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Abstract

We study a subspace of the Fock space, called Boolean Fock space, and its
associated non-commutative processes obtained by combinations of annihila-
tors and creators. These processes include the Boolean Brownian and Poisson
processes obtained by replacing the classical convolution by its Boolean counter-
part, and a family of Bernoulli processes. Using a quantum stochastic calculus
constructed by time changes, we complete the existing non-commutative re-
lations between basic probability laws. In particular the uniform distribution
has the role played by the exponential law in the classical setting of tensor
independence.
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1 Introduction

The Brownian and Poisson processes can be realized as operator processes on the

symmetric Fock space, the classical notion of independence of increments being ex-

pressed in Fock space using tensor products. In non-commutative probability, two

other definitions of independence and convolution are available, namely the free and

Boolean independence, cf. [2], [3], [13], [15], [16]. Each definition yields another no-

tion of Brownian motion and Poisson process, which can be realized on different forms

of the Fock space, namely the full Fock space in the case of free convolution, cf. [14].

The interest in the Boolean convolution is to provide a simple model to illustrate the

free case, and the Boolean analogs of Brownian motion and the Poisson processes can

be used to approximate their classical counterparts. The aim of this paper is twofold.

(i) We realize the Boolean Brownian motion and Poisson process on a subspace of the

symmetric Fock space, which will be called Boolean Fock space. Such processes have

no classical versions, however we show that the Boolean Fock space can be identified

to the L2 space of a classical Bernoulli process, obtained itself by combinations of

creation and annihilation operators.

(ii) Poisson random variables can be constructed non-commutatively by addition of

the conservation (or number) operator to Gaussian random variables. On the other

hand, it has been shown in [10] that the geometric law can be obtained in a similar
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way from the exponential law, using a construction of quantum stochastic calculus

based on time changes. We show that in the Boolean setting, the uniform density

plays the role of exponential density, i.e. the Gaussian, exponential and uniform laws

can be respectively linked to the Poisson, geometric and Bernoulli laws in a unified

non-commutative framework.

We proceed with a more detailed description of the main results. Let ρ be one of the

probability densities

ρ(x) =
1√
2π

e−
1
2
x2

, ρ(x) = e−x1[0,∞[(x), ρ(x) =
1

2
1[−1,1](x),

x ∈ IR. The Gram-Schmidt orthogonalization procedure defines three families of or-

thogonal polynomials, respectively the Hermite, Laguerre and Legendre polynomials,

which satisfy the differential equation

σ(x)y′′(x)− τ(x)y′(x) + λy(x) = 0, λ ∈ IN, (1.1)

with respectively (σ(x), τ(x)) = (1, x), (σ(x), τ(x)) = (x, x − 1), (σ(x), τ(x)) = (1 −
x2, 2x), cf. [8].

For each choice of the probability density ρ, we can form a Banach space of sequences

B = IR∞ with a measure P denoted formally by dP = dρ⊗∞ which is the completion

of a measure defined on cylinder sets. Denote by θk : B → IR, k ∈ IN, the coordinate

functionals, which are independent random variables distributed according to dρ, and

by D : L2(B) −→ L2(B) ⊗ l2(IN) the densely defined and closable gradient operator

defined as

Df(θ0, . . . , θn) = (∂kf(θ0, . . . , θn))k∈IN, n ∈ IN.

For each density function ρ, a gradient operator D̃ : L2(B) → L2(B) ⊗ L2(IR+) is

defined by composition of D with a random injection i : L2(B)⊗ l2(IN) −→ L2(B)⊗
L2(IR+), see Relation (5.2) below. This operator is closable and admits a closable

adjoint δ̃, cf. [10], [11]. A family {ã−u , ã◦u, ã+u } of unbounded operators on L2(B) is

defined as

ã−uF = (D̃F, u)2, ã+uF = δ̃(uF ), ã◦uF = δ̃(uD̃F ),

u ∈ L2(B) ⊗ L2(IR+; C), for F in a dense domain. These operators complement the

usual triple {a−h , a◦h, a
+
h }, h ∈ L2(IR+; C), of annihilation, creation and number (or

conservation) operators on the symmetric Fock space, cf. [7], [9]. We recall below the

interpretation of these operators in the tensor case, this paper being concerned with

the second part, cf. Sect. 3 and 4, i.e. with the Boolean case which will be shown to

correspond to ρ uniform on [−1, 1].

1. Tensor independence. In this case the symmetric Fock space has at least two

probabilistic interpretations.

2



- Wiener interpretation. This corresponds to the choice ρ(x) = 1√
2π
e−

1
2
x2
. In

this case, a−u = ã−u , and a+u = ã+u , and

a−1[0,t] + a+1[0,t] = ã−1[0,t] + ã+1[0,t]

is identified to the classical Brownian motion, and

- Poisson interpretation. The classical Poisson process is constructed as t +

a−1[0,t] + a+1[0,t] + a◦1[0,t] . Here, ρ is the exponential density ρ(x) = e−x1[0,∞[(x) and

a−u + a+u + a◦u = ã−u + ã+u ,

hence the Poisson process is also given by ã−1[0,t] + ã+1[0,t] .

2. Boolean independence. In this case we will use a strict subspace Γγ(L
2(IR+))

of the symmetric Fock space Γ(L2(IR+)). The Boolean Brownian and Poisson

processes are still given by a−1[0,t] + a+1[0,t] and tφ+ a−1[0,t] + a+1[0,t] + a◦1[0,t] , where φ

is the vacuum state, but they have no classical interpretation, cf. Prop. 3.3 in

Sect. 3. However, with ρ the uniform density ρ(x) = 1
2
1[−1,1](x),

a−(1[0,t]−t) + a+(1[0,t]−t) + a◦(1[0,t]−t), t ∈ IR+,

can be identified to a classical Bernoulli process, cf. Prop. 4.1 of Sect. 4.

The following properties 1-4 hold for ρ Gaussian, and from [10] for ρ exponential.

Their proof in the uniform case is the other goal of this paper, cf. Sects. 4 and 5.

1. The sum
(
ã+1[0,t] + ã−1[0,t]

)
t∈IR+

can be identified to the classical process (Brown-

ian, compensated Poisson or Bernoulli) associated to the sequence (τk)k∈IN, see

Cor. 5.1. In the uniform case we obtain in particular the identity

a−(1[0,t]−t) + a+(1[0,t]−t) + a◦(1[0,t]−t) = ã−1[0,t] + ã+1[0,t] , t ∈ IR+.

2. The sum ã+i(ek)+ã−i(ek) equals the classical random variable τ(θk) of Eq. 1.1, which

has respectively a Gaussian, exponential or uniform distribution, cf. Relation

(5.4).

3. Let i =
√
−1. The operator ã◦i(ek) + isã+i(ek) − isã−i(ek) + s2σ(θk), s ∈ IR \ {0}, has

a discrete probability law µ, namely a Poisson or geometric law, respectively for

ρ Gaussian and exponential. If ρ is the uniform density, we show in Sect. 5 that

this distribution µ is given as

µ ({n(n+ 1)}) = π
2n+ 1

2s
(Jn+1/2(s))

2, n ∈ IN, (1.2)

Jν being the Bessel function of the first kind, ν ∈ IR+, cf. Prop. 5.2 of Sect. 5.
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4. The commutator [ã+i(ek), ã
−
i(ek)

] equals (the multiplication operator by) the ran-

dom variable σ(θk) of (1.1), cf. Lemma 5.2.

In Sect. 2 we recall the definitions of Boolean independence and convolution according

to [3], [13], [15]. In Sect. 3 we construct the Boolean Brownian motion and Poisson

process. In Sect. 4 we show that a classical Bernoulli process can be also constructed

by combining the annihilation and creation operators. In this interpretation, the

Boolean Fock space is identified to the L2 space of a countable product of copies of

the uniform density. In Sect. 5 we introduce the operators ã−h , ã
◦
h, ã

+
h , defined by

infinitesimal perturbations of jump times, and we link the uniform density to the

discrete distribution of Relation (1.2). In Sect. 6, we study the corresponding contin-

uous time construction of quantum stochastic calculus, in which iterated integrals of

adapted integrands turn out to be anticipating.

2 Boolean independence and convolution

In this section we recall the basic definitions of Fock space and Boolean independence.

Let L2(IR+) = L2(IR+; C), let (·, ·)2 and | · |2 denote the Hermitian product and

norm on L2(IR+), while |z| denote the modulus of z ∈ C. Let Γ(L2(IR+)) denote

the symmetric Fock space over L2(IR+), with its gradient and divergence operators

∇− : Γ(L2(IR+)) −→ Γ(L2(IR+))⊗ L2(IR+) and

∇+ : Γ(L2(IR+))⊗ L2(IR+) −→ Γ(L2(IR+))

defined by linearity and polarization and density as

∇−(h1 ◦ · · · ◦ hn) =
k=n∑
k=1

(
h1 ◦ · · · ◦ ĥk ◦ · · · ◦ hn

)
⊗ hk,

where “ĥk” denotes the omission of hk in the product, and

∇+(f1 ◦ · · · ◦ fn ⊗ g) = f1 ◦ · · · ◦ fn ◦ g,

f1, . . . , fn, g ∈ L2(IR+).

Definition 2.1 Let S denote the linear space, dense in Γ(L2(IR+)), generated by

vectors of the form h1 ◦ · · · ◦ hn, h1, . . . , hn ∈ L2(IR+), n ∈ IN.

The annihilation, creation and conservation operators a−u , a
◦
u and a+u , u ∈ L2(IR+), on

Γ(L2(IR+)) are defined as

a−uF = (∇−F, u)2, a+uF = ∇+(F ⊗ u), a◦uF = ∇+(u∇−F ), F ∈ S.
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Definition 2.2 Let A denote the set of closable operators X that leave S invariant,

and admit an adjoint denoted by X∗ on S.

Let ⟨·, ·⟩ denote the Hermitian product on Γ(L2(IR+)), and let Ω denotes the unit

vector in Γ(L2(IR+)). We consider the non-commutative probability space (A, φ),

where A is the algebra of operators on Γ(L2(IR+)) and φ : A → C is the linear

functional defined as

φ(X) = ⟨XΩ,Ω⟩, X ∈ A.

Self-adjoint elements of A are called non-commutative random variables. We recall

the following definition, cf. [15].

Definition 2.3 Two non-commutative random variables X, Y are said to be Boolean

independent if

φ(Xk1Y k2Xk3Y k4 · · ·) = φ(Xk1)φ(Y k2)φ(Xk3)φ(Y k4) · · · ,

and

φ(Y k1Xk2Y k3Xk4 · · ·) = φ(Y k1)φ(Xk2)φ(Y k3)φ(Xk4) · · · ,

for any k1 ≥ 1, k2 ≥ 1, k3 ≥ 1, k4 ≥ 1, . . ..

The distribution µX of X ∈ A is the linear functional P 7→ φ(P (X)) defined on the

algebra C[X] of complex polynomials in one variable.

Definition 2.4 Let X and Y be Boolean independent, of distributions µX and µY .

The Boolean convolution of µX and µY is defined to be the distribution of X+Y , and

is denoted as µX ⊎ µY .

The Boolean Gauss law with variance σ2 and the Boolean Poisson distribution with

intensity λ > 0 are the probability measures

1

2
δ−σ +

1

2
δσ and

1

λ+ 1
(δ0 + λδλ+1) ,

cf. [15].

3 Boolean Fock space, Brownian motion and Pois-

son process

We now introduce a Boolean Fock space Γγ(L
2(IR+)) with parameter γ > 0 as a

subspace of the symmetric Fock space Γ(L2(IR+)). To this end we define a Boolean

symmetric tensor product. Let

Zγ
n =

{
(t1, . . . , tn) ∈ IRn

+ :

[
ti
γ

]
̸=
[
tj
γ

]
, i ̸= j

}
,

where [x] denotes the integral part of x ∈ IR+.
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Definition 3.1 For f1, . . . , fn ∈ L2(IR+), let

(f1 ⋄γ · · · ⋄γfn)(t1, . . . , tn) = 1Zγ
n
(t1, . . . , tn)f1 ◦ · · · ◦ fn(t1, . . . , tn).

We denote by L2(IR+)
⋄γn the subspace of L2(IR+)

⊗n which is the completion of the

vector space generated by{
f1 ⋄γ · · · ⋄γfn : f1, . . . , fn ∈ L2(IR+)

}
,

with respect to the norm

∥ · ∥2L2(IR+)⋄γn= n! ∥ · ∥2L2(IR)⊗n , n ∈ IN,

and denote by Γγ(L
2(IR+)) the Boolean Fock space defined as

Γγ(L
2(IR+)) =

⊕
n∈IN

L2(IR+)
⋄γn.

For u ∈ L2(IR+), the exponential vector ξγ(u) is defined as

ξγ(u) =
∑
n∈IN

1

n!
u⋄γn.

Let Sγ = Γγ(L
2(IR+)) ∩ S, and let U denote the set of processes of the form

u =
k=n∑
k=1

Fk ⊗ hk, F1, . . . , Fn ∈ S, h1, . . . , hk ∈ L2(IR+).

Let πγ : Γ(L2(IR+)) −→ Γγ(L
2(IR+)) denote the orthogonal projection on Γγ(L

2(IR+)),

which can be viewed as a conditional expectation.

Definition 3.2 We define the operators ∇γ−, aγ−u , aγ+u , aγ◦u , resp. ∇γ+ on S, resp.
U , as

∇γ− = ∇− ◦ πγ, ∇γ+ = πγ ◦ ∇+,

and

aγ−u = a−u ◦ πγ, aγ+u = πγ ◦ a+u , aγ◦u = πγ ◦ a◦u ◦ πγ.

The operator ∇γ+ : Γ(L2(IR+)) ⊗ L2(IR+) → Γ(L2(IR+)) is closable and adjoint of

∇γ− : Γ(L2(IR+)) → Γ(L2(IR+))⊗ L2(IR+):

⟨∇γ−F, u⟩Γ(L2(IR+))⊗L2(IR+) = ⟨F,∇γ+(u)⟩Γ(L2(IR+)), F ∈ S, u ∈ U .

The operators ∇γ− and ∇γ+ satisfy

∇γ−(h1 ⋄γ · · · ⋄γhn) =
k=n∑
k=1

(
h1 ⋄γ · · · ⋄γ ĥk ⋄γ · · · ⋄γhn

)
⋄γhk,

6



∇γ+(f1 ⋄γ · · · ⋄γfn ⊗ g) = f1 ⋄γ · · · ⋄γfn ⋄γg,

f1, . . . , fn, g ∈ L2(IR+), and aγ−u , aγ◦u and aγ+u , u ∈ L2(IR+) satisfy

aγ−u F = ⟨∇γ−F, u⟩Γ(L2(IR+))⊗L2(IR+), aγ+u F = ∇γ+(F ⊗ u), aγ◦u F = ∇γ+(u∇γ−F ),

F ∈ Sγ. The next proposition shows in particular that aγ−u + aγ+u has the Boolean

Gaussian distribution 1
2
δ−∥u∥ +

1
2
δ∥u∥.

Proposition 3.1 Let h, u ∈ L2([0, γ]) and α ∈ C with

|u|2 = 1 and |α|2 + |h|22 = 1.

The law of aγ−u + aγ+u in the state αΩ + h has support {−1, 0, 1}, with respective

probabilities

1

2
|α− (u, h)2|2, |h|22 − |(u, h)2|2,

1

2
|α + (u, h)2|2.

Proof. We determine the action of the Weyl operator exp(zi(aγ+u + aγ−u )), by showing

that

exp(zi(aγ+u + aγ−u ))(αΩ + h)

= h− u(u, h)2 + (αΩ + u(u, h)2) cos(z) + i (αu+ (u, h)2Ω) sin(z), z ∈ IR.

For this we compute by induction:

(
aγ+u + aγ−u

)n
h =


h, n = 0,
u(u, h)2, n = 2k > 0,
(u, h)2Ω, n = 2k + 1 ≥ 1,

and (
aγ+u + aγ−u

)n
Ω =

{
Ω, n = 2k ≥ 0,
u, n = 2k + 1 ≥ 1, k ∈ IN.

Hence the Fourier transform of aγ+u + aγ−u in the pure state αΩ + h is given by

⟨exp(iz(aγ+u + aγ−u ))(αΩ + h), αΩ + h⟩

= |h|22 − |(u, h)2|2 +
(
|α|2 + |(u, h)2|2

)
cos(z) + i((h, u)2α + (u, h)2ᾱ) sin(z),

z ∈ IR. 2

The operators πγ, aγ−u , aγ+u , aγ◦u , acting on the two-dimensional space span(Ω, u) can

be respectively represented by the matrices[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
.

Hence aγ+u +aγ−u , i(aγ+u −aγ−u ) and [aγ−u , aγ+u ] give a representation of the Pauli matrices

σx, σy, σz.
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Proposition 3.2 Let u ∈ L2([0, γ]) be the indicator function of a Borel set of Lebesgue

measure α ≥ 0. Then

απγ + aγ−u + aγ+u + aγ◦u

has the Boolean Poisson distribution with parameter α, i.e. 1
α+1

(δ0 + αδα+1).

Proof. Let Xu = απγ + aγ−u + aγ+u + aγ◦u . We have XuΩ = u + αΩ and Xuh =

hu + α(h, u)2Ω, hence (Xu)
kΩ = (α + 1)k−1(u + αΩ), (Xu)

ku = (α + 1)k−1(u + αΩ),

k ≥ 1, which implies

φ(eziXu) =
∞∑
k=0

(zi)k

k!
φ(Xk

u) = α
∞∑
k=0

(zi)k

k!
(α + 1)k−1 =

α

α + 1
eiz(α+1),

which is the characteristic function of 1
α+1

(δ0 + αδα+1).
2

We define the processes (aγ−t )t∈IR+ , (a
γ+
t )t∈IR+ , (a

γ◦
t )t∈IR+ by

aγ−t = aγ−1[0,t] , aγ+t = aγ+1[0,t] , aγ◦t = aγ◦1[0,t] , t ∈ IR+.

The following result, combined to Props. 3.1 and 3.2, shows that (aγ−t + aγ+t )t∈[0,γ] is

the Boolean analog of Brownian motion, and that (tπγ + aγ−t + aγ+t + aγ◦t )t∈[0,γ] is a

realization of the Boolean Poisson process.

Proposition 3.3 let u, v ∈ L2([0, γ]).

i) If u, v are orthogonal, then aγ−u + aγ+u is Boolean independent of aγ−v + aγ+v .

ii) If u, v are indicator functions with disjoint supports, then απγ + aγ−u + aγ+u + aγ◦u
and απγ+aγ−v +aγ+v +aγ◦v , with α =

∫∞
0

u(s)ds and β =
∫∞
0

v(s)ds, are Boolean

independent.

Proof. i) This property follows from the facts that

(aγ−u + aγ+u )k(aγ−v + aγ+v )lΩ =


Ω, k, l even
u k odd, l even
(u, v)2u k even, l odd
(u, v)2Ω k odd, l odd,

and

(aγ−u + aγ+u )k(aγ−v + aγ+v )lh =


(v, h)2(u, v)2u, k, l even
(v, h)2(u, v)2Ω k odd, l even
(v, h)2Ω k even, l odd
(v, h)2u k odd, l odd,

which imply that

φ((aγ−u + aγ+u )k1(aγ−v + aγ+v )k2(aγ−u + aγ+u )k3(aγ−v + aγ+v )k4 · · ·) =
{

1 k1, k2, . . . even,
0 otherwise. 2

ii) The relation uv = 0 implies in the notation of the proof of Prop. 3.2:

φ(Xk1
u Xk2

v Xk3
u Xk4

v · · ·) = α(α + 1)k1−1β(β + 1)k2−1α(α + 1)k3−1β(β + 1)k4−1 · · · ,

= φ(Xk1
u )φ(Xk2

v )φ(Xk3
u )φ(Xk4

v ) · · · , k1 ≥ 1, k2 ≥ 1, . . . ,

hence the Boolean independence of Xu and Xv.
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2

Remark 1 The sequence
(
a

1
n
−

t + a
1
n
+

t

)
n≥1

converges to a−t + a+t pointwise on Sγ,

hence in distribution, as n goes to ∞. Similarly, the sequence(
tπ

1
n + a

1
n
−

t + a
1
n
+

t + a
1
n
◦

t

)
n≥1

converges to tId+a−t +a+t +a◦t , pointwise on Sγ as n goes to ∞. Hence the Brownian

motion and Poisson process are limits of their Boolean counterparts in the sense of

pointwise convergence on Sγ.

Due to the non-commutativity of the Boolean independence property, the Boolean

Brownian Poisson processes obtained in this way do not have classical realizations.

Nevertheless, we show in the next section (Prop. 4.1) that aγ◦u + aγ+u + aγ−u can be

identified to a multiplication operator by a classical random variable.

4 Probabilistic interpretation of Γ1(L
2(IR+))

In the remaining of this paper we set γ = 1 and write “⋄” instead of “⋄1”. In this sec-

tion we construct a probabilistic interpretation for the Boolean subspace Γ1(L
2(IR+))

of Γ(L2(IR+)). We show that in this interpretation, a classical Bernoulli process can

be constructed from a1−u + a1+u + a1◦u . Consider the space B = IRIN with the metric

d(x, y) = sup
n∈IN

|xn − yn|,

and the probability measure defined on cylinder sets as

P ({x : (xk1 , . . . , xkd) ∈ E}) = 1

2d

∫
E∩[−1,1]d

dt1 · · · dtd, k1 ̸= · · · ≠ kd, d ∈ IN.

The coordinate functionals

θk : B → IR, k ∈ IN,

are independent, uniformly distributed random variables on [−1, 1]. Let

Tk = k + (1 + θk)/2, k ∈ IN,

be the kth jump time of the point process (Y (t))t∈IR+ defined as

Y (t) =
∑
k∈IN

1[Tk,∞[(t), t ∈ IR+. (4.1)

For bounded A ∈ B(IR+), let

FA = σ

(
∞∑
k=1

1O(Tk) : O ⊂ A, O ∈ B(IR+)

)
,
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and Ft = F[0,t], t ∈ IR+. We define the filtration (F̃t)t∈IR+ as F̃t = F[0,[t]], t ∈ IR+,

where [t] denotes the integral part of t ∈ IR+. The compensator (νt)t∈IR+ of (Y (t))t∈IR+

with respect to its natural filtration (Ft)t∈IR+ is∑
k≥0

1

k + 1− t
1[k,Tk[(t)dt,

cf. [6], and (Y (t) − t)t≥0 is not an (Ft)-martingale. For fn ∈ L2(IR+)
◦n, denote by

Ĩn(fn) the (F̃t)-adapted iterated stochastic integral with respect to the compensated

process (Y (t)− t)t∈IR+ :

Ĩn(fn) = n!

∫ ∞

0

∫ [tn]

0

· · ·
∫ [t2]

0

fn(t1, . . . , tn)d(Yt1 − t1) · · · d(Ytn − tn).

Let

K =

{
f ∈ L2(IR+) :

∫ k+1

k

f(t)dt = 0, k ∈ IN

}
,

let K⋄n = L2(IR+)
⋄n ∩K⊗n equipped with the L2(IR+)

◦n norm, and let Φ(K) be the

subspace of Γ1(L
2(IR+)) defined as

Φ(K) =
⊕
n≥0

K⋄n.

For fn ∈ K⋄n we have

Ĩn(fn) =
∑

k1 ̸=···̸=kn

fn(Tk1 , . . . , Tkn) = n!
∑

k1<···<kn

fn(Tk1 , . . . , Tkn),

and

E
[
Ĩn(fn)Ĩm(gm)

]
= 1{n=m}n!(fn, gm)L2(IR+)⊗n , fn ∈ K⋄n, gm ∈ K⋄m.

Consequently, the mapping

Ψ : Φ(K) −→ L2(B)

fn 7→ Ĩn(fn)

is bijective since the set of multiple stochastic integrals is total in L2(B). The expo-

nential vector ξ1(u), u ∈ K, is here identified to

ξ1(u) =
∑
n∈IN

1

n!
Ĩn(u

⋄n) = 1 +
∑
n≥1

∑
k1<···<kn

u(Tk1) · · ·u(Tkn) =
∏
n∈IN

(1 + u(Tn)).

Under this identification, any square-integrable (F̃t)-adapted process u ∈ L2(B) ⊗
L2(IR+) belongs to Dom(∇1+), and

∇1+(u) =

∫ ∞

0

u(t)d(Y (t)− t), (4.2)
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cf. Corollary 1 of [11]. Let πK : L2(IR+) −→ K denote the orthogonal projection onK.

The following proposition shows that the process (a1−πK1[0,t]
+ a1+πK1[0,t]

+ a1◦πK1[0,t]
)t∈IR+ is

identified to the classical compensated process (Y (t)− t)t∈IR+ . This result corresponds

to the fact that the linear combination xσx + yσy + zσz + t can yield all Bernoulli

probability laws for x, y, z, t ∈ IR+, when a1+u + a1−u , i(a1+u − a1−u ) and [a1−u , a1+u ] are

identified with the Pauli matrices σx, σy, σz, acting on span(Ω, u).

Proposition 4.1 Let u ∈ K. The operator a1−u + a1+u + a1◦u is identified to the multi-

plication operator on Φ(K) ∩ S1 by the single stochastic integral Ĩ1(u).

Proof. The proof follows by application of the following Lemma. 2

Lemma 4.1 Let u, f ∈ K such that uf ∈ L2(IR+). The multiplication formula for

the multiple stochastic integral Ĩn(f
⋄n) and Ĩ(u) can be stated for n ≥ 1 as

Ĩn(f
⋄n)Ĩ1(u) = Ĩn+1(f

⋄n ⋄ u) + nĨn((uf) ⋄ f ⋄(n−1)) + nĨn−1((f
⋄n(∗, ·), u(·))2).

Proof. We have

Ĩn(f
⋄n)Ĩ1(u) =

∑
k1 ̸=···̸=kn,kn+1

f(Tk1) · · · f(Tkn)u(Tkn+1)

=
∑

k1 ̸=···̸=kn+1

f(Tk1) · · · f(Tkn)u(Tkn+1)

+n
∑

k1 ̸=···̸=kn

f(Tk1) · · · f(Tkn−1)

(
f(Tkn)u(Tkn)−

∫ kn+1

kn

f(t)u(t)dt

)

+n
∑

k1 ̸=···̸=kn

f(Tk1) · · · f(Tkn−1)

∫ kn+1

kn

f(t)u(t)dt. 2

5 Quantum stochastic processes in discrete time

In this section we link the uniform distribution to a discrete law (Prop. 5.2) by addition

of a number operator defined via a discrete-time quantum stochastic calculus. We start

by considering a different approach to non-commutative stochastic calculus, allowing

to write the multiplication operator
∫∞
0

u(t)d(Y (t)−t) as a sum of a gradient operator

and its adjoint.

Definition 5.1 Let P be the set of functionals of the form f(θ0, . . . , θn−1), f polyno-

mial, n ≥ 1, and let V be the set of processes u of the form

u =
k=n∑
k=1

Fk ⊗ uk, F1, . . . , Fn ∈ P , u1, . . . , un ∈ L2(IR+), n ∈ IN.
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The sets P and V are respectively dense in L2(B) and in L2(B) ⊗ L2(IR+). We now

define a gradient operator by perturbation of the jump times of (Y (t))t∈IR+ , cf. (4.1),

i.e. by differentiation with respect to the coordinate functionals (θk)k∈IN. Define

D̃ : L2(B) −→ L2(B)⊗ L2(IR+)

with

D̃f(θ0, . . . , θn) =
n∑

k=1

(
(θk − 1)1]k,Tk](t) + (θk + 1)1]Tk,k+1](t)

)
∂kf(θ0, . . . , θn), t ∈ IR+,

cf. Def. 2 and Def. 3 of [11]. The operator D̃ is closable and admits an adjoint

δ̃ : L2(B)⊗ L2(IR+) −→ L2(B).

Proposition 5.1 We have the identity

δ̃(v) =

∫ ∞

0

v(s)d(Y (s)− s)−
∫ ∞

0

D̃sv(s)ds, v ∈ V . (5.1)

Proof. cf. Prop. 5 of [11]. 2

Consequently, if v ∈ L2(B)⊗ L2(IR+) is (F̃t)-adapted, then v ∈ Dom(δ̃) ∩Dom(∇1+)

and δ̃(v), ∇1+(v) both coincide with the stochastic integral of v with respect to

(Y (t))t∈IR+ , compensated with dt:

δ̃(v) = ∇1+(v) =

∫ ∞

0

v(t)d(Y (t)− t).

We can now state the definition of the three basic operators.

Definition 5.2 For h ∈ L2(IR+), define the closable operators ã−h , ã
◦
h, ã

+
h on P as

ã−hF = (D̃F, h)2, ã◦hF = δ̃
(
h(·)D̃·F

)
, ã+hF = δ̃(h⊗ F ), F ∈ P .

The operator ã+h is adjoint of ã−h on P and ã◦h is self-adjoint on P . Let ãεt = ãε1[0,t] ,

t ∈ IR+, ε = −, ◦,+.

Corollary 5.1 The operator ã−t +ã+t is the multiplication operator by Y (t)−t, t ∈ IR+,

and
(
ã−t + ã+t

)
t∈IR+

is identified to the classical process (Y (t)− t)t∈IR+.

Proof. This follows from Prop. 5.1. 2

We define the mapping i : L2(B)⊗ l2(IN) −→ L2(B)⊗ L2(IR+) as

it(u) =
∞∑
k=1

uk

(
(θk − 1)1]k,Tk](t) + (θk + 1)1]Tk,k+1](t)

)
, t ∈ IR+. (5.2)
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With this notation we have D̃ = i ◦ D, where D : L2(B) −→ L2(B) ⊗ L2(IN) is the

discrete-time gradient densely defined as

Df(θ0, . . . , θn) = (Dkf(θ0, . . . , θn))k∈IN = (∂kf(θ0, . . . , θn))k∈IN , t ∈ IR+.

The definitions of ã+h , ã
−
h , ã

◦
h can be extended by letting h equal the random process

i(ek) :=
(
(θk − 1)1]k,Tk] + (θk + 1)1]Tk,k+1]

)
, k ∈ IN,

where (ek)k∈IN denotes the canonical basis of l2(IN).

Proposition 5.2 Let s ∈ IR \ {0}. The non-commutative random variable

ã◦i(ek) + isã+i(ek) − isã−i(ek) + s2(1− θ2k)

has a discrete distribution µ carried by {n(n+ 1) : n ∈ IN} and given by

µ ({n(n+ 1)}) = π
n+ 1/2

s
(Jn+1/2(s))

2, n ∈ IN. (5.3)

Here Jp, p > 0, denotes the Bessel function of the first kind, defined as

Jp(x) =
(x
2

)p ∞∑
k=0

(−x2/4)k

k!Γ(p+ k + 1)
, x ∈ IR.

For the proof of Prop. 5.2 we will need the following Lemmas.

Lemma 5.1 The operators ã−i(ek), ã
◦
i(ek)

, ã+i(ek) satisfy

ã−i(ek)f(θk) = (1− θ2k)∂f(θk), ã◦i(ek) = −(1− θ2k)∂
2f(θk) + 2θk∂f(θk),

and

ã+i(ek) = −(1− θ2k)∂f(θk) + 2θkf(θk).

Proof. The relation ã−i(ek)f(θk) = (1 − θ2k)∂f(θk) follows easily from the definition of

D̃ as D̃ = i ◦D. Using the duality between D̃ and δ̃, a one-dimensional integration

by parts on [−1, 1] gives ã◦i(ek) = −(1 − θ2k)∂
2f(θk) + 2θk∂f(θk). The last relation is

obtained from ã◦i(ek) = ã+i(ek)Dk, k ≥ 0. 2

Consequently, ã+i(ek) + ã−i(ek) is identified to a multiplication operator:

ã+i(ek) + ã−i(ek) = 2θk, k ∈ IN, (5.4)

and ã+i(ek) + ã−i(ek) has a uniform distribution on [−2, 2]. Defining the Hermitian oper-

ators Qh = ã+h + ã−h , Ph = i(ã−h − ã+h ), Pt = P1[0,t] , Qt = Q1[0,t] , t ∈ IR+, we have

Qi(ek)f(θk) = 2θkf(θk), Pi(ek)f(θk) = −i(−2(1− θ2k)∂f(θk) + 2θf(θk)).
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Lemma 5.2 For s ∈ IR,

exp
(
i
s

2
Qi(ek)

)
ã◦i(ek) exp

(
−i

s

2
Qi(ek)

)
= ã◦i(ek) − isã+i(ek) + isã−i(ek) + s2(1− θ2k),

and the following commutation relations hold:[
ã−i(ek), ã

+
i(el)

]
= −2(1− θ2k)1{k=l}, (5.5)[

Pi(ek), Qi(ek)

]
= 2i(1− θ2k), (5.6)[

ã◦i(ek), Qi(ek)

]
= iPi(ek), k, l ∈ IN. (5.7)

Proof. We omit the index k and use Lemma 5.1. We have

ã◦ exp (−isθ) f(θ) =
(
−(1− θ2)∂2

θ + 2θ∂θ
)
(f(θ) exp(−isθ))

= −(1− θ2)(−2isf ′(θ) exp(−isθ) + f ′′(θ) exp(−isθ)− s2f(θ) exp(−isθ))

+2(−isθf(θ) + θf ′(θ)) exp(−isθ),

hence

exp (isθ) ã◦ exp (−isθ) = (−(1− θ2)∂2
θ + 2θ∂θ)f(θ) + is((1− θ2)∂θ − 2θ)f(θ)

+is((1− θ2)∂θ)f(θ) + s2(1− θ2)f(θ)

= ã◦f(θ)− isã+f(θ) + isã−f(θ) + s2(1− θ2)f(θ).

On the other hand,

[ã−, ã+] = (1− θ2)∂(−(1− θ2)∂) + 2θ(1− θ2)∂ + (1− θ2)∂((1− θ2)∂ − 2θ)

= −(1− θ2)2∂2 + 2θ(1− θ2)∂ + 2θ(1− θ2)∂ + (1− θ2)2∂2

−2θ(1− θ2)∂ − 2θ(1− θ2)∂ − 2(1− θ2) = −2(1− θ2),

hence (5.5) and (5.6). Concerning (5.7) we have

(−(1− θ2)∂2
θ + 2θ∂θ)(θf(θ))− θ(−(1− θ2)∂2

θ + 2θ∂θ)f(θ)

= −(1− θ2)(2f ′(θ) + θf ′′(θ)) + 2θ(f(θ) + θf ′′(θ)) + θ((1− θ2)∂2
θ − 2θ∂θ)f(θ)

= −2(1− θ2)f ′(θ) + 2θf(θ) = iPf(θ). 2

Proof of Prop. 5.2. Let Rn, n ≥ 0, be the Legendre polynomial of degree n, which

satisfies the differential equation

(1− x2)R′′
n(x)− 2xR′

n(x) + n(n+ 1)Rn(x) = 0, (5.8)

and the orthogonality relation∫ 1

−1

Rn(x)Rm(x)dx/2 =
1

2n+ 1
1{n=m}, n,m ∈ IN.
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We have

ã◦i(ek)Rn(θk) = δ̃D̃Rn(θk) = n(n+ 1)Rn(θk), k, n ∈ IN. (5.9)

From Lemma 5.2, the law of ã◦i(ek) + isã+i(ek) − isã−i(ek) + s2(1− θ2k) in the vacuum state

Ω is the same as the law of ã◦i(ek) in the state exp
(
i s
2
Qi(ek)

)
Ω, cf. [1]. From (5.9), the

spectrum of ã◦ is {n(n+1) : n ∈ IN} and the Legendre polynomial Rn is eigenvector

for ã◦ of even eigenvalue n(n+1) ∈ IN. In order to determine the law of ã◦ in the state

exp(isx), it is sufficient to decompose exp(isx) into a series of Legendre polynomials.

From [12], p. 194, we have∫ 1

−1

xmRn(x)
dx

2
=

m!

(m− n)!!(m+ n+ 1)!!
,

if m− n is even and m ≥ n, with

p!! =
∏

0≤2k≤p

(2k), p even, and p!! =
∏

0≤2k+1≤p

(2k + 1), p odd.

For other values of m, n, the integral is equal to zero. Using Legendre’s duplication

formula (cf. [4], p. 64):

Γ(a)Γ(a+ 1/2)

Γ(2a)
=

√
π

22a−1
, a ∈ IR+,

where Γ is the Gamma function, it follows:∫ 1

−1

eisyRn(y)
dy

2
= (is)n

∑
k≥0

(is)2k

(2k)!!(2k + 2n+ 1)!!
= (i2s)n

∞∑
k=0

(is)2k(k + n)!

k!(2n+ 2k + 1)!

=
√
π(i2s)n

∞∑
k=0

(is)2k

22n+2k+1k!Γ(n+ k + 3/2)!

= in
√

π

2s

(s
2

)n+1/2
∞∑
k=0

(−s2/4)k

k!Γ(n+ k + 3/2)!
= (i)n

√
π

2s
Jn+1/2(s).

The expansion

eisx =
∞∑
n=0

(√
2n+ 1

∫ 1

−1

eisyRn(y)
dy

2

)√
2n+ 1Rn(x)

gives (5.3), since

µ ({n(n+ 1)}) =
∣∣∣∣√2n+ 1

∫ 1

−1

eisyRn(y)
dy

2

∣∣∣∣2 . 2

6 Quantum stochastic calculus by time changes

In this section, Φ(K) =
⊕

n∈IN K⋄n is identified to L2(B) and we use the decomposition

ã−t + ã+t = a◦πK1[0,t]
+ a−πK1[0,t]

+ a+πK1[0,t]
= (Y (t)− t)t∈IR+
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of (Y (t) − t)t∈IR+ in annihilation parts to construct a non-commutative Itô calculus.

For f ∈ l2(IN) with finite support, define the exponential functional

ζ1(f) = exp

(∑
k∈IN

fkθk

)
,

and denote by Ξ the vector space generated by such random variables, which is dense

in L2(B,P ). Let A ∈ B(IR). Denote by ΨA the set of operators in A with P
⋃
Ξ ⊂

Dom(X), that can be written as X ⊗ Id on Γ(L2(A))⊗ Γ(L2(Ac)).

Definition 6.1 A process (X(t))t∈IR+ of operators is said to be (F̃t)-adapted if X(t) ∈
Ψ[0,[t]], t ∈ IR+.

We start by defining quantum stochastic integrals of simple adapted processes.

Definition 6.2 If (X(t))t∈IR+ is a simple adapted process of operators of the form

X(t) =
i=n∑
i=0

Xi1[i,i+1[(t), t ∈ IR+, n ∈ IN,

where Xi ∈ Ψ[0,i], i = 0, . . . , n, let∫ t

0

X(s)dãεs =
i=n∑
i=0

Xiã
ε
1[i∧t,(i+1)∧t[

, ε = −, ◦,+. (6.1)

The following proposition extends this definition to non-adapted processes, provided

smoothness conditions are satisfied, see also [5].

Proposition 6.1 If (X(t))t∈IR+ is a process of operators in A, let∫ ∞

0

X(s)dã−s F =

∫ ∞

0

X(s)D̃sFds,

∫ ∞

0

X(s)dã◦sF = δ̃(X(·)D̃·F ), (6.2)

∫ ∞

0

dã+s X(s)F = δ̃(X(·)F ),

∫ ∞

0

dã−s X(s)F =

∫ ∞

0

D̃sX(s)Fds, (6.3)

provided XF = (X(t)F )t∈IR+ satisfies respectively XD̃F ∈ L2(B)⊗ L2(IR+), XD̃F ∈
Dom(δ̃), XF = (X(t)F )t∈IR+ ∈ Dom(δ̃), D̃XF ∈ L2(B)⊗L2(IR+), F ∈ L2(B). These

definitions coincide with Def. 6.2 on simple adapted processes.

Proof. We have Di = Di ⊗ I on Γ(L2([0, i[)) ⊗ Γ(L2([i,∞[)), hence X(s) commutes

with Di for s ∈ [i, i+ 1[, i ∈ IN, and

X(s)D̃sF = is(X(s)DF ) = D̃sX(s)F, a.s., F ∈ Ξ, s ∈ IR+, (6.4)

hence XD̃F satisfies the conditions of Def. 6.1, and (6.1) is equivalent to (6.2) and

(6.3) on simple (F̃t)-adapted processes, from Def. 5.2. 2
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The integral
∫∞
0

X(t)dã+t is defined by duality from
∫∞
0

dã−t X(x)∗. Conditions for the

existence of the stochastic integral of adapted operator processes as an unbounded

operator on the vector space Ξ of exponential vectors can be obtained from the next

proposition:

Proposition 6.2 Let (X(t))t∈IR+ be a simple adapted process in A. We have

⟨ζ(g),
∫ ∞

0

X(s)dãεsζ(f)⟩ = ⟨ζ(g),
∫ ∞

0

hε(s)X(s)ζ(f)ds⟩,

ζ(f), ζ(g) ∈ Ξ, ε = −, ◦,+, with

h+ = i (ḡ) , h− = i (f) , h◦ = i (fḡ) . (6.5)

This shows that if (X(t))t∈IR+ is an (F̃t)-adapted process of operators such that

(X(t)ζ(f))t∈IR+ ∈ L2(B)⊗ L2(IR+), ∀ ζ(f) ∈ Ξ,

then
∫∞
0

X(s)dã−s is uniquely densely defined. We have

⟨ζ(g),
∫ ∞

0

X(s)dãεsζ(f)⟩ = ⟨
∫ ∞

0

X(s)∗dã∗εs ζ(g), ζ(f)⟩, ζ(f), ζ(g) ∈ Ξ,

if (X(t))t∈IR+ and its adjoint (X(t)∗)t∈IR+ are simple adapted processes that satisfy the

above conditions, with ∗ε = +, ◦,− respectively if ε = −, ◦,+.

Proof. The proof is an application of Relation (6.4) and the fact that D̃ζ(f) =

i(f)ζ(f). The last relation is a consequence of the duality relations between ã+u and

ã−u , and of the self-adjointness of ã◦u, cf. [1], [10] for the analog statements for ρ

respectively Gaussian and exponential. 2

Proposition 6.3 Let X,Z be simple (F̃t)-adapted processes in A such that Ξ ⊂
Dom(X(s)Z(s)), s ∈ IR+. We have the equality∫ t

0

X(s)dãεs

∫ t

0

Z(s)dãηs =

∫ t

0

dãεsX(s)

(∫ s

0

Z(u)dãηu

)
+

∫ t

0

(∫ s

0

Xudã
ε
u

)
Z(s)dãηs

+

∫ t

0

X(s)Z(s)dãεs · dãηs , (6.6)

where the composition of operators holds in the weak sense and the product dãεs · dãηs
is given by the multiplication table

· dã+t dã−t
dã+t 0 0
dã−t dY (t) 0
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Proof. The statement of (6.6) in the weak sense means the following identities, which

will be proved using the duality between δ̃ and D̃:

⟨
∫ t

0

Z(s)dã+s G,

∫ t

0

X(s)∗dã−s F ⟩

=

∫ t

0

⟨
∫ s

0

Z(u)dã+uG,X(s)∗D̃sF ⟩ds+
∫ t

0

⟨Z(s)G, D̃s

∫ s

0

X(u)∗dã−uF ⟩ds,

⟨
∫ t

0

Z(s)dã−s G,

∫ t

0

X(s)∗dã+s F ⟩

=

∫ t

0

⟨D̃sG,

∫ s

0

Z(u)∗dã+uX(s)∗F ⟩ds+
∫ t

0

⟨D̃s

∫ s

0

Xudã
−
uZ(s)G,F ⟩ds,

⟨
∫ t

0

Z(s)dã+s G,

∫ t

0

X(s)∗dã+s F ⟩

=

∫ t

0

⟨D̃sX(s)

∫ s

0

Z(u)dã+uG,F ⟩ds+
∫ t

0

⟨Z(s)G,

∫ s

0

D̃sX(u)∗dã+uF ⟩ds,

+⟨
∫ t

0

X(s)Z(s)GdX(s), F ⟩,

⟨
∫ t

0

Z(s)dã−s G,

∫ t

0

X(s)∗dã−s F ⟩

=

∫ t

0

⟨
∫ s

0

Z(u)dã−uG,X(s)∗D̃sF ⟩ds+
∫ t

0

⟨Z(s)D̃sG,

∫ s

0

X(u)∗dã−uF ⟩ds,

for F,G ∈ P . By linearity and adaptedness of X,Z it suffices to prove these relations

for X = Z = 1[0,t]. We have

⟨ã−t G, ã−t F ⟩ = ⟨
∫ t

0

D̃uGdu,

∫ t

0

D̃sFds⟩

=

∫ t

0

∫ s

0

⟨D̃uG, D̃sF ⟩duds+
∫ t

0

∫ u

0

⟨D̃uG, D̃sF ⟩duds

= ⟨δ̃
(
1[0,t](·)

∫ ·

0

D̃uGdu

)
, F ⟩+ ⟨G, δ̃

(
1[0,t](·)

∫ ·

0

D̃uFdu

)
⟩

= ⟨
∫ t

0

dã+s ã
−
s G,F ⟩+ ⟨G,

∫ t

0

dã+s ã
−
s F ⟩

= ⟨G,

(∫ t

0

ã+s dã
−
s +

∫ t

0

dã+s ã
−
s

)
F ⟩, F,G ∈ P ,

and

⟨ã+t F, ã−t G⟩ =

∫ t

0

⟨ã+s F, D̃sG⟩ds+ ⟨F,
∫ t

0

ã−s Gd(Y (s)− s)⟩ −
∫ t

0

⟨D̃sF, ã
−
s G⟩ds

=

∫ t

0

⟨ã+s F, D̃sG⟩ds+ ⟨F,
∫ t

0

dã+s ã
−
s G⟩

+⟨F,
∫ t

0

dã−s ã
−
s G⟩ −

∫ t

0

⟨D̃sF, ã
−
s G⟩ds
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=

∫ t

0

⟨ã+s F, D̃sG⟩ds+ ⟨F,
∫ t

0

dã−s ã
−
s G⟩

= ⟨F,
∫ t

0

ã−s dã
−
s G⟩+ ⟨F,

∫ t

0

dã−s ã
−
s G⟩, F,G ∈ P .

Finally,

⟨ã+t F, ã+t G⟩ =

∫ t

0

⟨ã+s Fd(Y (s)− s), G⟩ −
∫ t

0

⟨ã+s F, D̃sG⟩ds

+⟨F,
∫ t

0

ã+s Gd(Y (s)− s)⟩ −
∫ t

0

⟨D̃sF, ã
+
s G⟩ds+ ⟨Y (t)F,G⟩

= ⟨
∫ t

0

dã+s ã
+
s F,G⟩+ ⟨

∫ t

0

dã−s ã
+
s F,G⟩ −

∫ t

0

⟨ã+s F, D̃sG⟩ds

+⟨F,
∫ t

0

dã+s ã
+
s G⟩+ ⟨F,

∫ t

0

dã−s ã
+
s G⟩ −

∫ t

0

⟨D̃sF, ã
+
s G⟩ds+ ⟨Y (t)F,G⟩

= ⟨
∫ t

0

dã−s ã
+
s F,G⟩+ ⟨F,

∫ t

0

dã−s ã
+
s G⟩+ ⟨Y (t)F,G⟩

= ⟨
∫ t

0

dã−s ã
+
s F,G⟩+ ⟨

∫ t

0

ã−s dã
+
s F,G⟩+ ⟨Y (t)F,G⟩, F,G ∈ P . 2
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Potential Analysis, 7(2):577–601, 1997.

[12] G. Sansone. Orthogonal Functions, Revised English Edition. Interscience publishers,
New York, 1959.
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