Conditional Stein approximation for Itô and Skorohod integrals

Nicolas Privault Qihao She
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link
Singapore 637371
nprivault@ntu.edu.sg

July 6, 2017

Abstract

We derive conditional Edgeworth-type expansions for Skorohod and Itô integrals with respect to Brownian motion, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain conditional Stein approximation bounds for multiple stochastic integrals and quadratic Brownian functionals.

Key words: Stein method; Malliavin calculus; Edgeworth expansions; stochastic integral; conditioning; quadratic Brownian functionals.
Mathematics Subject Classification: 60H07, 62E17, 60G15, 60H05.

1 Introduction

Let $\left(B_{t}\right)_{t \in[0, T]}$ be a d-dimensional Brownian motion generating the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$ on the Wiener space Ω. It has been shown in Theorem 2.1 of [4], that given B_{T}, the stochastic integral $\int_{0}^{T} A B_{s} d B_{s}$ is Gaussian $\mathcal{N}\left(0, \int_{0}^{T}\left|A B_{s}\right|^{2} d s\right)$-distributed given $\int_{0}^{T}\left|A B_{s}\right|^{2} d s$ when the $d \times d$ matrix A is skew-symmetrix, as an extension of results of [14] in the case of Lévy's stochastic area with $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. On the other hand, it
has recently been shown in [12] that the distribution of $\int_{0}^{T} A B_{s} d B_{s}$ given $\int_{0}^{T}\left|A B_{s}\right|^{2} d s$ is also Gaussian $\mathcal{N}\left(0, \int_{0}^{T}\left|A B_{s}\right|^{2} d s\right)$ when A is a 2-nilpotent $d \times d$ matrix, in connection with results of [13] showing that the filtration $\left(\mathcal{F}_{t}^{k}\right)_{t \in[0, T]}$ of $t \mapsto \int_{0}^{t} A B_{s} d B_{s}$ is generated by k independent Brownian motions, where k is the number of distinct eigenvalues of $A^{\top} A$.

More generally, this type of result has been shown to hold in [12] for stochastic integrals of the form $\int_{0}^{T} u_{t} d B_{t}$ where $\left(u_{t}\right)_{t \in[0, T]}$ is an $\left(\mathcal{F}_{t}\right)$-adapted process, under conditions formulated in terms of the Malliavin calculus, based on the cumulant-moment formulas of [9], [10]. Namely, sufficient conditions on the process $\left(u_{t}\right)_{t \in[0, T]}$ have been given for $\int_{0}^{T} u_{t} d B_{t}$ to be Gaussian $\mathcal{N}\left(0, \int_{0}^{T}\left|u_{t}\right|^{2} d t\right)$-distributed given $\int_{0}^{T}\left|u_{t}\right|^{2} d t$, cf. Theorem 2 therein.

In this paper, using the Malliavin-Stein method on the Wiener space we derive conditional estimates on the distance between the law of $\int_{0}^{T} u_{t} d B_{t}$ and the Gaussian $\mathcal{N}\left(0, \int_{0}^{T}\left|u_{t}\right|^{2} d t\right)$ distribution given $\int_{0}^{T}\left|u_{t}\right|^{2} d t$. For this, we rely on conditional Edgeworth type expansions for random variables represented as the Itô stochastic integral of $\left(u_{t}\right)_{t \in[0, T]}$ with respect to $\left(B_{t}\right)_{t \in[0, T]}$, extending results of [11] to a conditional setting. This approach relies on properties of the Skorohod integral operator δ, which coincides with the Itô stochastic integral with respect to d-dimensional Brownian motion on the square-integrable adapted processes.

Letting $H=L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, we consider the standard Sobolev spaces of real-valued, resp. H-valued, functionals $\mathbb{D}_{p, k}$, resp. $\mathbb{D}_{p, k}(H), p, k \geq 1$, for the Malliavin gradient D on the Wiener space, cf. § 1.2 of [7] for definitions. Recall that the Skorohod operator δ is the adjoint of the gradient D through the duality relation

$$
\begin{equation*}
E[F \delta(v)]=E\left[\langle D F, v\rangle_{H}\right], \quad F \in \mathbb{D}_{2,1}, \quad v \in \mathbb{D}_{2,1}(H) \tag{1.1}
\end{equation*}
$$

and we have the commutation relation

$$
\begin{equation*}
D_{t} \delta(u)=u(t)+\delta\left(D_{t} u\right), \quad t \in \mathbb{R}_{+} \tag{1.2}
\end{equation*}
$$

provided that $u \in \mathbb{D}_{2,1}(H)$ and $D_{t} u \in \mathbb{D}_{2,1}(H)$, dt-a.e., cf. Proposition 1.3.2 of [7]. In the sequel we let $\langle h, h\rangle:=\langle h, h\rangle_{H}$ and $\|h\|:=\|h\|_{H}, h \in H$.

First order conditional duality and expansion

The duality relation (1.1) shows that we have
$E[F \delta(u) f(\delta(u))]=E\left[F\langle u, u\rangle f^{\prime}(\delta(u))\right]+E[\langle u, D F\rangle f(\delta(u))]+E\left[F f^{\prime}(\delta(u))\langle u, \delta(D u)\rangle\right]$, for $f \in \mathcal{C}_{b}^{1}(\mathbb{R})$, provided that $u \in \mathbb{D}_{2,2}(H)$. Applying this relation to $F=g(\langle u, u\rangle)$ where $g:(0, \infty) \rightarrow(0, \infty)$ is in $\mathcal{C}_{b}^{1}((0, \infty))$, under the condition $\langle u,(D u) u\rangle=0$ we have

$$
\begin{aligned}
& E[F \delta(u) f(\delta(u))] \\
& =E\left[F\langle u, u\rangle f^{\prime}(\delta(u))\right]+E\left[\langle u, D\langle u, u\rangle\rangle f(\delta(u)) g^{\prime}(\langle u, u\rangle)\right]+E\left[F f^{\prime}(\delta(u))\langle u, \delta(D u)\rangle\right] \\
& \left.=E\left[F\langle u, u\rangle f^{\prime}(\delta(u))\right]+2 E[\langle u,(D u) u\rangle\rangle f(\delta(u)) g^{\prime}(\langle u, u\rangle)\right]+E\left[F\langle u, \delta(D u)\rangle f^{\prime}(\delta(u))\right] \\
& =E\left[F\langle u, u\rangle f^{\prime}(\delta(u))\right]+E\left[F\langle u, \delta(D u)\rangle f^{\prime}(\delta(u))\right],
\end{aligned}
$$

which yields

$$
\begin{equation*}
E_{\mid u[}\left[\delta(u) f(\delta(u))-\langle u, u\rangle f^{\prime}(\delta(u))\right]=E_{|u|}\left[\langle u, \delta(D u)\rangle f^{\prime}(\delta(u))\right], \tag{1.3}
\end{equation*}
$$

for $u \in \mathbb{D}_{2,1}(H), F \in \mathbb{D}_{2,1}$ and $f \in \mathcal{C}_{b}^{1}(\mathbb{R})$, where

$$
E_{|u|}[F]:=E[F \mid\langle u, u\rangle]
$$

denotes the conditional expectation given $\langle u, u\rangle$.

Let now $\mathcal{N}(0, g(\|u\|))$ denote a centered Gaussian random variable with variance $g(\|u\|)$, where $g:(0, \infty) \rightarrow(0, \infty)$ is a measurable function. Applying the above relation (1.3) to the solution f_{x} of the Stein equation

$$
\begin{equation*}
\mathbf{1}_{(-\infty, x]}(z)-\Phi_{g(\|u\|)}(x)=g(\|u\|) f_{x}^{\prime}(z)-z f_{x}(z), \quad z \in \mathbb{R} \tag{1.4}
\end{equation*}
$$

satisfying the bounds $\left\|f_{x}\right\|_{\infty} \leq \sqrt{2 \pi} / 4$ and $\left\|f_{x}^{\prime}\right\|_{\infty} \leq 1 / \sqrt{g(\|u\|)}$, cf. Lemma 2.2-(v) of [3], yields the conditional expansion
$P(\delta(u) \leq x \mid\|u\|)=\Phi_{g(\|u\|)}(x)+E_{|u|}\left[(g(\|u\|)-\langle u, u\rangle) f_{x}^{\prime}(\delta(u))\right]-E\left[\langle u, \delta(D u)\rangle f_{x}^{\prime}(\delta(u))\right]$,
$x \in \mathbb{R}$, around the Gaussian cumulative distribution function $\Phi_{g(\|u\|)}(x)$, with $u \in$ $\mathbb{D}_{2,1}(H)$.

In Section 2 we will expand this approach to Edgeworth type expansion of all orders, based on a family of cumulant operators that are associated to the process $\left(u_{t}\right)_{t \in[0, T]}$. We refer to [1], [5], [2] for other approaches to Edgeworth expansions via the Stein method and the Malliavin calculus.

In Section 3, we derive conditional Stein approximation bounds for the distance between $\delta(u)$ and the Gaussian distribution with variance $g(\|u\|)$ Section 4 treats the case of double stochastic integrals, which includes the quadratic functional $\int_{0}^{T} A B_{s} d B_{s}$ as a particular case.

2 Conditional Edgeworth type expansions

Given $u \in \mathbb{D}_{2,1}(H)$ and $k \geq 1$, we define the operator composition $(D u)^{k}$ in the sense of matrix powers with continuous indices, namely, $(D u)^{k}$ denotes the random operator on H almost surely defined by

$$
\begin{equation*}
(D u)^{k} h_{s}=\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left(D_{t_{k}} u_{s} D_{t_{k-1}} u_{t_{k}} \cdots D_{t_{1}} u_{t_{2}}\right) h_{t_{1}} d t_{1} \cdots d t_{k}, \quad s \in \mathbb{R}_{+}, \quad h \in H \tag{2.1}
\end{equation*}
$$

cf. e.g. $\S 7$ of [10], [9], [8] for details. The adjoint $D^{*} u$ of $D u$ on H satisfies

$$
\langle(D u) v, h\rangle=\left\langle v,\left(D^{*} u\right) h\right\rangle, \quad h, v \in H,
$$

with $\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle_{H}$, and is given by

$$
\left(D^{*} u\right) v_{s}=\int_{0}^{\infty}\left(D_{s} u_{t}\right) v_{t} d t, \quad s \in \mathbb{R}_{+}, \quad v \in L^{2}(W ; H)
$$

The next proposition reformulates Proposition 2.1 of [11] in a conditional setting given the random value of $\langle u, u\rangle$, whereas the case where $\langle u, u\rangle$ is deterministic (random isometries) has been treated in [11] based on the relation $\left\langle u,(D u)^{k} u\right\rangle=$ $\left\langle(D u)^{k-1} u, D\langle u, u\rangle\right\rangle / 2, u \in \mathbb{D}_{k+2,1}(H), k \geq 1$.

Proposition 2.1 Let $n \geq 1$ and assume that $u \in \mathbb{D}_{k, 2}(H)$ for all $k=1, \ldots, n+2$ and $\left\langle u,(D u)^{k} u\right\rangle=0$ for $k=1, \ldots, n+1$. Then for all $f \in \mathcal{C}_{b}^{n+1}(\mathbb{R})$ we have

$$
\begin{align*}
& E_{|u|}[\delta(u) f(\delta(u))]=E_{|u|}\left[\left(\langle u, u\rangle+\operatorname{trace}(D u)^{2}\right) f^{\prime}(\delta(u))\right] \tag{2.2}\\
& \quad+\sum_{k=2}^{n} E_{|u|}\left[\left\langle D^{*} u, D\left((D u)^{k-1} u\right)\right\rangle f^{(k)}(\delta(u))\right]+E_{|u|}\left[\left\langle(D u)^{n} u, \delta(D u)\right\rangle f^{(n+1)}(\delta(u))\right] .
\end{align*}
$$

Proof. From Proposition 2.1 of [11] we have

$$
\begin{equation*}
E[F \delta(u) f(\delta(u))]=\sum_{k=0}^{n} E\left[f^{(k)}(\delta(u)) \Gamma_{k+1}^{u} F\right]+E\left[F\left\langle(D u)^{n} u, \delta(D u)\right\rangle f^{(n+1)}(\delta(u))\right] \tag{2.3}
\end{equation*}
$$

where

$$
\Gamma_{k}^{u}: \mathbb{D}_{2,1} \longrightarrow L^{2}(\Omega), \quad k \geq 1
$$

is defined for $u \in \mathbb{D}_{k, 2}(H)$, by $\Gamma_{1}^{u} F:=\langle u, D F\rangle$ and

$$
\Gamma_{k}^{u} F:=F\left\langle(D u)^{k-2} u, u\right\rangle+F\left\langle D^{*} u, D\left((D u)^{k-2} u\right)\right\rangle+\left\langle(D u)^{k-1} u, D F\right\rangle, \quad k \geq 2 .
$$

Next, for F of the form $F=g\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right), g \in \mathcal{C}_{b}^{1}(\mathbb{R})$ and $k \geq 1$ we have:

$$
\begin{align*}
& \Gamma_{k}^{u} F \\
&=\left.\mathbf{1}_{\{k=2\}}\langle u, u\rangle g\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right)+\left.g^{\prime}\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right) \int_{0}^{T}\left\langle D_{t} \int_{0}^{T}\right| u_{s}\right|^{2} d s,(D u)^{k-1} u_{t}\right\rangle_{\mathbb{R}^{d}} d t \\
&+g\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right)\left\langle D^{*} u, D\left((D u)^{k-2} u\right)\right\rangle \\
&= \mathbf{1}_{\{k=2\}}\langle u, u\rangle g\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right)+2 g^{\prime}\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right) \int_{0}^{T}\left\langle u_{s},(D u)^{k} u_{s}\right\rangle_{\mathbb{R}^{d}} d s \\
&+\mathbf{1}_{\{k \geq 2\}} g\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right)\left\langle D^{*} u, D\left((D u)^{k-2} u\right)\right\rangle \\
&= \mathbf{1}_{\{k=2\}}\langle u, u\rangle F+\mathbf{1}_{\{k \geq 2\}}\left\langle D^{*} u, D\left((D u)^{k-2} u\right)\right\rangle F . \tag{2.4}
\end{align*}
$$

Hence from (2.3) we find

$$
\begin{aligned}
& E[F \delta(u) f(\delta(u))]=E\left[F\left(\langle u, u\rangle+\operatorname{trace}(D u)^{2}\right) f^{\prime}(\delta(u))\right] \\
& \quad+\sum_{k=2}^{n} E\left[F\left\langle D^{*} u, D\left((D u)^{k-1} u\right)\right\rangle f^{(k)}(\delta(u))\right]+E\left[F\left\langle(D u)^{n} u, \delta(D u)\right\rangle f^{(n+1)}(\delta(u))\right],
\end{aligned}
$$

where we used the relation

$$
\begin{equation*}
\Gamma_{2}^{u} \mathbf{1}=\langle u, u\rangle+\left\langle D^{*} u, D u\right\rangle_{H \otimes H}=\langle u, u\rangle+\operatorname{trace}(D u)^{2} . \tag{2.5}
\end{equation*}
$$

Proposition 2.1 also covers the following particular settings.
(i) Quasi-nilpotent processes. Given $n \geq 0$, when trace $(D u)^{k}=0$ for all $k=$ $2, \ldots, n+1$, under the conditions of Proposition 2.1 we have

$$
E_{|u|}[\delta(u) f(\delta(u))]=\langle u, u\rangle E_{|u|}\left[f^{\prime}(\delta(u))\right]+E_{|u|}\left[f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right] .
$$

When trace $(D u)^{k}=0$ for all $k \geq 2$, this recovers the conditional Gaussian integration by parts formula

$$
E_{|u|}[\delta(u) f(\delta(u))]=\langle u, u\rangle E_{|u|}\left[f^{\prime}(\delta(u))\right],
$$

showing that $\delta(u)$ has the distribution $\mathcal{N}\left(0, \int_{0}^{T}\left|u_{t}\right|^{2} d t\right)$ given $\int_{0}^{T}\left|u_{t}\right|^{2} d t$. This setting includes the particular cases where $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process, cf. e.g. Lemma 3.5 of [8] and references therein, in which case $\delta(u)$ coincides with the Itô integral of u, cf. Proposition 1.3.11 of [7].
(ii) Multiple stochastic integrals. Taking $u_{t}:=I_{m-1}\left(f_{m}(*, t)\right)$, where $m \geq 1$ and f_{m} is a symmetric square-integrable function on \mathbb{R}_{+}^{m}, we have $\delta(u)=I_{m}\left(f_{m}\right)$ and

$$
\begin{equation*}
\delta\left(D_{t} u\right)=(m-1) I_{m-1}\left(f_{m}(*, t)\right)=(m-1) u_{t}, \quad t \in \mathbb{R}_{+} \tag{2.6}
\end{equation*}
$$

Hence, under the conditions of Proposition 2.1 applied to $u_{t}=I_{m-1}\left(f_{m}(*, t)\right)$, we get

$$
\begin{aligned}
& E_{|u|}\left[I_{m}\left(f_{m}\right) f\left(I_{m}\left(f_{m}\right)\right)\right] \\
& \quad=\langle u, u\rangle E_{|u|}\left[f^{\prime}\left(I_{m}\left(f_{m}\right)\right)\right]+\sum_{k=1}^{n} E_{|u|}\left[\left\langle D^{*} u, D\left((D u)^{k-1} u\right)\right\rangle f^{(k)}\left(I_{m}\left(f_{m}\right)\right)\right] .
\end{aligned}
$$

Remark 2.2 By replacing F in Equation (2.4) of the proof of Proposition 2.1 with F of the form

$$
F=g\left(\int_{a_{i}}^{b_{i}}\left|u_{t}\right|^{2} d t, \ldots, \int_{a_{d}}^{b_{d}}\left|u_{t}\right|^{2} d t\right), \quad 0 \leq a_{i} \leq b_{i} \leq T, \quad i=1, \ldots, d,
$$

where $g \in \mathcal{C}_{b}^{1}\left(\mathbb{R}^{d}\right)$, we can rewrite (2.2) by conditioning with respect to $\left(u_{t}\right)_{t \in[0, T]}$, under the stronger condition $\left\langle u_{t},(D u)^{k} u_{t}\right\rangle_{\mathbb{R}^{d}}=0, t \in[0, T], k=1, \ldots, n+1$.

3 Conditional Stein approximation

From now on we work with $d=1$ and a one-dimensional Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$. Given $h: \mathbb{R} \rightarrow \mathbb{R}$ an absolutely continuous function with bounded derivative, the functional equation

$$
\begin{equation*}
h(z)-E_{|u|}\left[h\left(\mathcal{N}_{g(\|u\|)}\right)\right]=g(\|u\|) f^{\prime}(z)-z f(z), \quad z \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

has a solution $f_{h} \in \mathcal{C}_{b}^{1}(\mathbb{R})$ which is twice differentiable and satisfies the bounds

$$
\left\|f_{h}^{\prime}\right\|_{\infty} \leq\left\|h^{\prime}\right\|_{\infty} / \sqrt{g(\|u\|)} \quad \text { and } \quad\left\|f_{h}^{\prime \prime}\right\|_{\infty} \leq 2\left\|h^{\prime}\right\|_{\infty} / g(\|u\|), \quad x \in \mathbb{R}
$$

cf. Lemma 1.2-(v) of [6]. Let

$$
d_{|u|}(F, G)=\sup _{h \in \mathcal{L}}\left|E_{|u|}[h(F)]-E_{|u|}[h(G)]\right|
$$

denote the Wasserstein distance between the conditional laws of F and G given $\|u\|$, where \mathcal{L} denotes the class of 1 -Lipschitz functions.

Proposition 3.1 Let $u \in \bigcap_{k=1}^{3} \mathbb{D}_{k, 2}(H)$, such that $\langle u,(D u) u\rangle=\left\langle u,(D u)^{2} u\right\rangle=0$. We have
$d_{|u|}\left(\delta(u), \mathcal{N}_{g(\|u\|)}\right) \leq \frac{1}{\sqrt{g(\|u\|)}}\left|g(\|u\|)-\operatorname{Var}_{|u|}[\delta(u)]\right|+\frac{2}{g(\|u\|)} E_{|u|}[|\langle(D u) u, \delta(D u)\rangle|]$.

Proof. Applying Proposition 2.1 with $n=1$ shows that
$E_{|u|}[\delta(u) f(\delta(u))]=E_{|u|}\left[\left(\langle u, u\rangle+\operatorname{trace}(D u)^{2}\right) f^{\prime}(\delta(u))\right]+E_{|u|}\left[\langle(D u) u, \delta(D u)\rangle f^{\prime \prime}(\delta(u))\right]$,
hence for any continuous function $h: \mathbb{R} \rightarrow[0,1]$, denoting by f_{h} the solution to (3.1) we have
$\left|E_{|u|}[h(\delta(u))]-E_{|u|}\left[h\left(\mathcal{N}_{g(\|u\|)}\right)\right]\right|$

$$
\begin{aligned}
& =\left|E_{|u|}\left[\delta(u) f_{h}(\delta(u))-g(\|u\|) f_{h}^{\prime}(\delta(u))\right]\right| \\
& =\left|E_{|u|}\left[(\langle u, u\rangle-g(\|u\|)) f_{h}^{\prime}(\delta(u))+\operatorname{trace}(D u)^{2} f_{h}^{\prime}(\delta(u))+\langle(D u) u, \delta(D u)\rangle f_{h}^{\prime \prime}(\delta(u))\right]\right| \\
& \leq \frac{\left\|h^{\prime}\right\|_{\infty}}{\sqrt{g(\|u\|)}}\left|\langle u, u\rangle-g(\|u\|)+E_{|u|}\left[\left|\operatorname{trace}(D u)^{2}\right|\right]\right|+2 \frac{\left\|h^{\prime}\right\|_{\infty}}{g(\|u\|)} E_{|u|}[|\langle(D u) u, \delta(D u)\rangle|]
\end{aligned}
$$

which yields (3.2) by (2.5) and the conditional Skorohod isometry

$$
\begin{equation*}
\operatorname{Var}_{|u|}[\delta(u)]=E_{|u|}\left[\delta(u)^{2}\right]=\langle u, u\rangle+E_{|u|}\left[\operatorname{trace}(D u)^{2}\right] \tag{3.3}
\end{equation*}
$$

that follows from (2.2) with $f(x)=x$ and $n=1$.
When $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is a quasi-nilpotent processes, and in particular when $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process, we obtain the following corollary.

Corollary 3.2 Let $u \in \bigcap_{k=1}^{3} \mathbb{D}_{k, 2}(H)$, such that $\left\langle u,(D u)^{2} u\right\rangle=\langle u,(D u) u\rangle=0$ and $\operatorname{trace}(D u)^{2}=0$. We have

$$
d_{|u|}\left(\delta(u), \mathcal{N}_{g(\|u\|)}\right) \leq \frac{1}{\sqrt{g(\|u\|)}}|\langle u, u\rangle-g(\|u\|)|+\frac{2}{g(\|u\|)} E_{|u|}[|\langle(D u) u, \delta(D u)\rangle|] .
$$

Proof. This follows from Proposition 3.1 and the isometry (3.3).
Note that from Proposition 2.1 we have

$$
d_{|u|}\left(\delta(u), \mathcal{N}_{g(\|u\|)}\right)=|\sqrt{\langle u, u\rangle}-\sqrt{g(\|u\|)}| \leq \frac{1}{\sqrt{g(\|u\|)}}|\langle u, u\rangle-g(\|u\|)|
$$

if, in addition to trace $(D u)^{2}=0$, the condition $\left\langle u,(D u)^{k} u\right\rangle=0$ holds for all $k \geq 1$.

Regarding multiple stochastic integrals, we have the following corollary.
Corollary 3.3 Given $f_{m} \in L^{2}\left(\mathbb{R}_{+}^{m}\right)$ a symmetric function in $m \geq 1$ variables, let $u_{t}:=I_{m-1}\left(f_{m}(*, t)\right), t \in \mathbb{R}_{+}$, and assume that $\left\langle u,(D u)^{2} u\right\rangle=\langle u,(D u) u\rangle=0$. Then we have

$$
\begin{equation*}
d_{|u|}\left(I_{m}\left(f_{m}\right), \mathcal{N}_{g(\|u\|)}\right) \leq \frac{1}{\sqrt{g(\|u\|)}}\left|g(\|u\|)-\operatorname{Var}_{|u|}\left[I_{m}\left(f_{m}\right)\right]\right| \tag{3.4}
\end{equation*}
$$

Proof. We have $\langle(D u) u, \delta(D u)\rangle=(m-1)\langle(D u) u, u\rangle=0$, hence the conclusion follows from Proposition 3.1.

In particular, Corollary 3.3 shows that, given $\|u\|$, the multiple stochastic integral $I_{m}\left(f_{m}\right)$ is Gaussian distributed with mean 0 and variance $g(\|u\|):=\operatorname{Var}_{|u|}\left[I_{m}\left(f_{m}\right)\right]$.

4 Double stochastic integrals

In this section we take $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$of the form $u_{t}=I_{1}\left(f_{2}(*, t)\right), t \in \mathbb{R}_{+}$, where the function $f_{2} \in L^{2}\left(\mathbb{R}_{+}^{2}\right)$ may not be symmetric in its two variables. In this case we have $\delta(u)=I_{2}\left(\tilde{f}_{2}\right)$, where \tilde{f}_{2} is the symmetrization of f_{2}, with $D_{s} u_{t}=f_{2}(s, t)$ and $\delta\left(D_{s} u\right)=I_{1}\left(f_{2}(s, *)\right), s, t \in \mathbb{R}_{+}$.

Proposition 4.1 The condition $\langle u,(D u) u\rangle=0$ implies $\left\langle u,(D u)^{2} u\right\rangle=0$ and is equivalent to $(D u)^{2}=0$, i.e. to the vanishing of the contraction

$$
\begin{equation*}
\left(f_{2} \otimes_{1} f_{2}\right)\left(t_{1}, t_{2}\right):=\int_{0}^{\infty} f_{2}\left(t_{1}, s\right) f_{2}\left(s, t_{2}\right) d s=0, \quad t_{1}, t_{2} \in \mathbb{R}_{+} \tag{4.1}
\end{equation*}
$$

and in this case, we have

$$
d_{|u|}\left(I_{2}\left(\tilde{f}_{2}\right), \mathcal{N}_{g(\|u\|)}\right) \leq \frac{1}{\sqrt{g(\|u\|)}}|g(\|u\|)-\langle u, u\rangle| .
$$

In particular, $I_{2}\left(\tilde{f}_{2}\right)$ is Gaussian $\mathcal{N}_{\|u\|^{2}}$-distributed given $\langle u, u\rangle$.
Proof. By Itô calculus we have

$$
\begin{align*}
& \langle u,(D u) u\rangle=\int_{0}^{\infty} \int_{0}^{\infty} I_{1}\left(f_{2}(*, s)\right) f_{2}(s, t) I_{1}\left(f_{2}(*, t)\right) d s d t \tag{4.2}\\
& =\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f_{2}(r, s) f_{2}(s, t) f_{2}(r, t) d r d s d t+\int_{0}^{\infty} \int_{0}^{\infty} f_{2}(s, t) I_{2}\left(f_{2}(*, s) \otimes f_{2}(*, t)\right) d s d t
\end{align*}
$$

hence the condition $\langle u,(D u) u\rangle=0$ is equivalent to the vanishing

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} f_{2}\left(t_{1}, s\right) f_{2}(s, t) f_{2}\left(t_{2}, t\right) d s d t=0, \quad t_{1}, t_{2} \in \mathbb{R}_{+}, \tag{4.3}
\end{equation*}
$$

i.e.

$$
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} h\left(t_{1}\right) f_{2}\left(t_{1}, s\right) f_{2}(s, t) f_{2}\left(t_{2}, t\right) g\left(t_{2}\right) d s d t d t_{1} d t_{2}=0
$$

and taking

$$
g\left(t_{2}\right):=\int_{0}^{\infty} f_{2}\left(r, t_{2}\right) h(r) d r,
$$

we get

$$
\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty}\left(\int_{0}^{\infty} f_{2}\left(t_{1}, s\right) f_{2}(s, t) h\left(t_{1}\right) d t_{1}\right)\left(\int_{0}^{\infty} f_{2}\left(r, t_{2}\right) f_{2}\left(t_{2}, t\right) h(r) d r\right) d s d t d t_{2}
$$

$$
=\int_{0}^{\infty}\left(\int_{0}^{\infty} \int_{0}^{\infty} f_{2}(r, s) f_{2}(s, t) h(r) d r d s\right)^{2} d t=0
$$

hence the condition

$$
\int_{0}^{\infty} f_{2}(r, s) f_{2}(s, t) d s=0, \quad r, t \in \mathbb{R}_{+}
$$

which becomes equivalent to (4.3). Consequently we have trace $\left(f_{2}\right)^{2}=0$, hence by (3.3) we get $\operatorname{Var}_{|u|}\left[I_{2}\left(\tilde{f}_{2}\right)\right]=\langle u, u\rangle$. Moreover, we note that

$$
\begin{aligned}
\langle(D u) u, \delta(D u)\rangle= & \int_{0}^{\infty} \int_{0}^{\infty} u_{s} D_{s} u_{t} \delta\left(D_{t} u\right) d s d t \\
= & \int_{0}^{\infty} \int_{0}^{\infty} I_{1}\left(f_{2}(*, s)\right) f_{2}(s, t) I_{1}\left(f_{2}(t, *)\right) d s d t \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f_{2}(r, s) f_{2}(s, t) f_{2}(t, r) d r d s d t \\
& +\frac{1}{2} I_{2}\left(\int_{0}^{\infty} \int_{0}^{\infty} f_{2}(s, t)\left(f_{2}(*, s) f_{2}(t, \cdot)+f_{2}(\cdot, s) f_{2}(t, *)\right) d s d t\right) \\
= & 0,
\end{aligned}
$$

and we conclude by Proposition 3.1.
Examples of functions satisfying (4.1) can be given by choosing $\left(e_{k}\right)_{k \geq 1}$ an orthonormal system in $L^{2}([0, T])$ and letting

$$
f_{2}(s, t):=\sum_{i, j=1}^{d} a_{i, j} e_{i}(s) e_{j}(t), \quad s, t \in[0, T],
$$

where $A=\left(a_{i, j}\right)_{1 \leq i, j \leq d}$ is a 2-nilpotent $d \times d$ matrix. Note that the vanishing (4.1) of the contraction $f_{2} \otimes_{2} f_{2}$ implies $f_{2}=0$ if the function f_{2} is symmetric in its two variables, similarly we have $A=0$ if A is symmetric and 2-nilpotent.

Next, given $A=\left(a_{i, j}\right)_{1 \leq i, j \leq d}$ an $d \times d$ matrix, we note that the quadratic functional $\int_{0}^{T} A W_{s} d W_{s}$ of the n-dimensional Brownian motion

$$
W_{t}:=\left(B_{t}, B_{T+t}-B_{T}, \ldots, B_{(n-1) T+t}-B_{(n-1) T}\right), \quad t \in[0, T],
$$

can be represented as

$$
\begin{equation*}
I_{2}\left(\tilde{f}_{2}\right)=\int_{0}^{T} A W_{s} d W_{s} \tag{4.4}
\end{equation*}
$$

where f_{2} is the function

$$
f_{2}(s, t):=\sum_{i, j=1}^{d} a_{i, j} \mathbf{1}_{[(j-1) T,(j-1) T+t-(i-1) T]}(s) \mathbf{1}_{[(i-1) T, i T]}(t), \quad s, t \in[0, n T],
$$

as we have

$$
\begin{aligned}
I_{2}\left(\tilde{f}_{2}\right)= & \sum_{i, j=1}^{d} a_{i, j} \int_{0}^{T} \int_{0}^{t+(i-1) T} \mathbf{1}_{[(j-1) T,(j-i) T+t+(i-1) T]}(s) d B_{s} d W_{t}^{i} \\
& +\sum_{i, j=1}^{d} a_{i, j} \int_{(j-1) T}^{n T} \int_{(i-1) T}^{t \wedge(i T)} \mathbf{1}_{[(j-1) T,(j-i) T+s]}(t) d B_{s} d B_{t} \\
= & \sum_{1 \leq j \leq i \leq n} a_{i, j} \int_{0}^{T} \int_{(j-1) T}^{t+(j-1) T} d B_{s} d W_{t}^{i}+\sum_{1 \leq i<j \leq n} a_{i, j} \int_{(j-1) T}^{j T} \int_{(i-1) T}^{t} d B_{s} d B_{t} \\
= & \sum_{1 \leq j \leq i \leq n} a_{i, j} \int_{0}^{T} \int_{0}^{t} d W_{s}^{j} d W_{t}^{i}+\sum_{1 \leq i<j \leq n} a_{i, j} \int_{0}^{T} \int_{0}^{t} d W_{s}^{j} d W_{t}^{i} \\
= & \int_{0}^{T} A W_{s} d W_{s},
\end{aligned}
$$

with

$$
\begin{aligned}
\int_{0}^{n T}\left(I_{1}\left(f_{2}(*, t)\right)^{2} d t\right. & =\sum_{i=1}^{d} \int_{(i-1) T}^{i T}\left(\sum_{j=1}^{d} a_{i, j}\left(B_{(j-1) T+t-(i-1) T}-B_{(j-1) T}\right)\right)^{2} d t \\
& =\int_{0}^{T}\left|A W_{t}\right|^{2} d t
\end{aligned}
$$

Note that here, the process $\left(u_{t}\right)_{t \in[0, T]}=\left(I_{1}\left(f_{2}(*, t)\right)\right)_{t \in[0, T]}$ is not $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$-adapted. As a consequence of Proposition 4.1 we have the following.

Corollary 4.2 The condition $\langle u,(D u) u\rangle=0$ is satisfied if and only if the $d \times d$ matrix A is 2-nilpotent, and in this case we have

$$
\left.d_{|u|}\left(\int_{0}^{T} A W_{s} d W_{s}, \mathcal{N}_{g(\|u\|)}\right) \leq\left.\frac{1}{\sqrt{g(\|u\|)}}\left|g(\|u\|)-\int_{0}^{T}\right| A W_{t}\right|^{2} d t \right\rvert\, .
$$

Proof. We have

$$
\begin{aligned}
& \int_{0}^{n T} \int_{0}^{n T} f_{2}\left(t_{1}, s\right) f_{2}(s, t) f_{2}\left(t_{2}, t\right) d s d t \\
& =\sum_{i, j=1}^{d} \sum_{k, l=1}^{d} \sum_{p, q=1}^{d} \int_{0}^{n T} \int_{0}^{n T} \mathbf{1}_{[(j-1) T,(j-1) T+t-(i-1) T]}\left(t_{2}\right) \mathbf{1}_{[(q-1) T,(q-1) T+s-(p-1) T]}\left(t_{1}\right) a_{i, j} a_{k, l} a_{p, q}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{1}_{[(i-1) T, i T]}(t) \mathbf{1}_{[(k-1) T, k T]}(t) \mathbf{1}_{[(l-1) T,(l-1) T+t-(i-1) T]}(s) \mathbf{1}_{[(p-1) T, p T]}(s) d s d t \\
&= \sum_{i, j=1}^{d} \sum_{l=1}^{d} \sum_{q=1}^{d} \int_{(l-1) T}^{l T} \int_{(i-1) T}^{i T} \mathbf{1}_{[(j-1) T,(j-1) T+t-(i-1) T]}\left(t_{2}\right) \mathbf{1}_{[(q-1) T,(q-1) T+s-(p-1) T]}\left(t_{1}\right) a_{i, j} a_{i, l} a_{l, q} \\
& \mathbf{1}_{[(l-1) T,(l-1) T+t-(i-1) T]}(s) d s d t \\
&= \sum_{j, q=1}^{d} \int_{0}^{T} \int_{0}^{T} \mathbf{1}_{[(j-1) T,(j-1) T+t]}\left(t_{2}\right) \mathbf{1}_{[(q-1) T,(q-1) T+s]}\left(t_{1}\right) \mathbf{1}_{[0, t]}(s) d s d t \sum_{i, l=1}^{d} a_{i, j} a_{i, l} a_{l, q} \\
&= \sum_{j, q=1}^{d}\left(A^{\top} A^{2}\right)_{j, q} \int_{0}^{T} \int_{0}^{T} \mathbf{1}_{[(j-1) T,(j-1) T+t]}\left(t_{2}\right) \mathbf{1}_{[(q-1) T,(q-1) T+s]}\left(t_{1}\right) \mathbf{1}_{[0, t]}(s) d s d t,
\end{aligned}
$$

$t_{1}, t_{2} \in[0, T]$, hence from (4.2), $\langle u,(D u) u\rangle=0$ implies $A^{\top} A^{2}=0$, which in turn implies $A^{2}=0$ by the relation $\left\langle A^{2} x, A^{2} x\right\rangle_{\mathbb{R}^{d}}=\left\langle A x, A^{\top} A^{2} x\right\rangle_{\mathbb{R}^{d}}, x \in \mathbb{R}^{d}$.
In particular, taking $g(x)=x^{2}$, Corollary 4.2 shows that, given $\int_{0}^{T}\left|A W_{t}\right|^{2} d t$, the quadratic functional $\int_{0}^{T} A W_{t} d W_{t}$ is Gaussian with variance $\int_{0}^{T}\left|A W_{t}\right|^{2} d t$ when $A^{2}=0$, which recovers Corollary 3 in [12] under the condition of [13].

References

[1] A.D. Barbour. Asymptotic expansions based on smooth functions in the central limit theorem. Probab. Theory Relat. Fields, 72(2):289-303, 1986.
[2] H. Biermé, A. Bonami, I. Nourdin, and G. Peccati. Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants. ALEA Lat. Am. J. Probab. Math. Stat., 9(2):473-500, 2012.
[3] L.H.Y. Chen, L. Goldstein, and Q.-M. Shao. Normal approximation by Stein's method. Probability and its Applications (New York). Springer, Heidelberg, 2011.
[4] B.K. Driver, N. Eldredge, and T. Melcher. Hypoelliptic heat kernels on infinite-dimensional Heisenberg groups. Trans. Amer. Math. Soc., 368(2):989-1022, 2016.
[5] I. Nourdin and G. Peccati. Stein's method and exact Berry-Esseen asymptotics for functionals of Gaussian fields. Ann. Probab., 37(6):2231-2261, 2009.
[6] I. Nourdin and G. Peccati. Stein's method on Wiener chaos. Probab. Theory Related Fields, 145(1-2):75-118, 2009.
[7] D. Nualart. The Malliavin calculus and related topics. Probability and its Applications. SpringerVerlag, Berlin, second edition, 2006.
[8] N. Privault. Laplace transform identities and measure-preserving transformations on the Lie-Wiener-Poisson spaces. J. Funct. Anal., 263:2993-3023, 2012.
[9] N. Privault. Cumulant operators and moments of the Itô and Skorohod integrals. C. R. Math. Acad. Sci. Paris, 351(9-10):397-400, 2013.
[10] N. Privault. Cumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals. J. Theoret. Probab., 28(1):269-298, 2015.
[11] N. Privault. Stein approximation for Itô and Skorohod integrals by Edgeworth type expansions. Electron. Comm. Probab., 20:Article 35, 2015.
[12] N. Privault and Q.H. She. Conditionally Gaussian stochastic integrals. C. R. Math. Acad. Sci. Paris, 353:1153-1158, 2015.
[13] M. Yor. Les filtrations de certaines martingales du mouvement brownien dans \mathbf{R}^{n}. In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), volume 721 of Lecture Notes in Math., pages 427-440. Springer, Berlin, 1979.
[14] M. Yor. Remarques sur une formule de Paul Lévy. In Seminar on Probability, XIV (Paris, 1978/1979) (French), volume 784 of Lecture Notes in Math., pages 343-346. Springer, Berlin, 1980.

