Conditionally Gaussian stochastic integrals

Nicolas Privault* Qihao She
Division of Mathematical Sciences
School of Physical and Mathematical Sciences
Nanyang Technological University
21 Nanyang Link
Singapore 637371

September 25, 2015

Abstract - We derive conditional Gaussian type identities of the form

$$
E\left[\left.\exp \left(i \int_{0}^{T} u_{t} d B_{t}\right)\left|\int_{0}^{T}\right| u_{t}\right|^{2} d t\right]=\exp \left(-\frac{1}{2} \int_{0}^{T}\left|u_{t}\right|^{2} d t\right)
$$

for Brownian stochastic integrals, under conditions on the process $\left(u_{t}\right)_{t \in[0, T]}$ specified using the Malliavin calculus. This applies in particular to the quadratic Brownian integral $\int_{0}^{t} A B_{s} d B_{s}$ under the matrix condition $A^{\dagger} A^{2}=0$, using a characterization of Yor [6].

Intégrales stochastiques conditionnellement gaussiennes

Résumé - Nous obtenons des identités gaussiennes conditionnelles de la forme

$$
E\left[\left.\exp \left(i \int_{0}^{T} u_{t} d B_{t}\right)\left|\int_{0}^{T}\right| u_{t}\right|^{2} d t\right]=\exp \left(-\frac{1}{2} \int_{0}^{T}\left|u_{t}\right|^{2} d t\right)
$$

pour les intégrales stochastiques browniennes, sous des conditions sur le processus $\left(u_{t}\right)_{t \in[0, T]}$ exprimées à l'aide du calcul de Malliavin. Ces résultats s'appliquent en particulier à l'intégrale brownienne quadratique $\int_{0}^{t} A B_{s} d B_{s}$ sous la condition matricielle $A^{\dagger} A^{2}=0$, en utilisant une caractérisation de Yor [6].

Key words: Quadratic Brownian functionals, multidimensional Brownian motion, moment identities, characteristic functions.
Mathematics Subject Classification: 60G44; 60H05; 60 J 65.

[^0]
1 Introduction

Let $\left(B_{t}\right)_{t \in[0, T]}$ be a d-dimensional Brownian motion generating the filtration $\left(\mathcal{F}_{t}\right)_{t \in[0, T]}$. When A is a $d \times d$ skew-symmetric matrix, the identity

$$
\begin{equation*}
E\left[\exp \left(i \int_{0}^{T} A B_{s} d B_{s}\right) \mid B_{t}\right]=E\left[\left.\exp \left(-\frac{1}{2} \int_{0}^{T}\left|A B_{s}\right|^{2} d s\right) \right\rvert\, B_{t}\right] \tag{1}
\end{equation*}
$$

$0 \leq t \leq T$, has been proved in Theorem 2.1 of [1], extending a formula of [7] for the computation of the characteristic function of Lévy's stochastic area in case $d=2$.

This approach is connected to a result of Yor [6] stating that when $A^{\dagger} A^{2}=0$, the filtration $\left(\mathcal{F}_{t}^{k}\right)_{t \in[0, T]}$ of $t \mapsto \int_{0}^{t} A B_{s} d B_{s}$ is generated by k independent Brownian motions, where k is the number of distinct eigenvalues of $A^{\dagger} A$.

In this Note we derive conditional versions of the identity (1) for the stochastic integral $\int_{0}^{T} u_{t} d B_{t}$ of an $\left(\mathcal{F}_{t}\right)$-adapted process $\left(u_{t}\right)_{t \in[0, T]}$ in Theorem 1, under conditions formulated in terms of the Malliavin calculus, using the cumulant-moment formula of [3], [4]. In particular we provide conditions for $\int_{0}^{T} u_{t} d B_{t}$ to be Gaussian $\mathcal{N}\left(0, \int_{0}^{T}\left|u_{t}\right|^{2} d t\right)$-distributed given $\int_{0}^{T}\left|u_{t}\right|^{2} d t$, cf. Theorem 2. This holds for example when $\left(u_{t}\right)_{t \in[0, T]}=\left(A B_{t}\right)_{t \in[0, T]}$ under Yor's condition $A^{\dagger} A^{2}=0$, cf. Corollary 3 . We also consider a weakening of this condition to $A^{\dagger} A^{2}$ skew-symmetric, provided that $A^{\dagger} A$ is proportional to a projection, cf. Corollary 6.

2 Conditional characteristic functions

Let D denote the Malliavin gradient with domain $\mathbb{D}_{2,1}$ on the d-dimensional Wiener space, cf. § 1.2 of [2] for definitions. Taking $H=L^{2}\left([0, T] ; \mathbb{R}^{d}\right)$ for some $T>0$ and u in the domain $\mathbb{D}_{k, 1}(H)$ of D in $L^{k}(\Omega ; H)$, we let

$$
(D u)^{k} u_{t}:=\int_{0}^{T} \cdots \int_{0}^{T}\left(D_{t_{k}} u_{t}\right)^{\dagger}\left(D_{t_{k-1}} u_{t_{k}}\right)^{\dagger} \cdots\left(D_{t_{1}} u_{t_{2}}\right)^{\dagger} u_{t_{1}} d t_{1} \cdots d t_{k}, \quad t \in[0, T], \quad k \geq 1
$$

Theorem 1. Let $u \in \bigcap_{k \geq 1} D_{k, 1}(H)$ be an $\left(\mathcal{F}_{t}\right)$-adapted process such that

$$
\left\langle u_{t},(D u)^{k} u_{t}\right\rangle_{\mathbb{R}^{d}}=0, \quad t \in[0, T], \quad k \geq 1
$$

We have

$$
\begin{equation*}
E\left[\exp \left(i \int_{0}^{T} u_{t} d B_{t}\right) \mid\left(\left|u_{t}\right|\right)_{t \in[0, T]}\right]=\exp \left(-\frac{1}{2} \int_{0}^{T}\left|u_{t}\right|^{2} d t\right) \tag{2}
\end{equation*}
$$

provided that $\frac{1}{2} \int_{0}^{T}\left|u_{t}\right|^{2} d t$ is exponentially integrable.

Proof. For any $F \in \mathbb{D}_{2,1}$ and $k \geq 1$, let

$$
\Gamma_{k}^{u} F:=\mathbb{1}_{\{k \geq 2\}} F \int_{0}^{T}\left\langle u_{t},(D u)^{k-2} u_{t}\right\rangle_{\mathbb{R}^{d}} d t+\int_{0}^{T}\left\langle D_{t} F,(D u)^{k-1} u_{t}\right\rangle_{\mathbb{R}^{d}} d t
$$

Recall that for any $u \in \mathbb{D}_{2,1}(H)$ such that $\Gamma_{l_{1}}^{u} \cdots \Gamma_{l_{k}}^{u} \mathbb{1}$ has finite expectation for all $l_{1}+\cdots+l_{k} \leq n, k=1, \ldots, n$, by Theorem 1 of [3] or Proposition 4.3 of [4] we have

$$
\begin{equation*}
E\left[F\left(\int_{0}^{T} u_{t} d B_{t}\right)^{n}\right]=n!\sum_{a=1}^{n} \sum_{\substack{l_{1}+\cdots+l_{a}=n \\ l_{1} \geq 1, \ldots, l_{a} \geq 1}} \frac{E\left[\Gamma_{l_{1}}^{u} \cdots \Gamma_{l_{a}}^{u} F\right]}{l_{1}\left(l_{1}+l_{2}\right) \cdots\left(l_{1}+\cdots+l_{a}\right)}, \tag{3}
\end{equation*}
$$

for $F \in \mathbb{D}_{2,1}$. Next, for any $f \in \mathcal{C}_{b}^{1}(\mathbb{R})$ and $k \geq 1$ we have

$$
\begin{aligned}
& \Gamma_{k}^{u} f\left(\int_{a}^{b}\left|u_{t}\right|^{2} d t\right) \\
& \left.=\mathbb{1}_{\{k=2\}} \int_{0}^{T}\left|u_{t}\right|^{2} d t f\left(\int_{a}^{b}\left|u_{t}\right|^{2} d t\right)+\left.f^{\prime}\left(\int_{a}^{b}\left|u_{t}\right|^{2} d t\right) \int_{0}^{T}\left\langle D_{t} \int_{a}^{b}\right| u_{s}\right|^{2} d s,(D u)^{k-1} u_{t}\right\rangle_{\mathbb{R}^{d}} d t, \\
& =\mathbb{1}_{\{k=2\}} \int_{0}^{T}\left|u_{t}\right|^{2} d t f\left(\int_{a}^{b}\left|u_{t}\right|^{2} d t\right)+2 f^{\prime}\left(\int_{a}^{b}\left|u_{t}\right|^{2} d t\right) \int_{a}^{b}\left\langle u_{s},(D u)^{k} u_{s}\right\rangle_{\mathbb{R}^{d}} d s, \\
& =\mathbb{1}_{\{k=2\}} \int_{0}^{T}\left|u_{t}\right|^{2} d t f\left(\int_{a}^{b}\left|u_{t}\right|^{2} d t\right), \quad 0 \leq a \leq b .
\end{aligned}
$$

By induction this yields

$$
\begin{equation*}
\Gamma_{l_{1}}^{u} \cdots \Gamma_{l_{a}}^{u} F=\mathbb{1}_{\left\{l_{1}=\cdots=l_{a}=2\right\}}\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right)^{a} F, \quad l_{1}, \ldots, l_{a} \geq 1, \quad a \geq 1 \tag{4}
\end{equation*}
$$

for any random variable F of the form

$$
F=f\left(\int_{a_{1}}^{b_{1}}\left|u_{t}\right|^{2} d t, \ldots, \int_{a_{m}}^{b_{m}}\left|u_{t}\right|^{2} d t\right), \quad 0 \leq a_{i} \leq b_{i} \leq T, \quad i=1, \ldots, m
$$

where $f \in \mathcal{C}_{b}^{1}\left(\mathbb{R}^{m}\right)$, and by (3) and (4) we find

$$
\begin{equation*}
E\left[\left(\int_{0}^{T} u_{t} d B_{t}\right)^{2 n} F\right]=\frac{(2 n)!}{2^{n} n!} E\left[\left(\int_{0}^{T}\left|u_{t}\right|^{2} d t\right)^{n} F\right] \tag{5}
\end{equation*}
$$

and $E\left[\left(\int_{0}^{T} u_{t} d B_{t}\right)^{2 n+1} F\right]=0$ for all $n \in \mathbb{N}$.
The following result is obtained by an argument similar to the proof of Theorem 1.

Theorem 2. Let $u \in \bigcap_{k \geq 1} \mathbb{D}_{k, 1}(H)$ be an $\left(\mathcal{F}_{t}\right)$-adapted process such that

$$
\left\langle u,(D u)^{k} u\right\rangle_{H}=0, \quad k \geq 1
$$

We have

$$
E\left[\left.\exp \left(i \int_{0}^{T} u_{t} d B_{t}\right)\left|\int_{0}^{T}\right| u_{t}\right|^{2} d t\right]=\exp \left(-\frac{1}{2} \int_{0}^{T}\left|u_{t}\right|^{2} d t\right)
$$

provided that $\frac{1}{2} \int_{0}^{T}\left|u_{t}\right|^{2} d t$ is exponentially integrable.
In the particular case where $u_{t}=R_{t} h, t \in[0, T], h \in H$, where R is a random, adapted (or quasi-nilpotent) isometry of H, we find that $\int_{0}^{T}\left|u_{t}\right|^{2} d t=\int_{0}^{T}|h(t)|^{2} d t$ is deterministic, hence

$$
\left\langle u,(D u)^{k} u\right\rangle_{H}=\frac{1}{2}\left\langle(D u)^{k-1} u, D\langle u, u\rangle_{H}\right\rangle_{H}=0, \quad k \geq 1,
$$

and Theorem 2 shows that $\int_{0}^{T}\left(R_{t} h\right) d B_{t}$ has a centered Gaussian distribution with variance $\int_{0}^{T}|h(t)|^{2} d t$, as in Theorem 2.1-(b) of [5].

Theorems 1 and 2 also apply when $\int_{0}^{T}\left|u_{t}\right|^{2} d t$ is random, for example when $\left(u_{t}\right)_{t \in[0, T]}$ takes the form $u_{t}=g\left(B_{t}\right), t \in[0, T]$, where $g \in \mathcal{C}_{b}^{1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)$ satisfies the condition $\left\langle g(x),\left((\nabla g(x))^{\dagger}\right)^{k} g(x)\right\rangle_{\mathbb{R}^{d}}=0, x \in \mathbb{R}^{d}, k \geq 1$. Next, we check that this condition is satisfied on concrete examples based on [6], when g is a linear mapping of the form $g(x)=A x, x \in \mathbb{R}^{d}$.

Vanishing of $A^{\dagger} A^{2}$

Applying Theorem 1 to the adapted process $\left(u_{t}\right)_{t \in[0, T]}:=\left(A B_{t}\right)_{t \in[0, T]}$ under Yor's [6] condition $A^{\dagger} A^{2}=0$, by the relation $D_{t} B_{s}=\mathbb{1}_{[0, s]}(t) I_{\mathbb{R}^{d}}$ we obtain the vanishing

$$
\begin{aligned}
\left\langle u_{t},(D u)^{k} u_{t}\right\rangle_{\mathbb{R}^{d}} & =\int_{0}^{T} \cdots \int_{0}^{T}\left\langle u_{t},\left(D_{t_{k}} u_{t}\right)^{\dagger}\left(D_{t_{k-1}} u_{t_{k}}\right)^{\dagger} \cdots\left(D_{t_{1}} u_{t_{2}}\right)^{\dagger} u_{t_{1}}\right\rangle_{\mathbb{R}^{d}} d t_{1} \cdots d t_{k} \\
& =\int_{0}^{t} \int_{0}^{t_{k}} \cdots \int_{0}^{t_{2}}\left\langle A B_{t},\left(A^{\dagger}\right)^{k} A B_{t}\right\rangle_{\mathbb{R}^{d}} d t_{1} \cdots d t_{k} \\
& =0, \quad t \in[0, T], \quad k \geq 1 .
\end{aligned}
$$

This yields the next corollary of Theorem 1 , in which the condition $A^{\dagger} A^{2}=0$ includes 2-nilpotent matrices as a particular case.

Corollary 3. Assume that $A^{\dagger} A^{2}=0$. We have

$$
\begin{equation*}
E\left[\exp \left(i \int_{0}^{T} A B_{t} d B_{t}\right) \mid\left(\left|A B_{t}\right|\right)_{t \in[0, T]}\right]=\exp \left(-\frac{1}{2} \int_{0}^{T}\left|A B_{t}\right|^{2} d t\right) \tag{6}
\end{equation*}
$$

Note that the filtration of $\left(\left|A B_{t}\right|\right)_{t \in[0, T]}$ coincides with the filtration $\left(\mathcal{F}_{t}^{k}\right)_{t \in[0, T]}$ generated by k independent Brownian motions where k is the number of nonzero eigenvalues of $A^{\dagger} A$, cf. Corollary 2 of [6].

3 Skew-symmetric $A^{\dagger} A^{2}$

When $A^{\dagger} A$ has only one nonzero eigenvalue, i.e. $A^{\dagger} A$ is proportional to a projection, the condition $A^{\dagger} A^{2}=0$ can be relaxed using stochastic calculus, by only assuming that $A^{\dagger} A^{2}$ is skew-symmetric. We start with the following variation of Corollary 2 of [6].
Lemma 4. Assume that $A^{\dagger} A^{2}$ is skew-symmetric and $A^{\dagger} A$ has a unique nonzero eigenvalue λ_{1}. Then the processes

$$
\begin{equation*}
Y_{t}^{1}:=\frac{1}{\sqrt{\lambda_{1}}} \int_{0}^{t} \frac{A B_{s}}{\left|A B_{s}\right|} d A B_{s}, \quad \text { and } \quad Y_{t}^{2}:=\int_{0}^{t} \frac{A B_{s}}{\left|A B_{s}\right|} d B_{s}, \quad t \in[0, T] \tag{7}
\end{equation*}
$$

are independent standard Brownian motions.
Proof. Since $A^{\dagger} A$ is symmetric it can be written as $A^{\dagger} A=R^{\dagger} C R$, where R is orthogonal and C is diagonal, therefore since $\left(R B_{t}\right)_{t \in[0, T]}$ is also a standard Brownian motion we can assume that $A^{\dagger} A$ has the form $A^{\dagger} A=\left(\lambda_{k} \mathbb{1}_{\{1 \leq k=l \leq r\}}\right)_{1 \leq k, l \leq d}$ with $\lambda_{i}>0$, $1 \leq i \leq r$. Clearly $\left(Y_{t}^{2}\right)_{t \in[0, T]}$ is a standard Brownian motion, and

$$
d\left\langle Y^{1}, Y^{2}\right\rangle_{t}=\frac{\left\langle A^{\dagger} A^{2} B_{t}, B_{t}\right\rangle}{\left|A B_{t}\right|^{2} \sqrt{\lambda_{1}}} d t=0
$$

In addition we have $d Y_{t}^{1}=\frac{\lambda_{1}^{-1 / 2}}{\left|A B_{t}\right|} \sum_{i=1}^{r} \lambda_{i} B_{t}^{i} d B_{t}^{i}$ and

$$
d\left\langle Y^{1}, Y^{1}\right\rangle_{t}=\frac{\left(\lambda_{1} B_{t}^{1}\right)^{2}+\cdots+\left(\lambda_{r} B_{t}^{r}\right)^{2}}{\lambda_{1}\left(\lambda_{1}\left(B_{t}^{1}\right)^{2}+\cdots+\lambda_{r}\left(B_{t}^{r}\right)^{2}\right)} d t
$$

hence $\left(Y_{t}^{1}\right)_{t \in[0, T]}$ is also a standard Brownian motion when $\lambda_{1}=\cdots=\lambda_{r}$.
The following result relaxes the vanishing hypothesis of Corollary 3.
Corollary 5. Assume that $A^{\dagger} A^{2}$ is skew-symmetric and $A^{\dagger} A$ has a unique nonzero eigenvalue λ_{1}. Then we have

$$
\begin{equation*}
E\left[\exp \left(i \int_{0}^{T} A B_{t} d B_{t}\right) \mid\left(\left|A B_{t}\right|\right)_{t \in[0, T]}\right]=\exp \left(-\frac{1}{2} \int_{0}^{T}\left|A B_{t}\right|^{2} d t\right) \tag{8}
\end{equation*}
$$

Proof. We let $S_{t}:=\left|A B_{t}\right|^{2}, t \in[0, T]$, and note that by Corollary 2 of [6], the filtration generated by $\left(\left|A B_{t}\right|\right)_{t \in[0, T]}$ coincides with the filtration $\left(\mathcal{F}_{t}^{1}\right)_{t \in[0, T]}$ of $\left(Y_{t}^{1}\right)_{t \in[0, T]}$. Next, Itô's formula shows that

$$
S_{t}=2 \int_{0}^{t} A B_{s} d A B_{s}+\operatorname{Tr}\left(A^{\dagger} A\right) t=2 \int_{0}^{t} \sqrt{\lambda_{1} S_{s}} d Y_{s}^{1}+r \lambda_{1} t, \quad t \in[0, T]
$$

hence $\left(\left|A B_{t}\right|\right)_{t \in[0, T]}$ is $\left(\mathcal{F}_{t}^{1}\right)_{t \in[0, T]}$-adapted and therefore independent of $\left(Y^{2}\right)_{t \in[0, T]}$, hence

$$
\int_{0}^{T} A B_{t} d B_{t}=\int_{0}^{T}\left|A B_{t}\right| d Y_{t}^{2}
$$

is centered Gaussian with variance $\int_{0}^{T}\left|A B_{t}\right|^{2} d t$ given \mathcal{F}_{T}^{1}, which yields (8).

Commutation with orthogonal matrices

Under the assumptions of Corollaries 3 or 5 it follows that

$$
\begin{equation*}
E\left[\exp \left(i \int_{0}^{T} A B_{t} d B_{t}\right)\left|\left|A B_{t}\right|\right]=E\left[\left.\exp \left(-\frac{1}{2} \int_{0}^{T}\left|A B_{t}\right|^{2} d t\right)| | A B_{t} \right\rvert\,\right]\right. \tag{9}
\end{equation*}
$$

since $\left(\left|A B_{t}\right|\right)_{t \in[0, T]}$ and $\left(Y_{t}^{1}\right)_{t \in[0, T]}$ generate the same filtration on $\left(\mathcal{F}_{t}^{1}\right)_{t \in[0, T]}$.
Corollary 6. Assume that either $A^{\dagger} A^{2}=0$, or $A^{\dagger} A^{2}$ is skew-symmetric and $A^{\dagger} A$ has a unique nonzero eigenvalue. If in addition A commutes with orthogonal matrices, then we have

$$
\begin{equation*}
E\left[\exp \left(i \int_{0}^{T} A B_{s} d B_{s}\right) \mid A B_{t}\right]=E\left[\left.\exp \left(-\frac{1}{2} \int_{0}^{T}\left|A B_{s}\right|^{2} d s\right) \right\rvert\, A B_{t}\right], \tag{10}
\end{equation*}
$$

$0 \leq t \leq T$.
Proof. We check that for any $d \times d$ orthogonal matrix R we have

$$
E\left[\exp \left(i \int_{0}^{T} A B_{t} d B_{t}\right) \mid A B_{t}=R x\right]=E\left[\exp \left(i \int_{0}^{T} A B_{t} d B_{t}\right) \mid A B_{t}=x\right]
$$

$x \in \mathbb{R}^{d}$, which shows that

$$
E\left[\exp \left(i \int_{0}^{T} A B_{t} d B_{t}\right) \mid A B_{t}\right]=E\left[\exp \left(i \int_{0}^{T} A B_{t} d B_{t}\right)| | A B_{t} \mid\right]
$$

and similarly for the right hand side, and we conclude by (9).

Skew-symmetric orthogonal A

We note that when A is skew-symmetric and orthogonal the condition $A^{\dagger} A^{2}$ skewsymmetric is satisfied as in this case we have $\left(A^{\dagger} A^{2}\right)^{\dagger}=A^{\dagger} A^{\dagger} A=A^{\dagger}=-A=-A^{\dagger} A^{2}$, and (10) can be written as

$$
\begin{equation*}
E\left[\exp \left(i \int_{0}^{T} A B_{s} d B_{s}\right) \mid B_{t}\right]=E\left[\left.\exp \left(-\frac{1}{2} \int_{0}^{T}\left|A B_{s}\right|^{2} d s\right) \right\rvert\, B_{t}\right] \tag{11}
\end{equation*}
$$

$0 \leq t \leq T$. This holds in particular when $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, in which case $A^{\dagger} A=I_{\mathbb{R}^{2}}$ has the unique eigenvalue $\lambda_{1}=1$ and $A^{\dagger} A^{2}=A$ is skew-symmetric, in which case we recover the result of [7] which has been used to show that (11) holds when A is skew-symmetric and not necessarily orthogonal in Theorem 2.1 of [1].

References

[1] B.K. Driver, N. Eldredge, and T. Melcher. Hypoelliptic heat kernels on infinite-dimensional Heisenberg groups. Preprint arXiv:1310.8010v2, 2013.
[2] D. Nualart. The Malliavin calculus and related topics. Probability and its Applications. SpringerVerlag, Berlin, second edition, 2006.
[3] N. Privault. Cumulant operators and moments of the Itô and Skorohod integrals. C. R. Math. Acad. Sci. Paris, 351(9-10):397-400, 2013.
[4] N. Privault. Cumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals. J. Theoret. Probab., 28(1):269-298, 2015.
[5] A.S. Üstünel and M. Zakai. Random rotations of the Wiener path. Probab. Theory Relat. Fields, 103(3):409-429, 1995.
[6] M. Yor. Les filtrations de certaines martingales du mouvement brownien dans \mathbf{R}^{n}. In Séminaire de Probabilités, XIII (Univ. Strasbourg, Strasbourg, 1977/78), volume 721 of Lecture Notes in Math., pages 427-440. Springer, Berlin, 1979.
[7] M. Yor. Remarques sur une formule de Paul Lévy. In Seminar on Probability, XIV (Paris, 1978/1979) (French), volume 784 of Lecture Notes in Math., pages 343-346. Springer, Berlin, 1980.

[^0]: *nprivault@ntu.edu.sg

