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Abstract - We derive conditional Gaussian type identities of the form

E

[
exp

(
i

∫ T

0
utdBt

) ∣∣∣∣ ∫ T

0
|ut|2dt

]
= exp

(
−1

2

∫ T

0
|ut|2dt

)
,

for Brownian stochastic integrals, under conditions on the process (ut)t∈[0,T ] specified us-

ing the Malliavin calculus. This applies in particular to the quadratic Brownian integral∫ t
0 ABsdBs under the matrix condition A†A2 = 0, using a characterization of Yor [6].

Intégrales stochastiques conditionnellement gaussiennes

Résumé - Nous obtenons des identités gaussiennes conditionnelles de la forme

E

[
exp

(
i

∫ T

0
utdBt

) ∣∣∣∣ ∫ T

0
|ut|2dt

]
= exp

(
−1

2

∫ T

0
|ut|2dt

)
,

pour les intégrales stochastiques browniennes, sous des conditions sur le processus (ut)t∈[0,T ]

exprimées à l’aide du calcul de Malliavin. Ces résultats s’appliquent en particulier à

l’intégrale brownienne quadratique
∫ t
0 ABsdBs sous la condition matricielle A†A2 = 0, en

utilisant une caractérisation de Yor [6].
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1 Introduction

Let (Bt)t∈[0,T ] be a d-dimensional Brownian motion generating the filtration (Ft)t∈[0,T ].
When A is a d× d skew-symmetric matrix, the identity

E

[
exp

(
i

∫ T

0

ABsdBs

) ∣∣∣∣Bt

]
= E

[
exp

(
−1

2

∫ T

0

|ABs|2 ds
) ∣∣∣∣Bt

]
, (1)

0 ≤ t ≤ T , has been proved in Theorem 2.1 of [1], extending a formula of [7] for the
computation of the characteristic function of Lévy’s stochastic area in case d = 2.

This approach is connected to a result of Yor [6] stating that when A†A2 = 0, the
filtration (Fk

t )t∈[0,T ] of t 7→
∫ t

0
ABsdBs is generated by k independent Brownian mo-

tions, where k is the number of distinct eigenvalues of A†A.

In this Note we derive conditional versions of the identity (1) for the stochastic in-

tegral
∫ T

0
utdBt of an (Ft)-adapted process (ut)t∈[0,T ] in Theorem 1, under condi-

tions formulated in terms of the Malliavin calculus, using the cumulant-moment for-

mula of [3], [4]. In particular we provide conditions for

∫ T

0

utdBt to be Gaussian

N
(

0,

∫ T

0

|ut|2dt
)

-distributed given

∫ T

0

|ut|2dt, cf. Theorem 2. This holds for exam-

ple when (ut)t∈[0,T ] = (ABt)t∈[0,T ] under Yor’s condition A†A2 = 0, cf. Corollary 3.
We also consider a weakening of this condition to A†A2 skew-symmetric, provided
that A†A is proportional to a projection, cf. Corollary 6.

2 Conditional characteristic functions

Let D denote the Malliavin gradient with domain ID2,1 on the d-dimensional Wiener
space, cf. § 1.2 of [2] for definitions. Taking H = L2([0, T ];Rd) for some T > 0 and u
in the domain IDk,1(H) of D in Lk(Ω;H), we let

(Du)kut :=

∫ T

0

· · ·
∫ T

0

(Dtkut)
†(Dtk−1

utk)† · · · (Dt1ut2)
†ut1dt1 · · · dtk, t ∈ [0, T ], k ≥ 1.

Theorem 1. Let u ∈
⋂

k≥1 IDk,1(H) be an (Ft)-adapted process such that

〈ut, (Du)kut〉Rd = 0, t ∈ [0, T ], k ≥ 1.

We have

E

[
exp

(
i

∫ T

0

utdBt

) ∣∣∣∣ (|ut|)t∈[0,T ]

]
= exp

(
−1

2

∫ T

0

|ut|2dt
)
, (2)

provided that
1

2

∫ T

0

|ut|2dt is exponentially integrable.
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Proof. For any F ∈ ID2,1 and k ≥ 1, let

Γu
kF := 1{k≥2}F

∫ T

0

〈ut, (Du)k−2ut〉Rddt+

∫ T

0

〈DtF, (Du)k−1ut〉Rddt.

Recall that for any u ∈ ID2,1(H) such that Γu
l1
· · ·Γu

lk
1 has finite expectation for all

l1 + · · ·+ lk ≤ n, k = 1, . . . , n, by Theorem 1 of [3] or Proposition 4.3 of [4] we have

E

[
F

(∫ T

0

utdBt

)n]
= n!

n∑
a=1

∑
l1+···+la=n
l1≥1,...,la≥1

E
[
Γu
l1
· · ·Γu

la
F
]

l1(l1 + l2) · · · (l1 + · · ·+ la)
, (3)

for F ∈ ID2,1. Next, for any f ∈ C1b (R) and k ≥ 1 we have

Γu
kf

(∫ b

a

|ut|2dt
)

= 1{k=2}

∫ T

0

|ut|2dtf
(∫ b

a

|ut|2dt
)

+ f ′
(∫ b

a

|ut|2dt
)∫ T

0

〈
Dt

∫ b

a

|us|2ds, (Du)k−1ut

〉
Rd

dt,

= 1{k=2}

∫ T

0

|ut|2dtf
(∫ b

a

|ut|2dt
)

+ 2f ′
(∫ b

a

|ut|2dt
)∫ b

a

〈us, (Du)kus〉Rdds,

= 1{k=2}

∫ T

0

|ut|2dtf
(∫ b

a

|ut|2dt
)
, 0 ≤ a ≤ b.

By induction this yields

Γu
l1
· · ·Γu

laF = 1{l1=···=la=2}

(∫ T

0

|ut|2 dt
)a

F, l1, . . . , la ≥ 1, a ≥ 1, (4)

for any random variable F of the form

F = f

(∫ b1

a1

|ut|2 dt, . . . ,
∫ bm

am

|ut|2 dt
)
, 0 ≤ ai ≤ bi ≤ T, i = 1, . . . ,m,

where f ∈ C1b (Rm), and by (3) and (4) we find

E

[(∫ T

0

utdBt

)2n

F

]
=

(2n)!

2nn!
E

[(∫ T

0

|ut|2dt
)n

F

]
, (5)

and E

[(∫ T

0

utdBt

)2n+1

F

]
= 0 for all n ∈ N. �

The following result is obtained by an argument similar to the proof of Theorem 1.
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Theorem 2. Let u ∈
⋂

k≥1 IDk,1(H) be an (Ft)-adapted process such that

〈u, (Du)ku〉H = 0, k ≥ 1.

We have

E

[
exp

(
i

∫ T

0

utdBt

) ∣∣∣∣ ∫ T

0

|ut|2dt
]

= exp

(
−1

2

∫ T

0

|ut|2dt
)
,

provided that
1

2

∫ T

0

|ut|2dt is exponentially integrable.

In the particular case where ut = Rth, t ∈ [0, T ], h ∈ H, where R is a random,

adapted (or quasi-nilpotent) isometry of H, we find that
∫ T

0
|ut|2dt =

∫ T

0
|h(t)|2dt is

deterministic, hence

〈u, (Du)ku〉H =
1

2
〈(Du)k−1u,D〈u, u〉H〉H = 0, k ≥ 1,

and Theorem 2 shows that

∫ T

0

(Rth)dBt has a centered Gaussian distribution with

variance
∫ T

0
|h(t)|2dt, as in Theorem 2.1-(b) of [5].

Theorems 1 and 2 also apply when

∫ T

0

|ut|2dt is random, for example when (ut)t∈[0,T ]

takes the form ut = g(Bt), t ∈ [0, T ], where g ∈ C1b (Rd;Rd) satisfies the condition
〈g(x), ((∇g(x))†)kg(x)〉Rd = 0, x ∈ Rd, k ≥ 1. Next, we check that this condition is
satisfied on concrete examples based on [6], when g is a linear mapping of the form
g(x) = Ax, x ∈ Rd.

Vanishing of A†A2

Applying Theorem 1 to the adapted process (ut)t∈[0,T ] := (ABt)t∈[0,T ] under Yor’s [6]
condition A†A2 = 0, by the relation DtBs = 1[0,s](t)IRd we obtain the vanishing

〈ut, (Du)kut〉Rd =

∫ T

0

· · ·
∫ T

0

〈ut, (Dtkut)
†(Dtk−1

utk)† · · · (Dt1ut2)
†ut1〉Rddt1 · · · dtk

=

∫ t

0

∫ tk

0

· · ·
∫ t2

0

〈ABt, (A
†)kABt〉Rddt1 · · · dtk

= 0, t ∈ [0, T ], k ≥ 1.

This yields the next corollary of Theorem 1, in which the condition A†A2 = 0 includes
2-nilpotent matrices as a particular case.
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Corollary 3. Assume that A†A2 = 0. We have

E

[
exp

(
i

∫ T

0

ABtdBt

) ∣∣∣∣ (|ABt|)t∈[0,T ]

]
= exp

(
−1

2

∫ T

0

|ABt|2 dt
)
. (6)

Note that the filtration of (|ABt|)t∈[0,T ] coincides with the filtration (Fk
t )t∈[0,T ] gener-

ated by k independent Brownian motions where k is the number of nonzero eigenvalues
of A†A, cf. Corollary 2 of [6].

3 Skew-symmetric A†A2

When A†A has only one nonzero eigenvalue, i.e. A†A is proportional to a projection,
the condition A†A2 = 0 can be relaxed using stochastic calculus, by only assuming
that A†A2 is skew-symmetric. We start with the following variation of Corollary 2 of
[6].

Lemma 4. Assume that A†A2 is skew-symmetric and A†A has a unique nonzero
eigenvalue λ1. Then the processes

Y 1
t :=

1√
λ1

∫ t

0

ABs

|ABs|
dABs, and Y 2

t :=

∫ t

0

ABs

|ABs|
dBs, t ∈ [0, T ], (7)

are independent standard Brownian motions.

Proof. Since A†A is symmetric it can be written as A†A = R†CR, where R is
orthogonal and C is diagonal, therefore since (RBt)t∈[0,T ] is also a standard Brownian
motion we can assume that A†A has the form A†A = (λk1{1≤k=l≤r})1≤k,l≤d with λi > 0,
1 ≤ i ≤ r. Clearly (Y 2

t )t∈[0,T ] is a standard Brownian motion, and

d〈Y 1, Y 2〉t =
〈A†A2Bt, Bt〉
|ABt|2

√
λ1

dt = 0.

In addition we have dY 1
t =

λ
−1/2
1

|ABt|

r∑
i=1

λiB
i
tdB

i
t and

d〈Y 1, Y 1〉t =
(λ1B

1
t )

2
+ · · ·+ (λrB

r
t )2

λ1(λ1 (B1
t )

2
+ · · ·+ λr (Br

t )2)
dt,

hence (Y 1
t )t∈[0,T ] is also a standard Brownian motion when λ1 = · · · = λr. �

The following result relaxes the vanishing hypothesis of Corollary 3.

Corollary 5. Assume that A†A2 is skew-symmetric and A†A has a unique nonzero
eigenvalue λ1. Then we have

E

[
exp

(
i

∫ T

0

ABtdBt

) ∣∣∣∣ (|ABt|)t∈[0,T ]

]
= exp

(
−1

2

∫ T

0

|ABt|2 dt
)
. (8)
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Proof. We let St := |ABt|2, t ∈ [0, T ], and note that by Corollary 2 of [6], the filtration
generated by (|ABt|)t∈[0,T ] coincides with the filtration (F1

t )t∈[0,T ] of (Y 1
t )t∈[0,T ]. Next,

Itô’s formula shows that

St = 2

∫ t

0

ABsdABs + Tr
(
A†A

)
t = 2

∫ t

0

√
λ1SsdY

1
s + rλ1t, t ∈ [0, T ],

hence (|ABt|)t∈[0,T ] is (F1
t )t∈[0,T ]-adapted and therefore independent of (Y 2)t∈[0,T ],

hence ∫ T

0

ABtdBt =

∫ T

0

|ABt| dY 2
t

is centered Gaussian with variance
∫ T

0
|ABt|2 dt given F1

T , which yields (8). �

Commutation with orthogonal matrices

Under the assumptions of Corollaries 3 or 5 it follows that

E

[
exp

(
i

∫ T

0

ABtdBt

) ∣∣∣∣ |ABt|
]

= E

[
exp

(
−1

2

∫ T

0

|ABt|2 dt
) ∣∣∣∣ |ABt|

]
, (9)

since (|ABt|)t∈[0,T ] and (Y 1
t )t∈[0,T ] generate the same filtration on (F1

t )t∈[0,T ].

Corollary 6. Assume that either A†A2 = 0, or A†A2 is skew-symmetric and A†A has
a unique nonzero eigenvalue. If in addition A commutes with orthogonal matrices,
then we have

E

[
exp

(
i

∫ T

0

ABsdBs

) ∣∣∣∣ABt

]
= E

[
exp

(
−1

2

∫ T

0

|ABs|2 ds
) ∣∣∣∣ABt

]
, (10)

0 ≤ t ≤ T .

Proof. We check that for any d× d orthogonal matrix R we have

E

[
exp

(
i

∫ T

0

ABtdBt

) ∣∣∣∣ABt = Rx

]
= E

[
exp

(
i

∫ T

0

ABtdBt

) ∣∣∣∣ABt = x

]
,

x ∈ Rd, which shows that

E

[
exp

(
i

∫ T

0

ABtdBt

) ∣∣∣∣ABt

]
= E

[
exp

(
i

∫ T

0

ABtdBt

) ∣∣∣∣ |ABt|
]

and similarly for the right hand side, and we conclude by (9). �
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Skew-symmetric orthogonal A

We note that when A is skew-symmetric and orthogonal the condition A†A2 skew-
symmetric is satisfied as in this case we have (A†A2)† = A†A†A = A† = −A = −A†A2,
and (10) can be written as

E

[
exp

(
i

∫ T

0

ABsdBs

) ∣∣∣∣Bt

]
= E

[
exp

(
−1

2

∫ T

0

|ABs|2 ds
) ∣∣∣∣Bt

]
, (11)

0 ≤ t ≤ T . This holds in particular when A =

(
0 1
−1 0

)
, in which case A†A = IR2

has the unique eigenvalue λ1 = 1 and A†A2 = A is skew-symmetric, in which case
we recover the result of [7] which has been used to show that (11) holds when A is
skew-symmetric and not necessarily orthogonal in Theorem 2.1 of [1].
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