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Abstract

We introduce a family of polynomials that generalizes the Bell polynomials,
in connection with the combinatorics of the central moments of the Poisson dis-
tribution. We show that these polynomials are dual of the Charlier polynomials
by the Stirling transform, and we study the resulting combinatorial identities
for the number of partitions of a set into subsets of size at least 2.
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1 Introduction

The moments of the Poisson distribution are well-known to be connected to the com-

binatorics of the Stirling and Bell numbers. In particular the Bell polynomials Bn(λ)

satisfy the relation

Bn(λ) = Eλ[Z
n], n ∈ IN, (1.1)

where Z is a Poisson random variable with parameter λ > 0, and

Bn(1) =
n∑
c=0

S(n, c) (1.2)

∗nprivault@ntu.edu.sg
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is the Bell number of order n, i.e. the number of partitions of a set of n elements.

In this paper we study the central moments of the Poisson distribution, and we show

that they can be expressed using the number of partitions of a set into subsets of size

at least 2, in connection with an extension of the Bell polynomials.

Consider the above mentioned Bell (or Touchard) polynomials Bn(λ) defined by the

exponential generating function

eλ(e
t−1) =

∞∑
n=0

tn

n!
Bn(λ), (1.3)

λ, t ∈ IR, cf. e.g. §11.7 of [4], and given by the Stirling transform

Bn(λ) =
n∑
c=0

λcS(n, c), (1.4)

where

S(n, c) =
1

c!

c∑
l=0

(−1)c−l
(
c

l

)
ln (1.5)

denotes the Stirling number of the second kind, i.e. the number of ways to partition

a set of n objects into c non-empty subsets, cf. § 1.8 of [7], Proposition 3.1 of [3] or

§ 3.1 of [6], and Relation (1.2) above.

In this note we define a two-parameter generalization of the Bell polynomials, which

is dual to the Charlier polynomials by the Stirling transform. We study the links of

these polynomials with the combinatorics of Poisson central moments, cf. Lemma 3.1,

and as a byproduct we obtain the binomial identity

S2(m,n) =
n∑
k=0

(−1)k
(
m

k

)
S(m− k, n− k), (1.6)

where S2(n, a) denotes the number of partitions of a set of size n into a subsets of size

at least 2, cf. Corollary 3.2 below, which is the binomial dual of the relation

S(m,n) =
n∑
k=0

(
m

k

)
S2(m− k, n− k),
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cf. Proposition 3.3 below.

We proceed as follows. Section 2 contains the definition of our extension of the Bell

polynomials. In Section 3 we study the properties of the polynomials using the Poisson

central moments, and we derive Relation (1.6) as a corollary. Finally in Section 4 we

state the connection between these polynomials and the Charlier polynomials via the

Stirling transform.

2 An extension of the Bell polynomials

We let (Bn(x, λ))n∈IN denote the family of polynomials defined by the exponential

generating function

ety−λ(e
t−t−1) =

∞∑
n=0

tn

n!
Bn(y, λ), λ, y, t ∈ IR. (2.1)

Clearly from (1.3) and (2.1), the definition of Bn(x, λ) generalizes that of the Bell

polynomials Bn(λ), in that

Bn(λ) = Bn(λ,−λ), λ ∈ IR. (2.2)

When λ > 0, Relation (2.1) can be written as

ety IEλ[e
t(Z−λ)] =

∞∑
n=0

tn

n!
Bn(y,−λ), y, t ∈ IR,

which yields the relation

Bn(y,−λ) = Eλ[(Z + y − λ)n], λ, y ∈ IR, n ∈ IN, (2.3)

which is analog to (1.1), and shows the following proposition.

Proposition 2.1 For all n ∈ IN we have

Bn(y,−λ) =
n∑
k=0

(
n

k

)
(y − λ)n−k

k∑
i=0

λiS(k, i), y, λ ∈ IR, n ∈ IN. (2.4)
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Proof. Indeed, by (2.3) we have

Bn(y,−λ) = Eλ[(Z + y − λ)n],

=
n∑
k=0

(
n

k

)
(y − λ)n−kEλ[Z

k]

=
n∑
k=0

(
n

k

)
(y − λ)n−kBk(λ)

=
n∑
k=0

(
n

k

)
(y − λ)n−k

k∑
i=0

λiS(k, i), y, λ ∈ IR.

�

3 Combinatorics of the Poisson central moments

As noted in (1.1) above, the connection between Poisson moments and polynomials

is well understood, however the Poisson central moments seem to have received less

attention.

In the sequel we will need the following lemma, which expresses the central moments

of a Poisson random variable using the number S2(n, b) of partitions of a set of size n

into b subsets with no singletons.

Lemma 3.1 Let Z be a Poisson random variable with intensity λ > 0. We have

Bn(0,−λ) = Eλ[(Z − λ)n] =
n∑
a=0

λaS2(n, a), n ∈ IN. (3.1)

Proof. We start by showing the recurrence relation

Eλ[(Z − λ)n+1] = λ

n−1∑
i=0

(
n

i

)
Eλ
[
(Z − λ)i

]
, n ∈ IN, (3.2)

for Z a Poisson random variable with intensity λ. We have

Eλ[(Z − λ)n+1] = e−λ
∞∑
k=0

λk

k!
(k − λ)n+1
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= e−λ
∞∑
k=1

λk

(k − 1)!
(k − λ)n − λe−λ

∞∑
k=0

λk

k!
(k − λ)n

= λe−λ
∞∑
k=0

λk

k!
((k + 1− λ)n − (k − λ)n)

= λe−λ
∞∑
k=0

λk

k!

n−1∑
i=0

(
n

i

)
(k − λ)i

= λe−λ
n−1∑
i=0

(
n

i

) ∞∑
k=0

λk

k!
(k − λ)i

= λ
n−1∑
i=0

(
n

i

)
Eλ[(Z − λ)i].

Next, we show that the identity

Eλ[(Z − λ)n] =
n−1∑
a=1

λa
∑

0=k1�···�ka+1=n

a∏
l=1

(
kl+1 − 1

kl

)
(3.3)

holds for all n ≥ 1, where a� b means a < b− 1. Note that the degree of (3.3) in λ

is the largest integer d such that 2d ≤ n, hence it equals n/2 or (n − 1)/2 according

to the parity of n.

Clearly, the identity (3.3) is valid when n = 1 and when n = 2. Assuming that it

holds up to the rank n ≥ 2, from (3.2) we have

Eλ[(Z − λ)n+1] = λ
n−1∑
k=0

(
n

k

)
Eλ
[
(Z − λ)k

]
= λ+ λ

n−1∑
k=1

(
n

k

)
Eλ
[
(Z − λ)k

]
= λ+ λ

n−1∑
k=1

(
n

k

) k−1∑
b=1

λb
∑

0=k1�···�kb+1=k

b∏
l=1

(
kl+1 − 1

kl

)

= λ+ λ
n−1∑
k=1

(
n

k

) k∑
b=2

λb−1
∑

0=k1�···�kb=k

b−1∏
l=1

(
kl+1 − 1

kl

)

= λ+ λ
n−1∑
kb=1

(
n

kb

) kb∑
b=2

λb−1
∑

0=k1�···�kb

b−1∏
l=1

(
kl+1 − 1

kl

)
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= λ+ λ
n−1∑
kb=1

kb∑
b=2

λb−1
∑

0=k1�···�kb�kb+1=n+1

b∏
l=1

(
kl+1 − 1

kl

)

= λ+ λ
n∑

kb=1

kb∑
b=2

λb−1
∑

0=k1�···�kb�kb+1=n+1

b∏
l=1

(
kl+1 − 1

kl

)

= λ+
n∑
b=2

λb
∑

0=k1�···�kb+1=n+1

b∏
l=1

(
kl+1 − 1

kl

)

=
n∑
b=1

λb
∑

0=k1�···�kb+1=n+1

b∏
l=1

(
kl+1 − 1

kl

)
,

and it remains to note that∑
0=k1�···�kb+1=n

b∏
l=1

(
kl+1 − 1

kl

)
= S2(n, b) (3.4)

equals the number S2(n, b) of partitions of a set of size n into b subsets of size at

least 2. Indeed, any contiguous such partition is determined by a sequence of b − 1

integers k2, . . . , kb with 2b ≤ n and 0 � k2 � · · · � kb � n so that subset no i has

size ki+1 − ki ≥ 2, i = 1, . . . , b, with kb+1 = n, and the number of not necessarily

contiguous partitions of that size can be computed inductively on i = 1, . . . , b as(
n− 1

n− 1− kb

)(
kb − 1

kb − 1− kb−1

)
· · ·
(

k2 − 1

k2 − 1− k1

)
=

b∏
l=1

(
kl+1 − 1

kl

)
.

For this, at each step we pick an element which acts as a boundary point in the subset

no i, and we do not count it in the possible arrangements of the remaining ki+1−1−ki
elements among ki+1 − 1 places. �

Lemma 3.1 and (3.4) can also be recovered by use of the cumulants (κn)n≥1 of Z − λ,

defined from the cumulant generating function

logEλ[e
t(Z−λ)] = λ(et − 1) =

∞∑
n=1

κn
tn

n!
,

i.e. κ1 = 0 and κn = λ, n ≥ 2, which shows that

Eλ[(Z − λ)n] =
n∑
a=1

∑
B1,...,Ba

κ|B1| · · ·κ|Ba|,
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where the sum runs over the partitions B1, . . . , Ba of {1, . . . , n} with cardinal |Bi|
by the Faà di Bruno formula, cf. § 2.4 of [5]. Since κ1 = 0 the sum runs over the

partitions with cardinal |Bi| at least equal to 2, which recovers

Eλ[(Z − λ)n] =
n∑
a=1

λaS2(n, a), (3.5)

and provides another proof of (3.4). In addition, (3.2) can be seen as a consequence

of a general recurrence relation between moments and cumulants, cf. Relation (5) of

[8].

In particular when λ = 1, (3.1) shows that the central moment

Bn(0,−1) = E1[(Z − 1)n] =
n∑
a=0

S2(n, a) (3.6)

is the number of partitions of a set of size n into subsets of size at least 2, as a coun-

terpart to (1.2).

By (2.3) we have

Bn(y,−λ) =
n∑
k=0

(
n

k

)
yn−kEλ[(Z − λ)k] =

n∑
k=0

(
n

k

)
yn−kBk(0,−λ),

y ∈ IR, λ > 0, n ∈ IN, hence Lemma 3.1 shows that we have

Bn(y,−λ) =
n∑
l=0

(
n

l

)
yn−l

l∑
c=0

λcS2(l, c), λ, y ∈ IR, n ∈ IN. (3.7)

As a consequence of Relations (2.4) and (3.7) we obtain the following binomial identity.

Corollary 3.2 We have

S2(n, c) =
c∑

k=0

(−1)k
(
n

k

)
S(n− k, c− k), 0 ≤ c ≤ n. (3.8)

Proof. By Relation (2.4) we have

Bn(y,−λ) =
n∑
k=0

(
n

k

)
(y − λ)k

n−k∑
i=0

λiS(n− k, i)
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=
n∑
k=0

(
n

k

) k∑
l=0

(
k

l

)
yl(−λ)k−l

n−k∑
i=0

λiS(n− k, i)

=
n∑
k=0

k∑
l=0

(
n

l

)(
n− l
n− k

)
yl(−λ)k−l

n−k∑
i=0

λiS(n− k, i)

=
n∑
l=0

n∑
k=l

(
n

l

)(
n− l
n− k

)
yl(−λ)k−l

n−k∑
i=0

λiS(n− k, i)

=
n∑
l=0

n−l∑
b=0

(
n

l

)(
n− l
b

)
yl(−λ)n−b−l

b∑
i=0

λiS(b, i)

=
n∑
l=0

l∑
b=0

(
n

l

)(
l

b

)
yn−l(−λ)b

l−b∑
i=0

λiS(l − b, i)

=
n∑
l=0

l∑
b=0

(
n

l

)(
l

b

)
yn−l(−λ)b

l∑
c=b

λc−bS(l − b, c− b)

=
n∑
l=0

(
n

l

)
yn−l

l∑
c=0

λc
c∑
b=0

(−1)b
(
l

b

)
S(l − b, c− b), y, λ ∈ IR,

and we conclude by Relation (3.7). �

As a consequence of (3.7) and (3.8) we have the identity

Bn(0,−λ) = Eλ [(Z − λ)n] =
n∑
c=0

λc
c∑

a=0

(−1)a
(
n

a

)
S(n− a, c− a),

for the central moments of a Poisson random variable Z with intensity λ > 0.

The following proposition, which is the inversion formula of (3.8) has a natural inter-

pretation by recalling that S2(m, b) is the number of partitions of a set of m elements

made of b sets of cardinal greater or equal to 2, as will be seen in Proposition 3.4

below.

Proposition 3.3 We have the combinatorial identity

S(n, b) =
b∑
l=0

(
n

l

)
S2(n− l, b− l), b, n ∈ IN. (3.9)

Proof. By Relation (3.7) we have

Bn(λ) = Bn(λ,−λ)
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=
n∑
l=0

(
n

l

)
λn−l

l∑
b=0

λbS2(l, b)

=
n∑
b=0

λb
b∑
l=0

(
n

l

)
S2(n− l, b− l),

and we conclude from (1.4). �

Relation (3.9) is in fact a particular case for a = 0 of the identity proved in the next

proposition, since S(l − c, 0) = 1{l=c}.

Proposition 3.4 For all a, b, n ∈ IN we have(
a+ b

a

)
S(n, a+ b) =

b∑
c=0

n∑
l=c

(
n

l

)(
l

c

)
S(l − c, a)S2(n− l, b− c).

Proof. The partitions of {1, . . . , n}made of a+b subsets are labeled using all possibles

values of l ∈ {0, 1, . . . , n} and c ∈ {0, 1, . . . , l}, as follows. For every l ∈ {0, 1, . . . , n}
and c ∈ {0, 1, . . . , l} we decompose {1, . . . , n} into

• a subset (k1, . . . , kl) of {1, . . . , n} with
(
n
l

)
possibilities,

• c singletons within (k1, . . . , kl), i.e.
(
l
c

)
possibilities,

• a remaining subset of (k1, . . . , kl) of size l − c, which is partitioned into a ∈ IN

(non-empty) subsets, i.e. S(l − c, a) possibilities, and

• a remaining set {1, . . . , n} \ (k1, . . . , kl) of size n − l which is partitioned into

b− c subsets of size at least 2, i.e. S2(n− l, b− c) possibilities.

In this process the b subsets mentioned above were counted with their combinations

within a + b sets, which explains the binomial coefficient

(
a+ b

a

)
on the right-hand

side. �

4 Stirling transform

In this section we consider the Charlier polynomials Cn(x, λ) of degree n ∈ IN, with

exponential generating function

e−λt(1 + t)x =
∞∑
n=0

tn

n!
Cn(x, λ), x, t, λ ∈ IR,
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and

Cn(x, λ) =
n∑
k=0

xk
k∑
l=0

(
n

l

)
(−λ)n−ls(k, l), x, λ ∈ IR, (4.1)

cf. § 3.3 of [7], where

s(k, l) =
1

l!

l∑
i=0

(−1)i
(
l

i

)
(l − i)k

is the Stirling number of the first kind, cf. page 824 of [1], i.e. (−1)k−ls(k, l) is the

number of permutations of k elements which contain exactly l permutation cycles,

n ∈ IN.

In the next proposition we show that the Charlier polynomials Cn(x, λ) are dual to the

generalized Bell polynomials Bn(x−λ, λ) defined in (2.1) under the Stirling transform.

Proposition 4.1 We have the relations

Cn(y, λ) =
n∑
k=0

s(n, k)Bk(y − λ, λ) and Bn(y, λ) =
n∑
k=0

S(n, k)Ck(y + λ, λ),

y, λ ∈ IR, n ∈ IN.

Proof. For the first relation, for all fixed y, λ ∈ IR we let

A(t) = e−λt(1 + t)y+λ =
∞∑
n=0

tn

n!
Cn(y + λ, λ), t ∈ IR,

with

A(et − 1) = et(y+λ)−λ(e
t−1) =

∞∑
n=0

tn

n!
Bn(y, λ), t ∈ IR,

and we conclude from Lemma 4.2 below. The second part can be proved by inversion

using Stirling numbers of the first kind, as

n∑
k=0

S(n, k)Ck(y + λ, λ) =
n∑
k=0

k∑
l=0

S(n, k)s(k, l)Bl(y, λ)

=
n∑
l=0

Bl(y, λ)
n∑
k=l

S(n, k)s(k, l)

= Bn(y, λ),
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from the inversion formula

n∑
k=l

S(n, k)s(k, l) = 1{n=l}, n, l ∈ IN, (4.2)

for Stirling numbers, cf. e.g. page 825 of [1]. �

Next we recall the following lemma, cf. e.g. Relation (3) page 2 of [2], which has been

used in Proposition 4.1 to show that the polynomials Bn(y, λ) are connected to the

Charlier polynomials.

Lemma 4.2 Assume that the function A(t) has the series expansion

A(t) =
∞∑
k=0

tk

k!
ak, t ∈ IR.

Then we have

A(et − 1) =
n∑
k=0

tk

k!
bk, t ∈ IR,

with

bn =
n∑
k=0

akS(n, k), n ∈ IN.

Finally we note that from (2.4) we have the relation

Bn(y, y + λ) =
n∑
k=0

(y + λ)k
n∑
l=k

(
n

l

)
(−λ)n−lS(l, k), y, λ ∈ IR, n ∈ IN,

which parallels (4.1).
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