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Abstract

In this paper we review the hedging of interest rate derivatives priced under
a risk-neutral measure, and we compute self-financing hedging strategies for
various derivatives using the Clark-Ocone formula.
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1 Introduction

While the pricing of interest rate derivatives is well understood, due notably to the use

of the change of numeraire technique, the computation of hedging strategies for such

derivatives presents several difficulties. In general, hedging strategies appear not to be

unique and one is faced with the problem of choosing an appropriate tenor structure

of bond maturities in order to correctly hedge maturity-related risks, see e.g. [3] in

the jump case. In [6], self-financing hedging strategies have been computed for swap-

tions in a geometric Brownian model, using the associated forward measure. In [7]

this approach has been extended to other interest rate derivatives using the Markov

property and stochastic integral representation formulas under change of numeraire,

which is a natural tool for the pricing of such derivatives.
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In this paper we focus on the hedging of interest rate derivatives under the risk-neutral

probability measure P itself, using the general framework for the hedging of interest

rate derivatives introduced in [1], [2], which is based on a cylindrical Wiener process

(Wt)t∈IR+ with values in a Hilbert space H under P. In particular, we compute hedging

strategies for interest rate derivatives, using both Delta hedging and the Clark-Ocone

formula. As in [7], we determine the relevant tenor structure from payoff structure

of the claim, in such a way that the hedging strategy does not explicitly depend on

bond volatilities.

We proceed as follows. The notation on bond markets and option pricing under the

risk-neutral measure is introduced at the end of this Section. In Section 2 we derive

self-financing hedging strategies for interest rate derivatives based on the Markov

property. Finally in Section 3 we use the Clark-Ocone formula to compute self-

financing hedging strategies for interest rate derivatives. We mainly consider three

examples, namely swaptions, bond options, and caplets on the forward and LIBOR

rates.

Notation

We work in the infinite dimensional framework of [1], [2]. Consider a probability space

(Ω,F ,P) on which is defined a cylindrical Wiener process (Wt)t∈IR+ with values in a

Hilbert space H. The measure P is taken as a risk-neutral measure. Let (rt)t∈IR+

denote a short term interest rate process adapted to the filtration (Ft)t∈IR+ generated

by (Wt)t∈IR+ , consider the bank account process

Bt = e
∫ t
0 rsds, t ∈ IR+.

By risk-neutral valuation under the measure P, an FT -measurable claim with payoff

ξ, maturity S and exercise date T , is priced at time t as

IE
[
e−

∫ S
t rsdsBS ξ̃

∣∣∣Ft] = Bt IE[ξ̃ | Ft], 0 ≤ t ≤ T < S, (1.1)

where

ξ̃ = B−1S ξ ∈ L1(P,FS)
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denotes the discounted payoff of the claim.

We will work with a continuous Ft-adapted asset price process (Xt)t∈IR+ taking values

in a real separable Hilbert space F of real-valued functions on IR+, usually a weighted

Sobolev space F of real-valued functions on IR+, cf. [5] and § 6.5.2 of [2]. In the

sequel, (Xt)t∈IR+ will represent either a bond price curve taking values in the function

space F , or a real-valued asset price when F = IR, cf. also [7]. We note that the

discounted asset price

X̃t :=
Xt

Bt

, 0 ≤ t ≤ T,

is an F -valued martingale under the risk-neutral measure P, provided it is integrable

under P. More precisely we will assume that (X̃t)t∈IR+ satisfies

dX̃t = σtdWt, t ∈ IR+, (1.2)

where (σt)t∈IR+ is an LHS(H,F )-valued adapted process of Hilbert-Schmidt operators

from H to F .

2 Risk-neutral hedging in bond markets

Assume that the discounted claim ξ̃ ∈ L2(Ω) has the predictable representation

ξ̃ = IE[ξ̃] +

∫ T

0

〈φ̃t, dX̃t〉F ∗,F , (2.1)

where (X̃t)t∈[0,T ] is given by (1.2) and (φ̃t)t∈[0,T ] is a square-integrable F ∗ -valued

adapted process of continuous linear mappings on F under P, from which it follows

that the discounted claim price

Ṽt := IE[ξ̃ | Ft], 0 ≤ t ≤ T,

is a martingale that can be decomposed as

Ṽt = IE[ξ̃] +

∫ t

0

〈φ̃s, dX̃s〉F ∗,F , 0 ≤ t ≤ T. (2.2)

Consider a portfolio strategy (φ̃t, η̃t) with value

Vt := 〈φ̃t, Xt〉F ∗,F + η̃tBt =

∫ ∞
T

Xt(y)φ̃t(dy) + η̃tBt (2.3)
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where φ̃t(dy) will denote the amount of bonds having maturity in [y, y + dy] in the

portfolio, and η̃t denotes the quantity invested in the money market account in the

portfolio at time t ∈ [0, T ].

Definition 2.1 The portfolio strategy (φ̃t, η̃t), 0 ≤ t ≤ T , is said to be self-financing

if

dVt = 〈φ̃t, dXt〉F ∗,F + η̃tdBt, 0 ≤ t ≤ T. (2.4)

We say that the portfolio strategy (φ̃t, η̃t) hedges the option with payoff ξ if for all

t ∈ [0, T ], its value 〈φ̃t, Xt〉F ∗,F + η̃tBt satisfies

〈φ̃t, Xt〉F ∗,F + η̃tBt = IE
[
e−

∫ S
t rsdsξ

∣∣∣Ft] ,
i.e.

Ṽt = 〈φ̃t, X̃t〉F ∗,F + η̃t =

∫ ∞
T

X̃t(y)φ̃t(dy) + η̃t, 0 ≤ t ≤ T,

where X̃t = B−1t Xt, 0 ≤ t ≤ T , is the discounted asset price.

The next proposition is well known and is a particular case of a general change of

numeraire argument, cf. e.g. [6], [7].

Proposition 2.2 Letting η̃t = Ṽt − 〈X̃t, φ̃t〉F ∗,F , 0 ≤ t ≤ T , where (φ̃t)t∈[0,T ] satisfies

(2.1), the portfolio (φ̃t, η̃t)t∈[0,T ] with value

Vt = 〈φ̃t, Xt〉F ∗,F + η̃tBt, 0 ≤ t ≤ T, (2.5)

is self-financing and hedges the claim ξ = BS ξ̃.

Proof. By (2.5) we have

Vt = BtṼt = Bt IE[ξ̃ | Ft] = IE
[
e−

∫ S
t rsdsξ

∣∣∣Ft] , 0 ≤ t ≤ T,

hence the portfolio (φ̃t, η̃t)t∈[0,T ] hedges the payoff ξ = BS ξ̃. Next, we show that it is

self-financing. We have

dVt = d(BtṼt)

= ṼtdBt +BtdṼt + dBt · dṼt
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= ṼtdBt +Bt〈φ̃t, dX̃t〉F ∗,F + dBt · 〈φ̃t, dX̃t〉F ∗,F

= 〈φ̃t, X̃t〉F ∗,FdBt +Bt〈φ̃t, dX̃t〉F ∗,F + dBt · 〈φ̃t, dX̃t〉F ∗,F + (Ṽt − 〈φ̃t, X̃t〉F ∗,F )dBt

= 〈φ̃t, d(BtX̃t)〉F∗,F + (Ṽt − 〈φ̃t, X̃t〉F ∗,F )dBt

= 〈φ̃t, dXt〉F ∗,F + η̃tdBt.

where

dBt · dṼt = dBt · 〈φ̃t, dX̃t〉F ∗,F = 0.

�

Next we recall how the process (φ̃t)t∈IR+ in the predictable representation (2.2) can be

computed by the Clark-Ocone formula, cf. [1]. Let D denote the Malliavin gradient

defined on smooth functionals of Brownian motion of the form

ξ̃ = f(Wt1(h1), . . . ,Wtn(hn)), 0 < t1 < · · · < tn,

f ∈ C1b (IRn), h1, . . . , hn ∈ H, as

Dtξ̃ =
n∑
k=1

1[0,tk](t)
∂f

∂xk
(Wt1(h1), . . . ,Wtn(hn))⊗ hk, (2.6)

cf. § 5.1.2 of [2], and extended by closability to its domain Dom (D).

To hedge a claim ξ in this setting, we decompose the discounted payoff ξ̃ as

ξ̃ = IE[ξ̃] +

∫ T

0

〈IE[Dtξ̃ | Ft], dWt〉H = IE[ξ̃] +

∫ T

0

〈αt, dWt〉H (2.7)

where, by the Clark-Ocone formula,

αt = IE[Dtξ̃ | Ft], (2.8)

cf. Theorem 5.3 of [2].

From Relations (1.2) and (2.7) the process (φ̃t)t∈IR+ in (2.1) is given by

φ̃t = (σ∗t )
−1αt = (σ∗t )

−1 IE[Dtξ̃ | Ft], 0 ≤ t ≤ T, (2.9)

provided σ∗t : H → F is invertible, 0 ≤ t ≤ T .
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Markovian case

Next, assume in addition that (X̃t)t∈IR+ has the Markov property, and the dynamics

dX̃t = σt(X̃t)dWt, (2.10)

where x 7→ σt(x) ∈ LHS(H,F ) is a Lipschitz function from F into the space of

Hilbert-Schmidt operator from H to F , uniformly in t ∈ IR+. In case H = F = IR

and σt(X̃t) = σ(t)X̃t, i.e. the martingale (X̃t)t∈[0,T ] is a geometric Brownian motion

under P with deterministic variance (σ(t))t∈[0,T ].

In the Markovian setting of (2.10), DtX̃T can be computed as

DtX̃T = Ỹt,Tσt(X̃t), (2.11)

where (Ỹt,T )t∈[0,T ] is solution of

Ỹs,t = Id +

∫ t

s

∇σu(X̃u)Ỹs,udWu, 0 ≤ s ≤ t, (2.12)

cf. Proposition 6.7 of [2], hence in case ξ̃ = g̃(X̃T ) we get, assuming that g̃ is Lipschitz,

φ̃t = (σ∗t (X̃t))
−1αt

= (σ∗t (X̃t))
−1 IE

[
Dtg̃(X̃T )

∣∣∣Ft]
= (σ∗t (X̃t))

−1 IE
[
(DtX̃T )∗∇g̃(X̃T )

∣∣∣Ft]
= (σ∗t (X̃t))

−1 IE
[
(Ỹt,Tσt(X̃t))

∗∇g̃(X̃T )
∣∣∣Ft]

= IE
[
Ỹ ∗t,T∇g̃(X̃T )

∣∣∣Ft] , 0 ≤ t ≤ T,

cf. [2] § 6.5.5.

The use of (2.8) can be somewhat limited since the application of D to ξ̃ can lead

to technical difficulties due to the differentiation of B−1S = P̃S(S), and (2.12) can be

difficult to solve.

In the remaining of this section we take T = S.
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European options

We close this section with an application of the Delta hedging method to European

type options with discounted payoff ξ̃ = g̃(X̃T ) where g̃ : F → IR and (X̃t)t∈IR+ has

the Markov property as in (2.10), where σ : IR+ × F → LHS(H,F ).

In this case the option with payoff ξ = BT g̃(X̃T ) is priced at time t as

IE
[
e−

∫ T
t rsdsξ

∣∣∣Ft] = Bt IE
[
g̃(X̃T )

∣∣∣Ft] = BtC̃(t, X̃t),

for some measurable function C̃(t, x) on IR+×F . However this formula allows one to

deal with only a limited range of options, such as exchange options.

Assuming that the function C̃(t, x) is C2 on IR+ × F , we have the following corollary

of Proposition 2.2.

Corollary 2.3 Letting η̃t = C̃(t, X̃t) − 〈∇C̃(t, X̃t), X̃t〉F ∗,F , 0 ≤ t ≤ T , the portfolio

(∇C̃(t, X̃t), η̃t)t∈[0,T ] with value

Vt = η̃tBt + 〈∇C̃(t, X̃t), X̃t〉F ∗,F , t ∈ IR+,

is self-financing and hedges the claim ξ = BT g̃(X̃T ).

Proof. This result follows directly from Proposition 2.2 by noting that by Itô’s

formula, cf. Theorem 4.17 of [4], we have

dC̃(t, X̃t) = 〈∇C̃(t, X̃t), dX̃t〉F ∗,F

By the martingale property of Ṽt under P and the predictable representation (2.2) we

have

dṼt = 〈φ̃t, dX̃t〉F ∗,F

which ultimately gives us

φ̃t = ∇C̃(t, X̃t), 0 ≤ t ≤ T.

�
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As a consequence the exchange call option with payoff ξ = BT g̃(X̃T ) = (XT − κBT )+

on (X̃t)t∈[0,T ] a geometric Brownian motion under P with (σ(t))t∈[0,T ] a deterministic

function, the option price is given by the Margrabe formula

IE
[
e−

∫ T
t rsds(XT − κBT )+

∣∣∣Ft] = BtC̃(t, X̃t) = XtΦ+(t, κ, X̃t)− κBtΦ−(t, κ, X̃t),

(2.13)

where the functions Φ+(t, κ, x) and Φ−(t, κ, x) are defined as

Φ+(t, κ, x) := Φ

(
log(x/κ)

v(t, T )
+
v(t, T )

2

)
and Φ−(t, κ, x) := Φ

(
log(x/κ)

v(t, T )
− v(t, T )

2

)
,

where

v(t, T ) =

∫ T

t

|σ(s)|2ds, 0 ≤ t ≤ T.

By Corollary 2.3 and the relation
∂C̃

∂x
(t, x) = Φ+(t, κ, x), x ∈ IR, applied to the

function C̃(t, x) = xΦ+(t, κ, x)− κΦ−(t, κ, x), the portfolio

(φ̃t, η̃t) = (Φ+(t, κ, X̃t),−κΦ−(t, κ, X̃t)), 0 ≤ t ≤ T, (2.14)

is self-financing and hedges the claim (XT − κBT )+.

In general, however, claim payoffs of the form BT g̃(X̃T ) are not frequent and in

Section 3 we will use another method, i.e. the Clark-Ocone formula, to hedge interest

rate derivatives. Note that the Delta hedging method requires the computation of the

function C̃(t, x) and that of the associated finite differences, and may not apply to

path-dependent claims.

3 Hedging by the Clark-Ocone formula

In this section we compute hedging strategies for interest rate derivatives via the

Clark-Ocone formula, and we refer to [8] for the pricing computations not included

here. We consider a real-valued Wiener process (Wt)t∈R+ under a risk-neutral proba-

bility measure P and we take (Xt)t∈IR+ = (Pt)t∈IR+ , i.e. the bond price curve (Pt)t∈IR+

takes values in a Sobolev space F of real-valued functions on IR+, cf. [5] and [1] for
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examples.

Let µ ∈ F ∗ denote a finite measure on IR+ with support in [T,∞), and consider the

asset price

Pt(µ) = 〈µ, Pt〉F ∗,F =

∫ ∞
T

Pt(y)µ(dy).

In practice, µ(dy) and φ̃t(dy) will be finite point measures, i.e. sums of the form

φ̃t(dy) =

j∑
k=i

αkδTk(dy)

of Dirac measures at the maturities Ti, . . . , Tj of a given a tenor structure, in which

αk(t) represents the amount allocated to a bond with maturity Tk, i ≤ k ≤ j, in

which case (2.5) reads

Vt =

j∑
k=i

αk(t)Pt(Tk) + η̃tBt, 0 ≤ t ≤ T,

We will assume that the dynamics of (Pt)t∈R+ is given by

dPt = rtPtdt+ PtζtdWt, (3.1)

where (ζt)t∈[0,T ] is an LHS(H,F )-valued deterministic mapping, with

dP̃t(y) = P̃t(y)ζt(y)dWt, (3.2)

i.e. we take σt(P̃t) = ζt(·)P̃t(·) in (2.10). Consider a discounted payoff function of the

form

ξ̃ = g̃(P̃T (µ)), (3.3)

with maturity T , where g̃ : IR→ IR is a Lipschitz function and

PT (µ) =

∫ ∞
T

PT (x)µ(dx).

The next result is stated for discounted payoffs.

Proposition 3.1 Letting

φ̃t(dx) = IE

[
e−

∫ T
t rsdsg̃′(P̃T (µ))

PT (x)

Pt(x)

∣∣∣Ft]µ(dx),
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and η̃t = Ṽt−〈X̃t, φ̃t〉F ∗,F , 0 ≤ t ≤ T , yields a self-financing hedging portfolio hedging

the claim with payoff

ξ = BT g̃(P̃T (µ)).

Proof. We note that since ξ̃ = g̃(P̃T (µ)), we have

Dtξ̃ = Dtg̃(P̃T (µ)) = g̃′(P̃T (µ))DtP̃T (µ),

where

DtP̃T (µ) =

∫ ∞
T

ζt(x)P̃T (x)µ(dx).

Therefore the process (αt)t∈[0,T ] in (2.7) is given by

αt = IE
[
Dtξ̃ | Ft

]
= IE

[
g̃′(P̃T (µ))DtP̃T (µ) | Ft

]
=

∫ ∞
T

ζt(x) IE
[
g̃′(P̃T (µ))P̃T (x) | Ft

]
µ(dx),

hence

〈αt, dWt〉H =

∫ ∞
T

IE
[
g̃′(P̃T (µ))P̃T (x) | Ft

]
µ(dx)ζt(x)dWt

=

∫ ∞
T

IE

[
g̃′(P̃T (µ))

P̃T (x)

P̃t(x)
| Ft

]
µ(dx)dP̃t(x).

From (2.7) the process (φ̃t)t∈[0,T ] in (2.1) is given by

φ̃t(dx) = IE

[
g̃′(P̃T (µ))

P̃T (x)

P̃t(x)

∣∣∣Ft]µ(dx),

and it remains to apply Proposition 2.2 with (Xt)t∈IR+ = (Pt)t∈IR+ . �

Next, we apply Proposition 3.1 to swaptions.

Swaptions on the LIBOR rate

Consider a tenor structure {T ≤ Ti, . . . , Tj} and the swaption on the LIBOR rate

with payoff

ξ = (PT (Ti)− PT (Tj)− κP (T, Ti, Tj))
+ (3.4)
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where

P (T, Ti, Tj) =

j−1∑
k=i

τkPT (Tk+1)

is the annuity numeraire, with τk = Tk+1 − Tk, k = i, . . . , j − 1. The next corollary

follows from Proposition 3.1.

Corollary 3.2 Letting

φ̃t(dx) = IE

[
1{S(T,Ti,Tj)>κ}

P̃T (Ti)

P̃t(Ti)

∣∣∣Ft] δTi(dx)

−(1 + κτj−1) IE

[
1{S(T,Ti,Tj)>κ}

P̃T (Tj)

P̃t(Tj)

∣∣∣Ft] δTj(dx)

−κ
j−1∑
k=i+1

τk−1 IE

[
1{S(T,Ti,Tj)>κ}

P̃T (Tk)

P̃t(Tk)

∣∣∣Ft] δTk(dx),

and η̃t = 0, 0 ≤ t ≤ T , yields a self-financing hedging portfolio hedging the claim with

payoff (3.4), without any investment in the money market account, where

S(T, Ti, Tj) =
PT (Ti)− PT (Tj)

P (T, Ti, Tj)

is the swap rate.

Proof. We apply Proposition 3.1 with

µ(dx) = δTi(dx)− δTj(dx)− κ
j−1∑
k=i

τkδTk(dx),

after checking that η̃t = Ṽt − 〈X̃t, φ̃t〉F ∗,F = 0, 0 ≤ t ≤ T . �

The remaining of this paper is concerned with bond type options, which include

caplets on the LIBOR and forward rates.

Bond type options

We consider a bond type option on PT (µ) with (non-discounted) payoff ξ = g(PT (µ)),

maturity S, and discount factor B−1S .
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Proposition 3.3 Letting

φ̃t(dx) = IE

[
P̃S(S)

P̃t(S)
g(PT (µ))

∣∣∣Ft] δS(dx)− IE

[
P̃S(S)

P̃t(T )
PT (µ)g′(PT (µ))

∣∣∣Ft] δT (dx)

+ IE

[
P̃S(S)g′(PT (µ))

PT (x)

P̃t(x)

∣∣∣Ft]µ(dx),

and η̃t = Ṽt − 〈φ̃t, P̃t〉F ∗,F , 0 ≤ t ≤ T , yields a self-financing hedging portfolio hedging

the claim with payoff ξ = g(PT (µ)).

Proof. We have

Dtg(PT (µ)) = g′(PT (µ))

∫ ∞
T

PT (x)(ζt(x)− ζt(T ))µ(dx).

and

αt = IE[Dtξ̃ | Ft]

= IE[Dt(P̃S(S)g(PT (µ)))|Ft]

= IE[g(PT (µ))DtP̃S(S)|Ft] + IE

[
P̃S(S)g′(PT (µ))

∫ ∞
T

PT (x)(ζt(x)− ζt(T ))µ(dx)
∣∣∣Ft]

= ζt(S) IE[P̃S(S)g(PT (µ))|Ft] +

∫ ∞
T

(ζt(x)− ζt(T )) IE
[
g′(PT (µ))P̃S(S)PT (x)

∣∣∣Ft]µ(dx),

and therefore

〈αt, dWt〉H = IE[P̃S(S)g(PT (µ))|Ft]ζt(S)dWt

+

∫ ∞
T

IE[g′(PT (µ))P̃S(S)PT (x) | Ft]µ(dx)(ζt(x)− ζt(T ))dWt

= IE

[
P̃S(S)

P̃t(S)
g(PT (µ))

∣∣∣Ft] dP̃t(S)

+

∫ ∞
T

IE

[
g′(PT (µ))P̃S(S)

PT (x)

P̃t(x)

∣∣∣Ft] dP̃t(x)µ(dx)

− IE

[
g′(PT (µ))P̃S(S)

PT (µ)

P̃t(T )

∣∣∣Ft] dP̃t(T ).

From (2.7) this implies that the process (φ̃t)t∈[0,T ] in (2.1) is given by

φ̃t(dx) = IE

[
P̃S(S)

P̃t(S)
g(PT (µ))

∣∣∣Ft] δS(dx)− IE

[
P̃S(S)

P̃t(T )
PT (µ)g′(PT (µ))

∣∣∣Ft] δT (dx)
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+ IE

[
P̃S(S)g′(PT (µ))

PT (x)

P̃t(x)

∣∣∣Ft]µ(dx),

which gives a self-financing hedging portfolio consisting of bonds with maturities S

and T , after applying Proposition 2.2 with (Xt)t∈IR+ = (Pt)t∈IR+ . �

Bond call options

We consider a bond call option on PT (S), S > T , with payoff

ξ = (PT (S)− κ)+

and maturity T , and priced at time t ∈ [0, T ] as

Bt IE[ξ̃|Ft] = Bt IE
[
e−

∫ T
0 rsds(PT (S)− κ)+

∣∣∣Ft]
= Bt IE

[
P̃T (T )(PT (S)− κ)+ | Ft

]
= Pt(S)Φ

(
1

ϑt,T
log

Pt(S)

κPt(T )
+
ϑt,T

2

)
− κPt(T )Φ

(
1

ϑt,T
log

Pt(S)

κPt(T )
− ϑt,T

2

)
,

where

ϑ2
t,T =

∫ T

t

(ζu(S)− ζu(T ))2du, 0 ≤ t ≤ T.

We have the following corollary of Proposition 3.3.

Corollary 3.4 Letting

φ̃t(dx) = Φ

(
ϑt,T

2
+

1

ϑt,T
log

Pt(S)

κPt(T )

)
δS(dx)− κΦ

(
−ϑt,T

2
+

1

ϑt,T
log

Pt(S)

κPt(T )

)
δT (dx)

and η̃t = 0, 0 ≤ t ≤ T , yields a self-financing hedging portfolio for the bond option on

PT (S), consisting of bonds with maturities S and T .

Proof. We apply Proposition 3.3 with g(x) = (x − κ)+, µ(dx) = δS(dx), and the

discount factor B−1T . We find

φ̃t(dx) = −κ IE

[
P̃T (T )

P̃t(T )
1{PT (S)>κ}

∣∣∣Ft] δT (dx) + IE

[
P̃T (T )1{PT (S)>κ}

PT (S)

P̃t(S)

∣∣∣Ft] δS(dx)

= −κΦ

(
1

ϑt,T
log

Pt (S)

κPt (T )
− ϑt,T

2

)
δT (dx) + Φ

(
1

ϑt,T
log

Pt (S)

κPt (T )
+
ϑt,T

2

)
δS(dx).

�
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Caplets on the LIBOR rate

Next, we consider a caplet with payoff

ξ = (S − T )(L(T, T, S)− κ)+ = (PT (S)−1 − (1 + κ(S − T )))+, S > T, (3.5)

and maturity S on the LIBOR rate

L(t, T, S) =
Pt(T )− Pt(S)

(S − T )Pt(S)

Its price at time t ∈ [0, T ] is given by

Bt IE[ξ̃ | Ft] = (S − T )Bt IE
[
e−

∫ S
0 rsds(L(T, T, S)− κ)+

∣∣∣Ft]
= Bt IE

[
P̃S(S)(PT (S)−1 − (1 + κ(S − T )))+

∣∣∣Ft]
= Pt(T )Φ

(
1

ϑt,T
log

Pt(T )

(1 + κ(S − T ))Pt(S)
+
ϑt,T

2

)
−(1 + κ(S − T ))Pt(T )Φ

(
1

ϑt,T
log

Pt(T )

(1 + κ(S − T ))Pt(S)
− ϑt,T

2

)
.

We have the following corollary of Proposition 3.3.

Corollary 3.5 Letting

φ̃t(dx) = Φ

(
1

ϑt,T
log

Pt(T )

(1 + κ(S − T ))Pt(S)
+
ϑt,T

2

)
δT (dx)

−(1 + κ(S − T ))Φ

(
1

ϑt,T
log

Pt(T )

(1 + κ(S − T ))Pt(S)
− ϑt,T

2

)
δS(dx),

and η̃t = 0, 0 ≤ t ≤ T , yields a self-financing hedging portfolio consisting of bonds

with maturities S and T , that hedges the claim with payoff (3.5).

Proof. Applying Proposition 3.3 with g(x) = (1/x−(1+κ(S−T )))+, µ(dx) = δS(dx),

and the discount factor B−1S , we get

φ̃t(dx) = IE

[
(PT (S))−11{PT (S)−1>1+κ(S−T )}

P̃S(S)

P̃t(T )

∣∣∣Ft] δT (dx)

−(1 + κ(S − T )) IE

[
P̃S(S)

P̃t(S)
1{PT (S)−1>[1+κ(S−T )]}

∣∣∣Ft] δS(dx)

14



= Φ

(
1

ϑt,T
log

Pt(T )

(1 + κ(S − T ))Pt(S)
+
ϑt,T

2

)
δT (dx)

−(1 + κ(S − T ))Φ

(
1

ϑt,T
log

Pt(T )

(1 + κ(S − T ))Pt(S)
− ϑt,T

2

)
δS(dx).

�

Caplets on the forward rate

Finally, we consider a caplet with payoff

ξ = (S − T )(f(T, T, S)− κ)+, S > T, (3.6)

and maturity S on the forward rate

f(t, T, S) = − logPt(S)− logPt(T )

S − T

Its price at time t ∈ [0, T ] is given by

Bt IE[ξ̃ | Ft] = Bt IE
[
e−

∫ S
0 rsds(S − T )(f(T, T, S)− κ)+

∣∣∣Ft]
= Bt IE

[
P̃S(S)(− logPT (S)− κ(S − T ))+

∣∣∣Ft]
= Pt(S)

ϑt,T√
2π

exp

(
− 1

2ϑ2
t,T

(
ϑ2
t,T

2
+ κ(S − T ) + log

Pt(S)

Pt(T )

)2
)

−Pt(S)

(
κ(S − T ) +

ϑ2
t,T

2
+ log

Pt(S)

Pt(T )

)
Φ

(
− 1

ϑt,T

(
κ(S − T ) + log

Pt(S)

Pt(T )

)
− ϑt,T

2

)
.

We have the following corollary of Proposition 3.3.

Corollary 3.6 Letting

φ̃t(dx) =
ϑt,T√

2π
exp

(
− 1

2ϑ2
t,T

(
ϑ2
t,T

2
+ κ(S − T ) + log

Pt(S)

Pt(T )

)2
)
δS(dx)

−
(
κ(S − T ) +

ϑ2
t,T

2
+ 1 + log

Pt(S)

Pt(T )

)
Φ

(
− 1

ϑt,T

(
κ(S − T ) + log

Pt(S)

Pt(T )

)
− ϑt,T

2

)
δS(dx)

+
P̃t(S)

P̃t(T )
Φ

(
− 1

ϑt,T

(
κ(S − T ) + log

Pt(S)

Pt(T )

)
− ϑt,T

2

)
δT (dx),

and η̃t = 0, 0 ≤ t ≤ T , yields a self-financing hedging portfolio consisting of bonds

with maturities S and T , that hedges the claim with payoff (3.6).
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Proof. Applying Proposition 3.3 with g(x) = (−κ(S − T )− log x)+, µ(dx) = δS(dx),

and the discount factor B−1S , we have

φ̃t(dx) = IE

[
(− logPT (S)− κ(S − T ))+

P̃S(S)

P̃t(S)

∣∣∣Ft] δS(dx)

− IE

[
P̃S(S)

P̃t(S)
1{− logPT (S)>κ(S−T )}

∣∣∣Ft] δS(dx)

+ IE

[
P̃S(S)

P̃t(T )
1{− logPT (S)>κ(S−T )}

∣∣∣Ft] δT (dx)

=
ϑt,T√

2π
exp

(
− 1

2ϑ2
t,T

(
log

Pt(S)

Pt(T )
+
ϑ2
t,T

2
+ κ(S − T )

)2
)
δS(dx)

−
(

log
Pt(S)

Pt(T )
+ κ(S − T ) +

ϑ2
t,T

2
+ 1

)
Φ

(
− 1

ϑt,T

(
log

Pt(S)

Pt(T )
+ κ(S − T )

)
− ϑt,T

2

)
δS(dx)

+
P̃t(S)

P̃t(T )
Φ

(
− 1

ϑt,T

(
log

Pt(S)

Pt(T )
+ κ(S − T )

)
− ϑt,T

2

)
δT (dx).

�

References

[1] R. A. Carmona and M. R. Tehranchi. A characterization of hedging portfolios for interest rate
contingent claims. Ann. Appl. Probab., 14(3):1267–1294, 2004.

[2] R. A. Carmona and M. R. Tehranchi. Interest rate models: an infinite dimensional stochastic
analysis perspective. Springer Finance. Springer-Verlag, Berlin, 2006.

[3] J.M. Corcuera. Completeness and hedging in a Lévy bond market. In A. Kohatsu-Higa,
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