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Abstract

We obtain sufficient conditions for the existence of conditional densities of
functionals of the Poisson process, and expressions of these densities via the
Malliavin calculus on Poisson space. These results are applied to enlargement
of filtrations on Poisson space with explicit examples of computations via the
Clark formula which is presented as a consequence of the Itô formula and the
martingale property. The gradient operators of stochastic analysis on Poisson
space are classified into three families, and each type of gradient is considered
separately.
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1 Introduction

The Malliavin calculus provides sufficient conditions for the existence of densities of

random variables. It has also been used to study conditional densities, see [14] and

[8] on the Wiener space, [3] in the general case of Dirichlet forms, and [6] on the

Wiener-Poisson space.

In this paper we obtain sufficient conditions for the existence of conditional densities

on Poisson space. The main differences with the Wiener case are the existence of

two different approaches to the stochastic calculus of variations, and the fact that

on Poisson space, even elementary smooth functionals such as jump times do not

have conditional densities with respect to the past of the Poisson process. In the

stochastic calculus of variations on Poisson space, one can distinguish three families of

operators, cf. [16]: intrinsic gradients defined by infinitesimal shifts of configuration
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points, finite difference gradients defined through Fock space decompositions, and

damped gradients whose adjoints coincide with the compensated Poisson stochastic

integral. In this paper we mainly use the damped gradient for the standard Poisson

process because of its particular properties that make it closer to the Wiener space

derivative. The properties of the two other families of gradients with respect to

conditional calculus are also studied.

We proceed as follows. In Sect. 2 we deal with a transformation of Poisson paths and a

simple procedure to compute conditional laws. In Sect. 3 we recall the definition of the

damped gradient operator which is used Sect. 4 to obtain sufficient conditions for the

existence of conditional densities. The method of [8] (transformation of trajectories)

is used, cf. Th. 1, as well as the general results of [3], cf. Th. 2. In Sect. 5 we state the

Clark formula with an elementary proof that does not rely on chaos expansions. On

Poisson space, the method of transformations of trajectories can be easier to apply to

jump times functionals than the product spaces method, cf. [6]. Sect. 6 deals with

the enlargement of filtrations, cf. [10], with an example of explicit computation. In

general, simple random variables on Poisson space such as jump times or increments

of the process do not have conditional densities. We choose to consider the interjump

time τNT
, which has a conditional density given Ft, t ≤ T . An application to insider

trading in mathematical finance as in [7] is also mentioned. In Sects. 7 and 8 we review

the properties of the two main other types of gradient operators (finite difference and

intrinsic gradients) with respect to the conditional calculus on Poisson space.

2 Transformation of Poisson paths

This section introduces the notation and transformations of trajectories that allow to

compute conditional laws. We consider the Poisson space (B,F , P ) where B is a space

of sequences and P is such that the canonical projections τk : B → R form a sequence

of i.i.d. exponentially distributed random variables. We denote by Tn =
∑k=n−1

k=0 τk

the n-th jump time of the Poisson process on R+ constructed as

Nt(ω) =
∞∑
k=1

1[Tk(ω),+∞[(t), t ∈ R,
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and denote by (Ft)t≥0 the filtration generated by (Nt)t≥0. Let

ptn = P (Nt = n) = 1{n≥0}
(t ∨ 0)n

n!
e−t∨0, n ∈ Z, t ∈ R,

with the convention 00 = 1. For fixed n ≥ 1, pn−1 : R+ → R+ is also the density of

the n-th jump time Tn of (Nt)t∈R+ :

P (Tn ≥ x) =

∫ ∞
x

pn−1(t)dt, x ∈ R.

For fixed t > 0, we let for ω, ω′ ∈ B:

N t
s(ω, ω

′) =

{
Ns(ω), if 0 ≤ s ≤ t,
Nt(ω) +Ns−t(ω

′), if 0 ≤ t < s,

which defines a Poisson process indexed by s ≥ 0, with n-th jump time

T tn(ω, ω′) =

{
Tn(ω), if 1 ≤ n ≤ Nt(ω) (i.e. Tn ≤ t),
t+ Tn−Nt(ω)(ω

′), if 1 ≤ Nt(ω) < n (i.e. Tn > t),

and k-th interjump time

τ tk(ω, ω
′) =


τk(ω), if 0 ≤ k < Nt(ω) (i.e. Tk+1 < t),
t− Tk(ω) + τ0(ω′), if k = Nt(ω) (i.e. Tk ≤ t < Tk+1),
τk−Nt(ω)(ω

′), if 1 ≤ Nt(ω) < k (i.e. t < Tk).

Let T t : B×B → B be defined as T t(ω, ω′) = (τ tk(ω, ω
′))k∈N. The following properties

are easily shown:

i) T t is (Ft ⊗F)−F measurable,

ii) we have [P ⊗ P ] ◦ (T t)−1 = P ,

iii) given F ∈ L1(B) we have for P -a.e w ∈ B :

E[F | Ft](ω) = E[F ◦ T t(ω, ·)],

iv) for all A ∈ Ft we have (T t)−1(A) = A×B and T t(A×B) = A.

Property (iii) is helpful to compute the conditional law of functionals of the Poisson

process, e.g.:

P (Tn ≥ x | Ft)(ω) = E[1{Tn≥x} | Ft](ω) = E[1{T t
n(ω,·)≥x}]

= 1{x≤Tn(ω)≤t} + 1{Tn(ω)>t}E[1{t+Tn−Nt(ω)≥x}]

= 1{x≤Tn(ω)≤t} + 1{Tn(ω)>t}

∫ ∞
x−t

pun−1−Nt(ω)du,
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which shows that Tn does not have a conditional density given Ft, except locally on

the set {Tn > t}.

3 Commutation relation for the damped gradient

Let

S = {F = f(T1, . . . , Tn) : f ∈ C∞c (Rn), n ≥ 1},

and let D̃ : L2(B)→ L2(B × R+) be the closable linear operator defined on S as

D̃tF = −
k=n∑
k=1

1[0,Tk](t)∂kf(T1, . . . , Tn), F ∈ S, t ∈ R+,

cf. [4], [17], and extended to the completion Dom D̃ of S in L2(B), with respect to

the norm

‖F‖L2(B) + ‖D̃F‖L2(B×R+), F ∈ S.

The operator D̃ has an adjoint δ̃ : L2(B × R+) → L2(B) which coincides with the

stochastic integral on the adapted processes, with the duality relation

E[〈D̃F, u〉L2(R+)] = E[F δ̃(u)], F ∈ Dom D̃, u ∈ Dom δ̃.

If G : B × B → R is such that G(ω, ·) ∈ Dom D̃, P (dω)-a.s., we denote by D̃2 the

action of D̃ on the second variable, and define δ̃2 similarly. The following Lemma

states the commutation relations between gradient operators and transformations of

trajectories. The commutation relations of D̃ and δ̃ with T t are similar to the ones

found in the Wiener case in e.g. [8].

Lemma 1 Let t > 0. If F ∈ Dom D̃ then F ◦ T t(ω, ·) ∈ Dom D̃2, P (dω)-a.s., and

[D̃s+tF ] ◦ T t = D̃2
s(F ◦ T t), ds⊗ P ⊗ P − a.e. (1)

Proof. Since D̃ has the derivation property it suffices to consider F = f(Tn),

f ∈ C∞c (R). We have

F ◦ T t(ω, ω′) = 1{Tn(ω)<t}f(Tn(ω)) + 1{Tn(ω)>t}f(t+ Tn−Nt(ω)(ω
′)),
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and

D̃2
s(F ◦ T t) = 1{Tn(ω)>t}1[0,Tn−Nt(ω)(ω

′)](s)f
′(t+ Tn−Nt(ω)(ω

′)).

Moreover,

D̃s+tF = f ′(Tn)1[0,Tn](s+ t),

and

[D̃s+tF ] ◦ T t(ω, ω′) = f ′(T tn(ω, ω′))1[0,T t
n(ω,ω′)](s+ t)

= 1{Tn(ω)<t}f
′(Tn(ω))1[0,Tn(ω)](s+ t)

+1{Tn(ω)>t}f
′(t+ Tn−Nt(ω)(ω

′))1[0,t+Tn−Nt(ω)(ω
′)](s+ t)

= 1{Tn(ω)>t}f
′(t+ Tn−Nt(ω)(ω

′))1[0,Tn−Nt(ω)(ω
′)](s)

= D̃2
s(F ◦ T t(ω, ω′)),

which implies for s, t ∈ R+ and all F ∈ S:

[D̃s+tF ] ◦ T t(ω, ·) = D̃2
s(F ◦ T t(ω, ·)).

Given F ∈ Dom D̃ there exists a sequence (Fn)n∈N ⊂ S such that (D̃·+tFn)n∈N con-

verges to D̃·+tF in L2(B×R+). This implies that (D̃2
· (Fn◦T t))n∈N = (D̃·+tFn◦T t)n∈N,

converges to D̃·+tF ◦ T t in L2(B × B × R+), hence F ◦ T t(ω, ·) ∈ Dom D̃ and (1)

holds. �

By duality we obtain a similar result for δ̃. Let π[t denote the multiplication by 1[t,∞[.

Lemma 2 Let t > 0. Let u ∈ Dom δ̃. Then u·+t ◦ T t(ω, ·) ∈ Dom δ̃2, P (dω) − a.s,
and

δ̃2(u·+t ◦ T t) = δ̃(π[tu) ◦ T t, P ⊗ P − a.s. (2)

Proof. Let F[t denote the σ-algebra generated by {Ns − Nt : s > t}, t ∈ R+. Let

F,G ∈ S be respectively Ft and F[t measurable. We have

E ⊗ E[δ̃2(u·+t ◦ T t)F ◦ T tG ◦ T t]

= E ⊗ E[F ◦ T t〈u·+t ◦ T t, D̃2
· (G ◦ T t)〉] = E ⊗ E[F ◦ T t〈u· ◦ T t, π[tD̃

2
·−t(G ◦ T t)〉]

= E ⊗ E[F ◦ T t〈u· ◦ T t, π[t[D̃·G] ◦ T t〉] = E[F 〈u, π[tD̃G〉]

= E[〈u, π[tD̃(FG)〉] = E[δ̃(π[tu)FG] = E ⊗ E[δ̃(π[tu) ◦ T tF ◦ T tG ◦ T t].

Hence π[tu ◦ T t ∈ Dom δ̃2 and (2) holds. �
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4 Existence of conditional densities

The following result shows in particular that if∫ +∞

t

(D̃sF )2ds > 0, P − a.s.,

then the conditional law of F given Ft is absolutely continuous with respect to the

Lebesgue measure. For t = 0, i.e. in the unconditional case, this result can be found

in [18], Th. 6, cf. also Th. 4.1. of [4]. Its analog on Wiener space is Th. 2.1.3 in [12].

Theorem 1 Let t > 0, A ∈ Ft and F ∈ Dom D̃. If∫ +∞

t

(D̃sF )2ds > 0, 1AP − a.e.,

then for P -a.e w ∈ A, F has a conditional density given Ft.

Proof. Since A ∈ Ft, we have T t(A×B) = A, hence for P -a.e w ∈ A:∫ +∞

0

[D̃2
s(F◦T t(ω, ω′))]2ds =

∫ +∞

t

[D̃2
s−t(F◦T t(ω, ω′))]2ds =

∫ +∞

t

(D̃sF )2◦T t(ω, ω′)ds > 0,

P (dω′)-a.s, which implies by Th. 6 of [18] that for P -a.e w ∈ A the law of F ◦ T t(ω, ·)
admits a density which is the conditional density of F given Ft. �

The jump time Tn satisfies the hypothesis of this theorem with A = {Tn > t}, since∫ ∞
t

(D̃sTn)2ds = (Tn − t)+,

hence Tn has a conditional density on the set {Tn > t}, in fact:

dP (Tn = x | Ft)(ω) = 1{Tn(ω)≤t}δTn(ω)(dx) + 1{Tn(ω)>t}p
x−t
n−1−Nt(ω)dx, n ≥ 1.

If A = B, Th. 1 can be obtained from the general results on conditional Dirichlet

forms of [3], see also Th. 4.2 of [14] in the Wiener case.

Theorem 2 Let t > 0 and F ∈ Dom D̃. If∫ +∞

TNt

(D̃sF )2ds > 0, P − a.s,

then F has a conditional density given Ft.
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Proof. Let

Kt = {GD̃u(Tk) : k ≥ 1, u ∈ C∞c ([0, t]), G ∈ L∞(B)},

and let

Ht =

{
v ∈ L2(B × R+) :

∫ Tk

0

v(s)ds = 0, ∀ Tk < t

}
denote the orthogonal ofKt in L2(B×R+). For F ∈ Dom D̃, the orthogonal projection

πHtD̃F of D̃F on Ht is

πHtD̃F = 1[TNt ,+∞[D̃F

since 1[TNt ,+∞[D̃F ∈ Ht and D̃F − 1[TNt ,+∞[D̃F = 1[0,TNt [D̃F ∈ H⊥t . Th. 5-2-7-a of

[3], page 228, implies that if∫ +∞

TNt

(D̃sF )2ds = 〈πHtD̃F, πHtD̃F 〉 > 0, P − a.s.,

then F has a conditional density given

Ft = σ(u(Tk) : k ∈ N, u ∈ C∞c ([0, t])).

�

The relation∫ ∞
t

(D̃sF )2ds ≤
∫ +∞

TNt

(D̃sF )2ds =
t− TNt

TNt+1 − t

∫ TNt+1

t

(D̃sF )2ds+

∫ +∞

t

(D̃sF )2ds

≤ TNt+1 − TNt

TNt+1 − t

∫ ∞
t

(D̃sF )2ds,

shows that for A = B, Th. 1 and Th. 2 are equivalent.

We now turn to representation formulas for the conditional densities.

Theorem 3 Let t > 0. We assume that F ∈ Dom D̃ and that(∫ ∞
t

(D̃sF )2ds

)−1

π[tD̃F ∈ Dom δ̃.

Then, conditionally to Ft, F has a bounded continuous density given by:

qt(x, ω) = E

[
1{F>x}δ̃

(
π[tD̃F

‖π[tD̃F‖2
L2(R+)

)
| Ft

]
.
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Proof. The duality between D̃ and δ̃ and the derivation property of D̃ show that the

proof of Prop. 2.1.1 in [12] applies here, hence if

D̃2(F ◦ T t)
‖D̃2(F ◦ T t)‖2

L2(R+)

∈ Dom δ̃2,

then the law of F ◦ T t(ω, ·) admits a bounded continuous density given by

qt(x, ω) = E

[
1{F◦T t(ω,·)>x}δ̃

2

(
D̃2(F ◦ T t(ω, ·))
‖D̃2(F ◦ T t)‖2

L2(R+)

)]

= E

[
1{F◦T t(ω,·)>x}δ̃

2

(
D̃·+tF

‖D̃·+tF‖2
L2(R+)

◦ T t(ω, ·)

)]

= E

[
1{F◦T t(ω,·)>x}δ̃

(
π[tD̃F

‖π[tD̃F‖2
L2(R+)

)
◦ T t(ω, ·)

]
,

where we applied Lemma 1 and Lemma 2. �

5 The Clark formula

The Clark formula yields the predictable representation of a random variable using

the operator D. On Poisson space, the first statements of this formula have been

obtained in [19], [20] and [21]. An application of the Itô formula

f(Nv, v) = f(Nu, u) +

∫ v

u

(f(1 +Ns− , s)− f(Ns− , s))dÑs

+

∫ v

u

(f(1 +Ns, s)− f(Ns, s))ds+

∫ v

u

∂2f(Ns, s)ds,

to the martingale in t

f(Nt(ω), t) = E[1{NT−Nu=n} | Ft] = E[1{NT−Nu=n} ◦ T t(ω, ·)]

= E[1{Nt
T (ω,·)−Nt

u(ω,·)=n}] = E[1{NT−t(·)+Nt(ω)−Nu(ω)=n}]

= pT−tn−(Nt−Nu)(ω), u < t < T,

gives the predictable representation

pT−vn−(Nv−Nu) = pT−un +

∫ v

u

(pT−tn−1−Nt+Nu
− pT−tn−Nt+Nu

)dÑt, 0 ≤ u ≤ v ≤ T,
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and in particular for T = v,

1{Nv−Nu=n} = pv−un +

∫ v

u

(pv−tn−1−Nt+Nu
− pv−tn−Nt+Nu

)dÑt, n ∈ Z. (3)

For F = 1{Nv−Nu=n} and u ≤ t ≤ v we have

pv−tn−1−Nt+Nu
− pv−tn−Nt+Nu

= E[1{Nv−Nu+1=n} − 1{Nv−Nu=n} | Ft]

= E[Dt1{Nv−Nu=n} | Ft],

where D : L2(B) → L2(B) ⊗ L2(R+) is the finite difference (linear) operator defined

as

Dtf(Nv −Nu) = 1[u,v](t)(f(Nv −Nu + 1)− f(Nv −Nu)),

f : N→ R, and extended to functionals of the form

F = f(Nu1 −Nv1 , . . . , Nun −Nvn), 0 < u1 < v1 < · · · < un < vn, (4)

with the product rule

Dt(FG) = FDtG+GDtF +DtFDtG, t ∈ R+. (5)

Proposition 1 Let F be as in (4), where f has finite support on Nn. We have the

Clark formula

F = E[F ] +

∫ ∞
0

E[DtF | Ft]dÑt.

Proof. For F = 1{Nv−Nu=n}, the formula follows from (3). Using the product rule

(5), we check that if the formula holds for Fu-measurable F and for G independent

of Fu, then

FG = E[G]F + F (G− E[G])

= E[G]

(
E[F ] +

∫ u

0

E[DtF | Ft]dÑt

)
+ F

∫ ∞
u

E[DtG | Ft]dÑt

= E[FG] +

∫ u

0

E[GDtF | Ft]dÑt +

∫ ∞
u

E[FDtG | Ft]dÑt

= E[FG] +

∫ ∞
0

E[Dt(FG) | Ft]dÑt.

�

9



Let

F = E[F ] +
∞∑
n=1

In(fn), fn ∈ L2(R+)◦n,

denote the chaos expansion of F ∈ L2(B,F , P ), where In(fn) denotes the Poisson

compensated multiple stochastic integral. The operator D can be extended as a

closed operator with domain Dom D, such that In(fn) ∈ Dom D, fn ∈ L2(R+)◦n, and

DtIn(fn) = nIn−1(fn(t, ·)), dP × dt− a.e.,

cf. [13]. The Clark formula can then be extended to F ∈ Dom D and to F ∈ Dom D̃

since functionals of the form (4) are dense in L2(B) and F 7→ (E[DtF | Ft])t∈R+ is

in fact continuous from L2(B) into L2(B × R+), with E[DtF | Ft] = E[D̃tF | Ft],
t ∈ R+, cf. Prop. 20 and Prop. 21 of [17]. In particular,

Proposition 2 ([17], Th. 1) We have for F ∈ L2(B):

F = E[F ] +

∫ ∞
0

E[DtF | Ft]dÑt = E[F ] +

∫ ∞
0

E[D̃tF | Ft]dÑt.

We stress that predictable representations can not always be obtained from the com-

bination of Markovian and martingale methods described above. In such cases the

Clark formula can be the only possible way to compute explicitly a predictable rep-

resentation, as in the example given in the next section.

6 Enlargement of filtration

As noted above, many absolutely continuous random variables on Poisson space do

not have conditional densities given Ft. A simple example is the conditional law of

Tn given Ft:

dP (Tn = x | Ft)(ω) = 1{Tn(ω)≤t}δTn(ω)(dx) + 1{Tn(ω)>t}dP (t+ Tn−Nt = x).

Thus the conditional law of a random variable such as Tn does not satisfy the absolute

continuity condition imposed in [9]. Such restrictions are not directly imposed in [23],

which deals with continuous processes. Our first step is to check that Th. 1 of [23], see

also [22], p. 82, also holds in the discontinuous case, and in particular for the Poisson
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process. However, Prop. 3 does not apply to the jump time Tn, since its conditional

law does not satisfy Relation (6) below.

Proposition 3 Given a random variable F , let λt(dx) denote a version of the con-

ditional law of F given Ft, and assume that its predictable representation is given

as

λt(g) = λ0(g) +

∫ t

0

λ̇u(g)dÑu, g ∈ Cb(R),

and that there exists l : R+ × B × R+ → R measurable and a stopping time S, such

that

1{u≤S}λ̇u(dx) = 1{u≤S}λu(dx)l(x, u). (6)

Then

Ñt −
∫ t

0

l(F, u)du

is a Gt-local martingale up to the time S, where Gt = Ft ∨ σ(F ), t ∈ R+.

Proof. We note that the argument of Th. 1 in [23], applies here without continuity

assumption on the trajectories. Let Fs be an Fs-measurable set. We have g(F ) =

E[g(F )] +
∫∞

0
λ̇u(g)dÑu, and

E[1Fsg(F )(Ñt∧S − Ñs∧S)] = E

[
1Fs

(
E[g(F )] +

∫ ∞
0

λ̇u(g)dÑu

)
(Ñt∧S − Ñs∧S)

]
= E

[
1Fs

∫ t∧S

s∧S
λ̇u(g)du

]
= E

[
1Fs

∫ t∧S

s∧S

∫ ∞
−∞

l(x, u)g(x)λu(dx)du

]
= E

[
1Fs

∫ t∧S

s∧S
E[g(F )l(F, u) | Fu]du

]
= E

[
1Fsg(F )

∫ t∧S

s∧S
l(F, u)du

]
.

�

Next we perform an explicit enlargement of filtration, using the Clark formula. We

consider the absolutely continuous random variable τNT
= TNT +1 − TNT

which rep-

resents the length of the jump interval [TNT
, TNT +1] straddling over T . Let Gt =
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Ft ∨ σ(τNT
). We have for 0 < t < T :

TNT
◦ T t(ω, ω′) =

{
t+ TNT−t

(ω′), T1(ω′) < T − t,
TNt(ω), T1(ω′) > T − t,

hence

P (TNT
≥ x | Ft)(ω) = E[1{TNT

◦T t(ω,·)≥x}]

= E[1{TNT−t
≥x−t}1{T1<T−t}] + E[1{TNt (ω)≥x}1{T1>T−t}]

= E[1{NT−t−Nx−t>0}] + P (T1 > T − t)1{TNt (ω)≥x}

= 1− e−(T−t∨x) + e−(T−t)1{TNt (ω)≥x},

and

dP (T − TNT
= x | Ft) = 1[0,T−t](x)e−xdx+ e−(T−t)δT−TNt

(dx). (7)

It is well-known that TNT +1 − T is exponentially distributed and independent of T −
TNT

, conditionally to Ft, 0 ≤ t ≤ T , since TNT +1 ◦ T t(ω, ω′) = T1(ω′) and:

E[1{TNT+1−T≥x} | Ft] = E[1{TNT+1◦T t(ω,·)−T≥x}] = E[1{T1≥x}] = 1− e−x, x ≥ 0,

hence by convolution the conditional density of τNT
given Ft is

λt(dx)

dx
=

dP

dx
(τNT

= x | Ft) =

∫ x∧(T−t)

0

e−(x−y)e−ydy + e−(T−t)
∫ x

0

e−(x−y)δT−TNt
(dy)

= 1[0,∞[(x)e−x(T − t) ∧ x+ et−TNt−x1[T−TNt ,∞[(x).

The predictable representation of λt(dx) is obtained from the Clark formula, and does

not follow directly from the Itô formula. From (7), we get

E[Dsf(TNt) | Fs] = E[1{TNt<s}(f(s)− f(TNt)) | Fs]

=

∫ s

0

e−(t−s)(f(s)− f(y))δTNs
(dy) = e−(t−s)(f(s)− f(TNs)),

hence with f(u) = e−u1[T−x,∞[(u) we have

E[Ds(e
−TNt1[T−x,∞[(TNt)) | Fs] = e−t(1[T−x,∞[(s)− es−TNs1[T−x,∞[(TNs)),

12



and the predictable representation of the conditional density λt(dx)/dx is

λ0(dx)

dx
+ et−x

∫ t

0

E[Ds(e
−TNt1[T−x,∞[(TNt)) | Fs]dÑs

= 1[0,∞[(x)e−x(T ∧ x) + e−x1[T,∞[(x) + e−x
∫ t

0

(1{T−x≤s} − e−(TNs−s)1{T−x≤TNs})dÑs

= 1[0,∞[(x)e−x(T ∧ x) + e−x1[T,∞[(x)

+e−x
∫ t

0

(1[T−s,T−TNs ](x) + 1[T−TNs ,∞[(x)(1− e−(TNs−s)))dÑs.

Hence

λ̇t(dx) = e−x1[T−t,T−TNt [(x)dx+ e−x1[T−TNt ,∞[(x)(1− e−(TNt−t))dx

= e−x(1[T−t,∞[(x)− 1[T−TNt ,∞[(x)et−TNt )dx,

and the process l(x, t) defined in (6) is equal to

l(x, t) =
1

T − t
1[T−t,T−TNt [(x) + 1[T−TNt ,∞[(x)

1− et−TNt

(T − t) + et−TNt

= 1[T−t,∞[(x)
1− et−TNt1[T−TNt ,∞[(x)

T − t+ et−TNt1[T−TNt ,∞[(x)
.

Consequently,

Nt − t−
∫ t

0

Λsds, t ∈ R+,

is a compensated Gt-Poisson process, with

Λs = 1[T−τNT
,∞[(s)

1− es−TNs1[T−τNT
,∞[(TNs)

T − s+ es−TNs1[T−τNT
,∞[(TNs)

, s ∈ [0, T ].

For an application in mathematical finance, consider a price process (St)t∈R+ given by

dSt
St

= νdt+ φdÑt,

where ν and φ are positive constants. Assume that an informed agent knows the

random value of τNT
. Since there is always at least one jump at TNT

in the time

interval [T −τNT
, T ], the agent can buy at time T −τNT

and sell at a higher price after

the next jump, inducing a possibility of arbitrage. We have shown that the dynamics

of prices for the informed agent is

dSt
St

= (ν + Λt)dt+ φ(dÑt − Λtdt).

Note that Λs = 0 if s ≤ T − τNT
.

13



7 The finite difference gradient

In this section we investigate the properties of the finite difference gradient with

respect to the existence of conditional densities. Instead of a Poisson process on R+

we may consider a Poisson random measure on R+ × Rd. Let

Ω =

{
ω =

i=n∑
i=1

εti,xi : (ti, xi) ∈ R+ × Rd, n ∈ N ∪ {+∞}

}
,

where εt,x denotes the Dirac measure at (t, x) ∈ R+ × Rd. The space Ω is equipped

with the Poisson random measure with intensity dµ(t, x) = dt ⊗ σ(dx), where σ is a

σ-finite measure on Rd, by letting

P ({ω ∈ Ω : ω(A1) = k1, . . . , ω(An) = kn}) =
µ(A1)k1

k1!
e−µ(A1) · · · µ(An)kn

kn!
e−µ(An),

where A1, . . . , An are disjoint compact subsets of R+ × Rd. This measure is charac-

terized by its Fourier transform∫
Ω

e
i
∫
R+×Rd f(t,x)dω(t,x)

dP (ω) = exp

(∫
R+×Rd

(eif(t,x) − 1)dµ(t, x)

)
, f ∈ Cc(R+ × Rd).

Let D : L2(Ω)→ L2(Ω× R+ × Rd) be the linear operator defined as

Dt,xF = F (ω + εt,x)− F (ω), ω ∈ Ω.

The domain of D : L2(Ω)→ L2(Ω×R+×Rd) is the space Dom D of random variables

F : Ω→ R such that

‖F‖L2(Ω) + ‖DF‖L2(Ω×R+×Rd) <∞, u ∈ Rd.

The operator D has an adjoint δ : L2(Ω×R+×Rd)→ L2(Ω), with the duality relation

E[〈DF, u〉L2(R+×Rd)] = E[Fδ(u)], F ∈ Dom D, u ∈ Dom δ.

If G : Ω× Ω→ R we will denote by D2 the action of D on the second variable. The

transformation T t : Ω× Ω→ Ω is here defined as

T t(ω, ω′) = T t
(
i=n∑
i=1

εti,xi ,

i=n′∑
i=1

εt′i,x′i

)
=
∑
ti<t

εti,xi +
i=n′∑
i=1

εt+t′i,x′i .

14



The following Lemma states the commutation relations between gradient operators

and transformations of trajectories. The commutation relation of Ds with T t coincides

also with that of D̃, or [8] on the Wiener space.

Lemma 3 Let t > 0. If F ∈ Dom D then F ◦ T t ∈ Dom D2 and :

[Dr+t,xF ] ◦ T t = D2
r,x(F ◦ T t), dr ⊗ σ(dx)⊗ P ⊗ P − a.e.

Proof. We have for r > t and ω =
∑i=n

i=1 εti,xi , ω
′ =
∑i=n′

i=1 εt′i,x′i :

[Dr,xF ] ◦ T t(ω, ω′)

= 1[t,∞[(r)

(
F

(∑
ti<t

εti,xi + εr,x +
i=n′∑
i=1

εt+t′i,x′i

)
− F

(∑
ti<t

εti,xi +
i=n′∑
i=1

εt+t′i,x′i

))
= D2

r−t,x(F ◦ T t(ω, ω′)).

�

Let π[t denote the multiplication by 1[t,∞[⊗1. By duality we obtain similar results for

the adjoint δ2 of D2, with the same proof as in Lemma 2, if we consider the σ-algebra

F[t generated by {ω 7→ ω([s, r]× A) : t < s < r, A ∈ B(Rd)}, t ∈ R+.

Lemma 4 Let t > 0. Let u ∈ Dom δ. Then u ◦ T t(ω, ·) ∈ Dom δ2, P (dω)− a.s, and

δ2(u·+t ◦ T t) = δ(π[tu) ◦ T t, P ⊗ P − a.s. (8)

We note that existence results for conditional densities, using the finite difference

gradient D can also be stated from the result of [11], see also [15]. Assume that for

some α ∈]0, 2[,

lim inf
ρ→0

1

ρα

∫
|z|≤ρ
|z|2σ(dz) > 0

(condition (1.9) in [11]). Let M be a symmetric positive definite d × d matrix such

that

(u,Mu)Rd ≤ lim inf
ρ→0

(
u,

∫
|z|≤ρ zz

Tσ(dz)∫
|z|≤ρ |z|2σ(dz)

u

)
,

(condition (1.4) in [11]). Let Ft be the σ-algebra generated by {ω 7→ ω([s, r] × A) :

s < r < t, A ∈ B(Rd)}, t ∈ R+.
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Proposition 4 Let F = (F1, . . . , Fd) such that Fi ∈ Dom D, i = 1, . . . , d, and as-

sume that the covariance matrix

(< DFi, DFj >L2([t,+∞[×Rd))1≤i,j≤d +

∫ ∞
t

(∂xDs,0F )M(∂xDs,0F )Tds

is positive definite. Then F : Ω→ Rd has a conditional density given Ft.

For t = 0 this is Th. 2.1 of [11]. The proof of this proposition is then a straightforward

application to F ◦ T t of the result of [11], combined with Lemma 3.

8 Conditional calculus with the intrinsic gradient

The intrinsic gradient D̂ is defined as

D̂t,xF =
i=n∑
i=1

∂if

(∫
R+×Rd

u1dω, . . .

∫
R+×Rd

undω

)
∇t,xui, (t, x) ∈ R+ × Rd,

where ∇t,x is the gradient on R+ × Rd and

F = f

(∫
R+×Rd

u1dω, . . .

∫
R+×Rd

undω

)
, (9)

u1, . . . , un ∈ C∞c (R+ × Rd), f ∈ C1
c (Rn), cf. [2], [1]. The transformation T t is defined

as in the previous section, i.e.

F ◦ T t(ω, ω′) = f

(∫
[0,t]×Rd

udω +

∫
R+×Rd

u(s+ t, x)dω′(s, x)

)
,

for F = f
(∫

R+×Rd udω
)

, u ∈ C∞c (R+ × Rd).

Lemma 5 Let t > 0. If F ∈ Dom D̂ then F ◦ T t ∈ Dom D̂2 and :

[D̂r+t,xF ] ◦ T t = D̂2
r,x(F ◦ T t), dr ⊗ dx⊗ P ⊗ P − a.e.

Proof. Let F = f
(∫

R+×Rd udω
)

. We have

[D̂r+t,xF ] ◦ T t(ω, ω′) = f ′
(∫

[0,t]×Rd

udω +

∫
R+×Rd

u(s+ t, x)dω′(s, x)

)
∇u(r + t, x)

= D̂2
r,x(F ◦ T t(ω, ω′)).

�
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Although the elements ω of Ω are not invariant by translation, a similar commutation

relation holds for the norm of D̂.

Proposition 5 Let F be a smooth functional of the form (9). We have the relation

‖D̂F‖2
L2([t,∞[×Rd;Rd+1,dω) ◦ T

t(ω, ω′) = ‖D̂2(F ◦ T t(ω, ω′))‖2
L2(R+×Rd;Rd+1,dω′),

ω, ω′ ∈ Ω.

Proof. We have, using the notation ω′ =
∑

k εt′k,x′k :

‖D̂F‖2
L2([t,∞[×Rd;Rd+1,dω) ◦ T

t(ω, ω′)

=

∫
[t,∞[×Rd

k=n∑
k=1

‖D̂r,xF‖2
Rd+1 ◦ T t(ω, ω′)εt+t′k,x′k(dr, dx)

=

∫
[0,∞[×Rd

k=n∑
k=1

‖D̂r+t,xF‖2
Rd+1 ◦ T t(ω, ω′)εt′k,x′k(dr, dx)

=

∫
[0,∞[×Rd

k=n∑
k=1

‖D̂r,x(F ◦ T t(ω, ω′))‖2
Rd+1εt′k,x′k(dr, dx)

=

∫
R+×Rd

‖D̂2
r(F ◦ T t(ω, ω′))‖2

Rd+1dω
′.

�

This implies, using an argument similar to Th. 1 or Prop. 4 above, and e.g. Th. 1.3.1

in [5], that F has a conditional density given Ft whenever F ∈ Dom (D̂) and∫
[t,∞[×Rd

‖D̂F (ω)‖2
Rd+1dω > 0, P (dω)− a.s.

However the integration by parts formula for D̂ reads

E[〈D̂F (ω), U〉L2(R+×Rd;Rd+1,dω)] = E[Fδ(div U)], U ∈ C∞c (R+ × Rd;Rd+1),

where div U is the divergence of U , cf. e.g. [1], hence there is no commutation

relation between T t and the adjoint δ̂ of D̂ since π[tU does not belong to Dom δ̂.

Thus Lemma 2, Lemma 4 and Th. 3 can not be stated with D̂.
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