jj−1

a(G)j

1+(k−1)j∑
r=k

|C(j, k, r)|nrpd(j,k,r)n , j ≥ 2, (5.4)

where C(j, k, r) represents the collection of all partitions ρ on [j] × [k] connected, non-flat

and having precisely r blocks, and

d(j, k, r) := min
{
e(ρG) : ρ ∈ CNF(j, k), |ρ| = r

}
. (5.5)

Proof. The random variables

Iβ1 :=
∏

(ı,ȷ)∈EG

1{Xβ1(ı)
∼Xβ1(ȷ)

} and Iβ2 :=
∏

(ı,ȷ)∈EG

1{Xβ2(ı)
∼Xβ2(ȷ)

}, β1, β2 ∈ [n]k̸=,

are independent if {
β1(i) : i ∈ [k]

}
∩
{
β2(i) : i ∈ [k]

}
= ∅.

Hence, by Property C in [MM91, Page 29] we have

κj(NG) =
1

a(G)j

∑
α1,...,αj∈[n]k̸=

κ(Iα1 , . . . , Iαj
)

=
1

a(G)j

∑
α1,...,αj∈[n]k̸=
connected

κ(Iα1 , . . . , Iαj
)

=
1

a(G)j

∑
[α1,...,αj ]⊤∈Λj(n,k)

κ(Iα1 , . . . , Iαj
), j ≥ 2,

where

Λj(n, k) :=
{
α = [α1, . . . , αj]

⊤ ∈ [n]k̸= × · · · × [n]k̸= connected
}

: =
{
α = [α1, . . . , αj]

⊤ ∈ [n]k̸= × · · · × [n]k̸= : ⊓(α) ∈ CNF(j, k)
}
.

Now, we have

κj(NG) =
1

a(G)j

∑
ρ∈CNF(j,k)

∑
[α1,...,αj ]

⊤∈Λj(n,k)

⊓([α1,...,αj ]
⊤)=ρ

κ(Iα1 , . . . , Iαj
)
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=
1

a(G)j

∑
ρ∈CNF(j,k)

Cn(ρ)κ(Iρ)

=
1

a(G)j

∑
ρ∈CNF(j,k)

n!

(n− |ρ|)!
κ(Iρ)

=
1

a(G)j

1+(k−1)j∑
r=k

n!

(n− r)!

∑
ρ∈CNF(j,k)

|ρ|=r

κ(Iρ), (5.6)

hence

|κj(NG)| ≤ 1

a(G)j

1+(k−1)j∑
r=k

n!

(n− r)!
|C(j, k, r)| max

ρ∈C(j,k,r)
|κ(Iρ)|. (5.7)

Due to the cumulant-moment relation (A.1), we have, for each α = [α1, . . . , αj]
⊤ ∈ Λj(n, k),

κ(Iα1 , . . . , Iαj
) =

∑
s≥1

∑
σ={b1,...,bs}∈Π([j])

(−1)s−1(s− 1)!E

[∏
i∈b1

Iαi

]
× · · · × E

[∏
i∈bs

Iαi

]

= E

[
j∏

i=1

Iαi

]
+
∑
s≥2

∑
σ={b1,...,bs}∈Π([j])

(−1)s−1(s− 1)!E

[∏
i∈b1

Iαi

]
× · · · × E

[∏
i∈bs

Iαi

]
.

Moreover, denoting by ⊓(α)G the connected graph built on ⊓(α) ∈ Π([j] × [k]) in Defini-

tion 2.3, we have

E

[
j∏

i=1

Iαi

]
= E

 j∏
i=1

 ∏
(ı,ȷ)∈E(G)

1{Xαi(ı)
∼Xαi(ȷ)

}


= pe(⊓(α)G)

n

∫
(Rd)|⊓(α)|

∏
(ı,ℓ)∈E(⊓(α)G)

H(xı, xℓ)µ(dx1) · · ·µ(dx|⊓(α)|)

≤ pe(⊓(α)G)
n ,

where the last inequality is due to the facts that 0 ≤ H ≤ 1 and µ is a probability measure

on Rd. For each ρ ∈ Π([j] × [k]) and b ⊂ [j], we denote ρ|b := ρ|{πi : i∈b} the partition of

∪i∈bπi obtained restricting ρ on ∪i∈bπi, i.e.

ρ|b = {a ∩ (∪i∈bπi) : a ∈ ρ}.

Therefore, for any σ = {b1, . . . , br} ∈ Π([j]) with r ≥ 2 we have, letting ρ := ⊓(a),

r∏
i=1

E

[∏
j∈bi

Iαj

]
=

r∏
i=1

E

∏
ℓ∈bi

 ∏
(ı,ȷ)∈E(G)

1{Xαℓ(ı)
∼Xαℓ(ȷ)

}


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=
r∏

i=1

p
e((ρ|bi )G)
n

∫
(Rd)|ρ|bi |

∏
(ı,ℓ)∈E((ρ|bi )G)

H(xı, xℓ)µ(dx1) · · ·µ(dx|ρ|bi |
)

≤ p
∑r

i=1 e((ρ|bi )G)
n

≤ pe(ρG)
n

= pe(⊓(α)G)
n .

Next, we have

max
ρ∈C(j,k,r)

|κ(Iρ)| ≤ pd(j,k,r)n

j∑
s=1

∑
σ={b1,...,bs}∈Π([j])

(s− 1)!

= pd(j,k,r)n

j∑
s=1

(s− 1)!S(j, s)

≤ p
d(j,k,r)
n

j

j∑
s=1

(j)sS(j, s)

≤ pd(j,k,r)n jj−1,

where S(j, r) is the Stirling number of the second kind. Therefore, together with (5.7), we

obtain

|κj(NG)| ≤ 1

a(G)j

1+(k−1)j∑
r=k

n!

(n− r)!
|C(j, k, r)|pd(j,k,r)n jj−1

≤ jj−1

a(G)j

1+(k−1)j∑
r=k

|C(j, k, r)|nrpd(j,k,r)n ,

which proves (5.4). □

6 Variance lower bounds for subgraph counts

To prove Theorem 7.5, we shall derive a variance lower bound for the subgraph count NG

in the binomial RCM. For this purpose, we need to introduce some notation. Recall f from

(5.2), we further denote, for 1 ≤ ℓ ≤ k,

f(ℓ)(x) :=
1

a(G)
E

 ∏
(ı,ȷ)∈EG

1{Yı,ȷ≤pnH(Xı,Xȷ)}

∣∣∣∣∣∣Xℓ = x


: =

∫
(Rd)k−1×[0,1](k−1)k/2

f(x,y)µ⊗(k−1)(dx1, . . . , dxℓ−1, dxℓ+1, . . . , dxk)dy
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: =
p
e(G)
n

a(G)

∫
(Rd)k−1

∏
(ı,ȷ)∈E(G)

H(xı, xȷ)µ
⊗(k−1)(dx1, . . . , dxℓ−1, dxℓ+1, . . . , dxk), (6.1)

where x = (x1, . . . , xℓ−1, x, xℓ+1, . . . , xk).

Proposition 6.1 Suppose that the function f in (5.2) satisfies Assumption 4.1. Then, we

have the following variance lower bound for subgraph counts:

Var[NG] ≥ C

a(G)2

(
n!

(n− 2k + 1)!
p2e(G)
n +

n!

(n− k)!
pe(G)
n

)
, (6.2)

where C > 0 is a constant independent of n ≥ 2k − 1.

Proof. We reuse the notation

Iβ :=
∏

(ı,ȷ)∈EG

1{Xβ(ı)∼Xβ(ȷ)}, β ∈ [n]k̸=.

Because the indicator random variable Iβ, β ∈ [n]k̸=, indicates that there is a copy of G on{
Xβ(1), . . . , Xβ(k)

}
, it is easy to see that for any α1, α2 ∈ [n]k̸= we have

E[Iα1 | Iα2 = 1] ≥ E[Iα1 ],

hence

Cov(Iα1 , Iα2) ≥ 0, α1, α2 ∈ [n]k̸=.

This further implies κ(Iρ) ≥ 0 for any ρ ∈ CNF(2, k). For any ρ ∈ CNF(2, k) with |ρ| =

2k − 1, there is only one block containing exactly two elements in ρ and the rest 2k − 2

blocks containing exactly one element. Without loss of generality, we assume ρ ∈ CNF(2, k)

with |ρ| = 2k − 1 and {(1, 1), (2, t)} ∈ ρ for some t ∈ [k]. Then, we have

κ(Iρ) = E

 ∏
(ı,ȷ)∈EG

1{Xı∼Xȷ}

 ∏
(ı,ȷ)∈EG

1{X′
ı∼X′

ȷ}

−

E

 ∏
(ı,ȷ)∈EG

1{Xı∼Xȷ}

2

= a(G)2
(
E[f(1)(X1)f(t)(X1)] − E[f(1)(X1)]

2
)
,

where {X ′
1, . . . , X

′
k} are i.i.d. copies of X ∼ µ, independent of {X1, . . . , Xk}, with X ′

t being

replaced by X1. From Assumption 4.1, we have

∑
ρ∈CNF(2,k)
|ρ|=2k−1

κ(Iρ) = a(G)2

E

( k∑
i=1

f(i)(X1)

)2
− k2E[f(1)(X1)]

2


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= a(G)2Var

[
k∑

i=1

f(i)(X1)

]
> 0.

On the other hand, combining the above with (6.1), we find that∑
ρ∈CNF(2,k)
|ρ|=2k−1

κ(Iρ) = a(G)2Var

[
k∑

i=1

f(i)(X1)

]

= p2e(G)
n Var

 k∑
i=1

f(i)

∫
(Rd)k−1

∏
(ı,ȷ)∈E(G)

H(xı, xȷ)µ
⊗(k−1)(dx1, . . . , dxi−1, dxi+1, . . . , dxk)


= C1p

2e(G)
n , (6.3)

where

C1 : = C1(µ,H)

= Var

 k∑
i=1

f(i)

∫
(Rd)k−1

∏
(ı,ȷ)∈E(G)

H(xı, xȷ)µ
⊗(k−1)(dx1, . . . , dxi−1, dxi+1, . . . , dxk)

 > 0

is a constant independent of n ≥ 1 and x = (x1, . . . , xℓ−1, X1, xℓ+1, . . . , xk).

Taking j = 2 in (5.6), together with (6.3), we obtain the following lower bound for the

variance of subgraph counts:

Var[NG] =
1

a(G)2

2k−1∑
r=k

n!

(n− r)!

∑
ρ∈CNF(2,k)

|ρ|=r

κ(Iρ)

≥ 1

a(G)2

 n!

(n− k)!

∑
ρ∈CNF(2,k)

|ρ|=k

κ(Iρ) +
n!

(n− 2k + 1)!

∑
ρ∈CNF(2,k)
|ρ|=2k−1

κ(Iρ)



≥ 1

a(G)2

 n!

(n− k)!
κ(Iρ̃) +

n!

(n− 2k + 1)!

∑
ρ∈CNF(2,k)
|ρ|=2k−1

κ(Iρ)

 ,

where ρ̃ is the partition ρ̃ =
{
{(1, 1), (2, 1)}, . . . , {(1, k), (2, k)}

}
of [2] × [k] Next, for any

β = [β1, β2]
⊤ ∈ ([n]k̸=)2 such that ⊓(β) = ρ̃, we have

κ(Iρ̃) = Var[Iβ] = θprn(1 − θprn) = θpe(G)
n

(
1 − θpe(G)

n

)
where

θ :=

∫
(Rd)k

∏
(ı,ȷ)∈E(G)

H(xı, xȷ)µ
⊗k(dx1, . . . , dxk),
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hence

Var[NG] ≥ 1

a(G)2

(
n!

(n− k)!
θpe(G)

n

(
1 − θpe(G)

n

)
+

n!

(n− 2k + 1)!
C1p

2e(G)
n

)
≥ C2

a(G)2

(
n!

(n− 2k + 1)!
p2e(G)
n +

n!

(n− k)!
pe(G)
n

)
,

with C2 := min
(
C1, θ

(
1 − θp

e(G)
n

))
. □

7 Growth rates of subgraph count cumulants

The general cumulant upper bound of the subgraph count NG established in Theorem 5.2

does not yield an explicit asymptotic growth order. In this section, we perform a more

detailed analysis of cumulant growth rates by identifying the leading terms of the form

nrp
d(j,k,r)
n in (5.4), r = k, . . . , 1+(k−1)j, where d(j, k, r) is defined in (5.5), with in particular

dk = e(G), d1+(k−1)j = je(G). (7.1)

To this end, we start by deriving cumulant growth rates via the convex analysis of planar

diagrams used in [LP24b] in the random-connection model and introduced in [J LR00] for

the Erdős-Rényi model. Firstly, we adopt some notation from [LP24b].

Definition 7.1 Let G be a connected graph with k ≥ 2 vertices. For j ≥ 1, we let

i) Σj(G) :=
{

(x(ρG), y(ρG)) := (jk − v(ρG), je(G) − e(ρG)) : ρ ∈ CNF(j, k)
}

,

where for each ρ ∈ Π([j] × [k]), ρG is the graph associated to ρ by Definition 2.3;

ii) and we let Σ̂j(G) denote the upper boundary of the convex hull of Σj(G).

Remark 7.2 According to (7.1), we can see that two endpoints of the upper boundary of the

convex hull of Σj(G) have coordinates (j − 1, 0) and ((j − 1)k, (j − 1)e(G)).

The following example was considered in [LP24b, Example 5.2] in the Poisson random-

connection model.

Example 7.3 Let G = C3 be a triangle, i.e. v(G) = e(G) = 3. We have
Σ2(C3) = {(3, 3), (2, 1), (1, 0)},

Σ3(C3) = {(6, 6), (5, 4), (4, 3), (5, 3), (4, 2), (4, 1), (3, 1), (3, 0), (2, 0)},

Σ4(C3) = {(9, 9), (8, 7), (7, 6), (8, 6), (7, 5), (7, 4), (6, 4), (6, 3), (5, 3), (7, 3),

(6, 2), (5, 2), (7, 2), (6, 1), (5, 1), (4, 1), (6, 0), (5, 0), (4, 0), (3, 0)},
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see Figure 5-(a) with j = 3, k = 3, e(G) = 3, and Figure 5-(b) j = 4, k = 3, e(G) = 3.
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(a) Plot of Σ3(C3).
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(b) Plot of Σ4(C3).

Figure 5: Set Σn(C3) and upper boundary of its convex hull (in red) for n = 3, 4.

From Figure 5 we can also check that

Σ̂3(C3) ∩ Σ3(C3) = {(6, 6), (4, 3), (2, 0)},

Σ̂4(C3) ∩ Σ4(C3) = {(9, 9), (7, 6), (5, 3), (3, 0)}.

We recall the following definition.

Definition 7.4 [ LR92], [J LR00, pages 64-65] A graph G is strongly balanced if

e(H)

v(H) − 1
≤ e(G)

v(G) − 1
, H ⊂ G. (7.2)

Theorem 7.5 Let G be a strongly balanced connected graph.

a) If n−(v(G)−1)/e(G) ≪ pn, then for n large enough we have

|κj(NG)| ≤ jj−1j!v(G)v(G)!j−1

a(G)j
n1+(v(G)−1)jpje(G)

n , j ≥ 2. (7.3)

b) If pn ≪ n−(v(G)−1)/e(G), then for n large enough we have

|κj(NG)| ≤ jj−1j!v(G)v(G)!j−1

a(G)j
nv(G)pe(G)

n , j ≥ 2. (7.4)

Proof. We let k := v(G). According to [LP24b, Proposition 6.4], if G is a strongly balanced

graph, then the upper boundary of the convex hull of Σj(G), j ≥ 2, is a line segment, whose

endpoints are (j−1, 0) and ((j−1)k, (j−1)e(G)), see Remark 7.2 and Figure 6 for j = k = 3.

Then, for any r ∈ {k + 1, . . . , (k − 1)j}, the asymptotic order of summands appearing in

the upper bound of (5.4) is corresponding to a point (jk − r, je(G) − d(j, k, r)) denoted by
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the blue dots in Figure 6. For every such point (jk − r, je(G) − d(j, k, r)) located within

the convex hull, comparing the ratio of a line segment that connects itself with the right

endpoint ((j − 1)k, (j − 1)e(G)) of the upper boundary of the convex hull with the ratio of

the upper boundary, we have

(j − 1)e(G) − (je(G) − d(j, k, r))

(j − 1)k − (jk − r)
≥ (j − 1)e(G)

(j − 1)k − (j − 1)
=

e(G)

k − 1
,

hence, choosing j ≥ 2,
d(j, k, r) − e(G)

r − k
≥ e(G)

k − 1
, (7.5)

see for example the dashed line in Figure 6-(a) with j = k = e(G) = 3, r = 5 and d(3, 3, 5) =

8, in the framework of Example 2.4.
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(a) Plot of Σ3(C3).
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(b) Plot of Σ3(C3).

Figure 6: Set Σ3(C3) and upper boundary of its convex hull (in red).

Similarly, for any r ∈ {k + 1, . . . , (k − 1)j}, when comparing ratio of line segment between

point (jk− r, je(G) − d(j, k, r)) and the left endpoint of the upper boundary (j − 1, 0) with

the ratio of the upper boundary Σ̂j(G), if (jk − r, je(G) − d(j, k, r)) ∈ Σ̂j(G), then we have

je(G) − d(j, k, r)

jk − r − (j − 1)
=

(j − 1)e(G)

(j − 1)k − (j − 1)
,

hence
je(G) − d(j, k, r)

jk − r − (j − 1)
=

e(G)

k − 1
. (7.6)

On the other hand, if (jk − r, je(G) − d(j, k, r)) /∈ Σ̂j(G), we have

je(G) − d(j, k, r)

jk − r − (j − 1)
<

e(G)

k − 1
, (7.7)

see for example the dashed line in Figure 6-(b) with j = k = e(G) = 3, r = 5 and d(3, 3, 5) =

8, as in Example 2.4.
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a) When n−(k−1)/e(G) ≪ pn, using (7.6) and (7.7), for any r ∈ {k, . . . , (k − 1)j} we have

n1+(k−1)jp
je(G)
n

nrp
d(j,k,r)
n

= n1+(k−1)j−rpje(G)−d(j,k,r)
n

=

(
np

je(G)−d(j,k,r)
1+(k−1)j−r

n

)1+(k−1)j−r

≳

(
np

e(G)
k−1
n

)1+(k−1)j−r

≫ 1. (7.8)

Therefore, after combining with (5.4), for n large enough we have

|κj(NG)| ≤ jj−1

a(G)j

1+(k−1)j∑
r=k

|C(j, k, r)|nrpd(j,k,r)n

≤ jj−1

a(G)j
n1+(k−1)jpje(G)

n

1+(k−1)j∑
r=k

|C(j, k, r)|

=
jj−1

a(G)j
n1+(k−1)jpje(G)

n |CNF(j, k)|

≤ j!kk!j−1 jj−1

a(G)j
n1+(k−1)jpje(G)

n ,

where the last inequality is from Lemma 2.5.

b) When pn ≪ n−(k−1)/e(G), for any r ∈ {k + 1, . . . , (k − 1)j + 1}, by (7.5) we have

nkp
e(G)
n

nrp
d(j,k,r)
n

=

(
np

d(j,k,r)−e(G)
r−k

n

)−(r−k)

≳

(
np

e(G)
k−1
n

)−(r−k)

≫ 1. (7.9)

Hence, from (5.4), for n large enough we have

|κj(NG)| ≤ jj−1

a(G)j

1+(k−1)j∑
r=k

|C(j, k, r)|nrpd(j,k,r)n

≤ jj−1

a(G)j
nkpe(G)

n

1+(k−1)j∑
r=k

|C(j, k, r)|

=
jj−1

a(G)j
nkpe(G)

n |CNF(j, k)|

≤ j!kk!j−1 jj−1

a(G)j
nkpe(G)

n .
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The proof is complete. □

By inspection of the proof of Theorem 7.5, see (7.8) and (7.9) therein, we note that its

conclusions also hold under the following alternative conditions.

Proposition 7.6 Let G be a strongly balanced connected graph.

a) If n−(v(G)−1)/e(G) ≤ pn, n ≥ 1, then we have

|κj(NG)| ≤ jj−1j!v(G)v(G)!j−1

a(G)j
n1+(v(G)−1)jpje(G)

n , j ≥ 2, n ≥ 1.

b) If pn ≤ n−(v(G)−1)/e(G), n ≥ 1, then we have

|κj(NG)| ≤ jj−1j!v(G)v(G)!j−1

a(G)j
nv(G)pe(G)

n , j ≥ 2, n ≥ 1.

Proposition 7.7 is a straightforward consequence of Proposition 6.1. Note that (6.2) in

Assumption 4.1 is valid in the binomial RCM, but it is not satisfied in the Erdős-Rényi

model. Indeed, the principal degree of f equals 2 in the Erdős-Rényi model, see § 9 in

[JN91].

Proposition 7.7 Let G be a strongly balanced connected graph. Suppose that the function

f in (5.2) satisfies Assumption 4.1.

a) If n−(v(G)−1)/e(G) ≪ pn, we have the lower bound

κ2(NG) ≥ C

a(G)2
n!

(n + 1 − 2v(G))!
p2e(G)
n , j ≥ 1, (7.10)

where C > 0 is a constant independent of n ≥ 2v(G) − 1.

b) If pn ≪ n−(v(G)−1)/e(G), we have the lower bound

κ2(NG) ≥ C

a(G)2
n!

(n− v(G))!
pe(G)
n , j ≥ 1, (7.11)

where C > 0 is a constant independent of n ≥ 2v(G) − 1.

As a consequence of Theorem 7.5 and 7.7, we have the following corollary in the binomial

RCM.
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Corollary 7.8 Let G be a strongly balanced connected graph. Suppose that the function f

in (5.2) satisfies Assumption 4.1. Then, for n ≥ 1 large enough, the j-th cumulant of the

normalized subgraph count

NG :=
NG − κ1(NG)√

κ2(NG)

satisfies

κj

(
NG

)
≤


j!1+v(G)

(Cn)j/2−1
when n−(v(G)−1)/e(G) ≪ pn,

j!1+v(G)(
Cnv(G)p

e(G)
n

)j/2−1
when pn ≪ n−(v(G)−1)/e(G),

j ≥ 3, where C is a constant independent of n ≥ 1.

Proof. We let k = v(G). When n−(k−1)/e(G) ≪ pn, from the inequalities (4.9), (4.10), (7.3)

and (7.10), we have

κj

(
NG

)
=

κj(NG)

κ2(NG)j/2

≤ j!kk!j−1 jj−1

a(G)j
n1+(k−1)jpje(G)

n

(
C

a(G)2
n!

(n− 2k + 1)!
p2e(G)
n

)−j/2

= jj−1j!kk!j−1n1+(k−1)j

(
C

n!

(n− 2k + 1)!

)−j/2

≤ j!k+1ejk!j−1n1+(k−1)j

(
C
(n

2

)2k−1
)−j/2

=
j!k+1

n(j−2)/2
ejk!j−1C−j/22j(k−1/2).

Similarly, when pn ≪ n−(k−1)/e(G), from the inequality

n!

(n− k)!
≥ (n− k + 1)k =

(
1 − k − 1

n

)k

nk ≥
(

3n

4

)k

and (7.4)-(7.11), we have

κj

(
NG

)
=

κj(NG)

κ2(NG)j/2

≤ j!kk!j−1 jj−1

a(G)j
nkpe(G)

n

(
C

a(G)2
n!

(n− k)!
pe(G)
n

)−j/2

= jj−1j!kk!j−1nkpe(G)
n

(
C

n!

(n− k)!
pe(G)
n

)−j/2

≤ (j − 1)!√
2πj

ejj!kk!j−1nkpe(G)
n

(
C

(
3n

4

)k

pe(G)
n

)−j/2
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≤ ejj!k+1k!j−1nkpe(G)
n

(
C

(
3n

4

)k

pe(G)
n

)−j/2

=
j!k+1ejk!j−1(
nkp

e(G)
n

)(j−2)/2

(
C

(
3

4

)k
)−j/2

.

□

From Corollary 7.8, we can see that the cumulants of the normalized subgraph count NG

satisfy the Statulevičius growth condition (A.2) with γ := v(G) and

∆n :=

(Cn)1/2 when n−(v(G)−1)/e(G) ≪ pn,(
Cnv(G)pe(G)

n

)1/2
when pn ≪ n−(v(G)−1)/e(G),

where C is a constant independent of n ≥ 1. Therefore, from Proposition A.1-i) we have the

following results.

Corollary 7.9 (Kolmogorov bound). Let G be a strongly balanced connected graph. Suppose

that the function f in (5.2) satisfies Assumption 4.1. For n ≥ 1 large enough the normalized

subgraph count NG satisfies

sup
x∈R

∣∣P(NG ≤ x
)
− Φ(x)

∣∣ ≤


C

n1/(2+4v(G))
when n−(v(G)−1)/e(G) ≪ pn,

C(
nv(G)p

e(G)
n

)1/(2+4v(G))
when pn ≪ n−(v(G)−1)/e(G).

for some C > 0.

By Corollary 7.8 and Proposition A.1-ii), we also have the following result.

Corollary 7.10 (Moderate deviation principle). Let G be a strongly balanced connected

graph. Suppose that the function f in (5.2) satisfies Assumption 4.1. Let (an)n≥1 be a

sequence of real numbers tending to infinity, and such thatan ≪ n1/(2+4v(G)) when n−(v(G)−1)/e(G) ≪ pn,

an ≪
(
nv(G)pe(G)

n

)1/(2+4v(G))
when pn ≪ n−(v(G)−1)/e(G).

Then,
(
a−1
n NG

)
n≥1

satisfies a moderate deviation principle with speed a2n and rate function

x2/2.

Another direct consequence of Theorem 7.5 is the following threshold phenomenon of sub-

graph containment in the binomial RCM.
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Corollary 7.11 Let G be a strongly balanced connected graph, and suppose that the function

f in (5.2) satisfies Assumption 4.1. We have

a) limn→∞ P (NG = 0) = 1 if pn ≪ n−v(G)/e(G),

b) limn→∞ P (NG = 0) = 0 if pn ≫ n−v(G)/e(G).

Proof. We let k = v(G). When pn ≫ n−k/e(G), from (7.3) we have

κ2(NG) ≤ 2k+1k!

a(G)2
n1+2(k−1)p2e(G)

n ,

hence by (5.3) we have

lim
n→∞

κ2(NG)

κ1(NG)2
= 0,

and

lim
n→∞

(E[NG])2

E[N2
G]

= lim
n→∞

κ1(NG)2

κ2(NG) + κ1(NG)2
= 1.

On the other hand, if pn ≪ n−k/e(G), from (5.3), we have

lim
n→∞

E(NG) = 0.

We conclude by the first and second moment methods, see [J LR00, Page 54], which state

that
(E[NG])2

E[N2
G]

≤ P(NG > 0) ≤ E[NG]. (7.12)

□

A Cumulant method

Given (Xl)l≥1 a sequence of random variables, for any subset b of {1, . . . , n} we consider a

family

Xb = (Xl)l∈b

indexed by b ⊂ [n]. Taking b := {j1, . . . , jk}, the joint characteristic function of the vector

Xb is defined as

φXb
(t1, . . . , tk) := E

[
exp

(
i

k∑
ℓ=1

tℓXjℓ

)]
,

and the the joint cumulant of Xb is defined as

κ(Xb) = (−i)k
∂k

∂t1 · · · ∂tk
lnφXb

(t1, . . . , tk)|t1=···=tk=0.
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For any random variable ξ, we let ξ′b := (ξ, . . . , ξ) denote the random vector with |b| entries

identical to ξ, and write κn(ξ) := κ(ξ′[n]) for the n-th order cumulant of ξ. From Theorem 1

in [Luk55], see also [LS59], [Mal80], we have the relation

κ(Xb) =
∑

σ∈Π(b)

(−1)s−1(s− 1)!
∏
a∈σ

E

[∏
l∈a

Xl

]
(A.1)

between the joint moments and cumulants of the random vector Xb, b ⊂ [n]. The following

results are summarized from the “main lemmas” in Chapter 2 of [SS91] and [DE13].

Proposition A.1 Let (Xn)n≥1 be a family of random variables with mean zero and unit

variance for all n ≥ 1. Suppose that for all n ≥ 1, all moments of the random variable Xn

exist and that the cumulants of Xn satisfy

|κj(Xn)| ≤ (j!)1+γ

(∆n)j−2
, j ≥ 3, (A.2)

where γ ≥ 0 depends only on n ≥ 1, while ∆n ∈ (0,∞) may depend on n ≥ 1. Then, the

following assertions hold.

i) (Kolmogorov bound, [SS91, Corollary 2.1] and [DJS22, Theorem 2.4]) One has

sup
x∈R

|P(Xn ≤ x) − Φ(x)| ≤ C(γ)

(∆n)1/(1+2γ)
,

for some C(γ) > 0 depending only on γ.

ii) (Moderate deviation principle, [DE13, Theorem 1.1] and [DJS22, Theorem 3.1]). Let

(an)n≥1 be a sequence of real numbers tending to infinity, and such that

an ≪ (∆n)1/(1+2γ).

Then, (a−1
n Xn)n≥1 satisfies a moderate deviation principle with speed a2n and rate func-

tion x2/2.

iii) (Concentration inequality, corollary of [SS91, Lemma 2.4] and [DJS22, Theorem 2.5]).

For any x ≥ 0 and sufficiently large n ≥ 1,

P(|Xn| ≥ x) ≤ 2 exp

(
−1

4
min

(
x2

21+γ
, (x∆n)1/(1+γ)

))
.
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iv) (Normal approximation with Cramér corrections, [SS91, Lemma 2.3]). There exists a

constant c > 0 such that for all n ≥ 1 and x ∈ (0, c(∆n)1/(1+2γ)) we have

P(Xn ≥ x)

1 − Φ(x)
=

(
1 + O

(
x + 1

(∆n)1/(1+2γ)

))
exp

(
L̃(x)

)
,

P(Xn ≤ −x)

Φ(−x)
=

(
1 + O

(
x + 1

(∆n)1/(1+2γ)

))
exp

(
L̃(−x)

)
,

where L̃(x) is related to the Cramér-Petrov series.
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[DST16] L. Decreusefond, M. Schulte, and C. Thäle. Functional Poisson approximation in Kantorovich-
Rubinstein distance with applications to U -statistics and stochastic geometry. Ann. Probab.,
44(3):2147–2197, 2016.

[ER23] P. Eichelsbacher and B. Rednoß. Kolmogorov bounds for decomposable random variables and
subgraph counting by the Stein-Tikhomirov method. Bernoulli, 29(3):1821–1848, 2023.
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