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Abstract

The gradient on a Riemannian manifold X is lifted to the configuration
space ΥX on X via a pointwise identity. This entails a norm equivalence
that either holds under any probability measure or characterizes the Poisson
measures, depending on the tangent space chosen on ΥX . More generally, this
approach links carré du champ operators on X to their counterparts on ΥX ,
and also includes structures that do not admit a gradient.
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1 Introduction

Stochastic analysis under Poisson measures, cf. [5], [6], has been developed in several

different directions. This is mainly due to the fact that, unlike on the Wiener space,

the gradient on Fock space and the infinitesimal Poisson gradient do not coincide

under the identification of the Fock space to the L2 space of the Poisson process.

- The gradient on Fock space is interpreted as a difference operator and has been

used in e.g. [13], [15], [18].

- On the other hand, infinitesimal perturbations of configurations, cf. [6], [8], [10],

[19] lead to a gradient that defines a local Dirichlet form. The generator of its

diffusion process is constructed by second quantization, cf. [3], [5], [21], [25].

In this paper we work in the framework of analysis on configuration spaces of [1], [2],

[3], [4], [11], [20], which unifies and links the two main approaches described above.

We lift the gradient on a Riemannian manifold X to the configuration space ΥX of

X, independently of the measure chosen on ΥX . The key result of [3] is retrieved

1Present address: Département de Mathématiques, Université de La Rochelle, 17042 La Rochelle
Cedex 1, France.
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via a simple argument, by taking expectations under a Poisson measure on ΥX . We

also obtain an integration by parts characterization of the Poisson measures on ΥX ,

stating that the creation and annihilation operators on ΥX are mutually adjoint only

under such measures. More generally, we compute the carré du champ operator ΓΥ

of the second quantization of structures on X that are not necessarily associated to

a gradient.

We proceed as follows. In Sect. 2 we work on the configuration space ΥX and state

a unitary equivalence of gradients on ΥX that holds pointwise. Sect. 3 is a simplified

exposition of basic results on configuration spaces, cf. [3], [16], [17]. We show that

these results can be proved without using a measure on ΥX . In Sect. 4 we obtain an

integration by parts characterization of Poisson measures on configuration spaces.

In Sect. 5 we compute the carré du champ of second quantized operators in a more

general setting, for structures that do not necessarily admit a gradient. In Sect. 6

we study the consequences of this relation on the stochastic integration of adapted

processes with respect to a Poisson random measure. We work for processes indexed

by X without referring to a particular notion of time. Sect. 7 is devoted to the

gaussian case, in which both notions of gradient (finite difference and infinitesimal)

coincide.

2 Differential calculus on configuration space

Let X be a metric space with Borel σ-algebra B and a diffuse Radon measure σ.

Let εx denote the Dirac measure at x ∈ X. The results of this section hold without

referring to a particular probability measure.

Definition 1 Let ΥX denote the configuration space on X, that is the set of Radon

measures on (X,B) of the form
∑i=n
i=1 εxi with (xi)

i=n
i=1 ⊂ X, xi 6= xj ∀i 6= j, n ∈

IN ∪ {∞}.

The configuration space ΥX is endowed with the vague topology and its associated

σ-algebra, cf. [3]. The assumption that X is a metric space is needed in the above

definition in order to restrict ΥX to configurations that are finite on bounded sets.

By a convenient abuse of notation we will identify γ ∈ ΥX to its support {x ∈ X :

γ({x}) = 1} and denote γ\{x} by γ\x, resp. γ ∪ {x} by γ ∪ x, x ∈ X. A process

u : X × ΥX −→ IR will be denoted by {ux(γ) : (x, γ) ∈ X × ΥX}. The following

operators have been introduced in [17].
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Definition 2 For any x ∈ X and any mapping F : ΥX −→ IR let ε+
x F : ΥX −→ IR

and ε−x F : ΥX −→ IR be defined by

[
ε−x F

]
(γ) = F (γ\x), and

[
ε+
x F

]
(γ) = F (γ ∪ x), γ ∈ ΥX .

If u : X ×ΥX −→ IR is a given mapping we let

ε−u(γ) = (ε−x ux(γ))x∈X = (ux(γ\x))x∈X and ε+u(γ) = (ε+
x ux(γ))x∈X = (ux(γ∪x))x∈X .

Remark 1 We have ε−ε+ = ε+ and ε+ε− = ε−.

Proof. Let x ∈ X. We have

ε−x ε
+
x F (γ) = F ((γ\x) ∪ x) = F (γ ∪ x) = ε+

x F (γ),

and

ε+
x ε
−
x F (γ) = F ((γ ∪ x)\x) = F (γ\x) = ε−x F (γ), γ ∈ ΥX . 2

Consequently, ε−x ε
+
x F (γ) = F (γ) on {(x, γ) : x ∈ γ}, ε+

x ε
−
x F (γ) = F (γ) on {(x, γ) :

x /∈ γ}, however ε+
x is not inverse of ε−x .

We now further assume that X is a Riemannian manifold. Let TxX denote the

tangent space at x ∈ X, let TX = ∪x∈XTxX, let L2
γ(TX) = L2(X,TX, γ) denote

the “tangent space” to ΥX at γ ∈ ΥX , cf. [3], and let L2
σ(TX) = L2(X,TX, σ).

Definition 3 Let

FC∞b =
{
f
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

)
, ϕ1, . . . , ϕn ∈ C∞c (X), f ∈ C∞b (IRn), n ∈ IN

}
,

FP =
{
f
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

)
, ϕ1, . . . , ϕn ∈ C∞c (X), f ∈ P(IRn), n ∈ IN

}
,

and

UC∞b =

{
i=n∑
i=1

Fiui : u1, . . . , un ∈ C∞c (X), F1, . . . , Fn ∈ FC∞b , n ≥ 1

}
,

UP =

{
i=n∑
i=1

Fiui : u1, . . . , un ∈ C∞c (X), F1, . . . , Fn ∈ FP , n ≥ 1

}
.

Let ∇X denote the gradient on X. The following gradient has been defined in [3],

[5].
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Definition 4 For F ∈ FC∞b ∪ FP of the form

F = f
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

)
, ϕ1, . . . , ϕn ∈ C∞c (X),

let

∇Υ
x F (γ) =

i=n∑
i=1

∂if
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

)
∇Xϕi(x), x ∈ X.

Each vector field v with compact support on X defines a curve (φvt (x))t∈IR+ in X

starting at x ∈ X, and a curve (φvt (γ))t∈IR+ in ΥX starting at γ ∈ ΥX , with φvt (γ) =

{φvt (x) : x ∈ γ}. With this notation, ∇Υ on ΥX can also be defined by

< ∇ΥF (γ), v >L2
γ(TX)= lim

ε→0

F (φvε(γ))− F (γ)

ε
, F ∈ FC∞b ,

cf. Sect. 2.3 of [3]. The following result shows a unitary equivalence between ∇Υ

and the gradient ∇X on X via ε+ and ε−.

Proposition 1 Let F ∈ FC∞b ∪ FP and x ∈ X. We have

∇Υ
x F (γ) = ε−x∇Xε+

x F (γ) on {γ ∈ ΥX : x ∈ γ}, (1)

and

ε+
x∇Υ

x F (γ) = ∇Xε+
x F (γ) on {γ ∈ ΥX : x /∈ γ}. (2)

Proof. Let F = f (
∫
X ϕ1dγ, . . . ,

∫
X ϕndγ), x ∈ X, γ ∈ ΥX , and assume that x ∈ γ.

We have

∇Υ
x F (γ) =

i=n∑
i=1

∂if
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

)
∇Xϕi(x)

=
i=n∑
i=1

∂if
(
ϕ1(x) +

∫
X
ϕ1d(γ\x), . . . , ϕn(x) +

∫
X
ϕnd(γ\x)

)
∇Xϕi(x)

= ∇Xf
(
ϕ1(x) +

∫
X
ϕ1d(γ\x), . . . , ϕn(x) +

∫
X
ϕnd(γ\x)

)
= ∇Xε+

x f
(∫

X
ϕ1d(γ\x), . . . ,

∫
X
ϕnd(γ\x)

)
=

(
∇Xε+

x F
)

(γ\x).

If x /∈ γ, then

ε+
x∇Υ

x F (γ) =
i=n∑
i=1

∂if
(
ϕ1(x) +

∫
X
ϕ1dγ, . . . , ϕn(x) +

∫
X
ϕndγ

)
∇Xϕi(x)

= ∇Xf
(
ϕ1(x) +

∫
X
ϕ1dγ, . . . , ϕn(x) +

∫
X
ϕndγ

)
= ∇Xε+

x f
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

)
= ∇Xε+

x F (γ). 2

Let us mention the consequences of this identity.

4



Remark 2 For F,G ∈ FC∞b ∪ FP we have the isometries

< ∇ΥF,∇ΥG >L2
γ(TX) = < ε−∇Xε+F, ε−∇Xε+G >L2

γ(TX), γ ∈ ΥX , (3)

and

< ε+∇ΥF, ε+∇ΥG >L2
σ(TX) = < ∇Xε+F,∇Xε+G >L2

σ(TX) . (4)

Proof. This follows from the fact that for fixed γ ∈ ΥX , (1) and (2) hold respectively

γ(dx)-a.e. and σ(dx)-a.e.
2

This extends the relation

< ∇Υ
∫
X
udγ,∇Υ

∫
X
vdγ >L2

γ(TX)=< ∇Xu,∇Xv >L2
γ(TX)

for deterministic u, v ∈ C∞c (X), which is interpreted in [3], Sect. 3.4, Relation (3.30),

as a lifting to ΥX of the geometry on X. In the next sections we will show that

taking expectations in (3) under a Poisson measure with intensity σ yields Th. 5-2

of [3], cf. Cor. 2 below.

3 Multiple integrals

This section is a self-contained and simplified exposition of basic results in analysis

on Poisson space, cf. [16], [17]. The difference is that they are stated on configuration

spaces and that here their proofs do not make use of a (Poisson) measure on ΥX .

Definition 5 For x ∈ X we define the difference operator Dx on F : ΥX −→ IR as

DxF (γ) = ε+
x F (γ)− F (γ) = F (γ ∪ x)− F (γ), x ∈ X, γ ∈ ΥX

X ,

and the operator δ on u : X ×ΥX −→ IR with u(·, γ) ∈ L1(X, σ), γ ∈ ΥX , as

δ(u) =
∫
X
ε−x ux(γ)(γ(dx)− σ(dx)) =

∫
X
ux(γ\x)(γ(dx)− σ(dx)),

provided the series converges.

The operator D satisfies the finite difference identity

Dx(FG) = FDxG+GDxF +DxFDxG, x ∈ X, F,G : ΥX −→ IR. (5)
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One has

δ (u) =
∫
X
udγ −

∫
X
udσ =

∑
x∈γ

u(x)−
∫
X
udσ, u ∈ Cc(X).

Since σ is diffuse, for u : X × ΥX −→ IR we have ux(γ\x) = ux(γ), σ(dx)-a.e.,

γ ∈ ΥX , hence ∫
X
ux(γ\x)σ(dx) =

∫
X
udσ, γ ∈ ΥX , (6)

and

δ(u) =
∫
X
ε−x ux(γ)γ(dx)−

∫
X
ux(γ)σ(dx), γ ∈ ΥX .

For the same reason the action of D coincides in L2(X, σ) with that of the symmetric

difference operator defined in [17], i.e.

DxF (γ) = F (γ ∪ x)− F (γ\x), σ(dx)− a.e., γ ∈ ΥX
X .

Remark 3 With this notation the isometry (3) of Remark 2 becomes

< ∇ΥF,∇ΥG >L2
γ(TX) = δ

(
< ∇XDF,∇XDG >TX

)
+ < ∇XDF,∇XDG >L2

σ(TX),

γ ∈ ΥX , F,G ∈ FC∞b ∪ FP.

Relation (4), however, can not be formulated using the operator δ. The following

proposition is a classical result in Poissonian analysis. Its proof is usually stated

under a Poisson measure, via the Fock space or the Kabanov multiplication formula.

Here we use a simple trajectorial argument.

Proposition 2 Let u : X×ΥX −→ IR and F : ΥX −→ IR such that u(·, γ), D·F (γ),

u(·, γ)D·F (γ) ∈ L1(X, σ), ∀γ ∈ ΥX . We have

Fδ(u) = δ(uF ) + (u,DF )L2(X,σ) + δ(uDF ),

provided the series converge.

Proof. If x ∈ γ we have

ε−xDxF (γ) = ε−x ε
+
x F (γ)− ε−x F (γ) = F (γ)− ε−x F (γ) = F (γ)− F (γ\x),

hence

δ(uDF )(γ) =
∫
X
ux(γ\x)DxF (γ\x)γ(dx)−

∫
X
ux(γ\x)DxF (γ\x)σ(dx)

=
∫
X
ux(γ\x)F (γ)γ(dx)−

∫
X
ux(γ\x)F (γ\x)γ(dx)− (DF (γ), u(γ))L2(X,σ)

= F (γ)δ(u)(γ)− δ(uF )(γ)− (DF (γ), u(γ))L2(X,σ),
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since from (6),

F (γ)
∫
X
ux(γ\x)σ(dx) = F (γ)

∫
X
ux(γ)σ(dx) =

∫
X
F (γ\x)ux(γ\x)σ(dx). 2

For fn ∈ Cc(Xn), the multiple integral

In(fn) =
∫

∆n

fn(x1, . . . , xn)(γ(dx1)− σ(dx1)) · · · (γ(dxn)− σ(dxn))

can be defined without probability, with

∆n = {(x1, . . . , xn) ∈ Xn : xi 6= xj, ∀i 6= j},

cf. [15]. We denote by fn⊗ gm the tensor product of two functions fn ∈ L2(X, σ)⊗n,

gm ∈ L2(X, σ)⊗m, defined as

fn ⊗ gm(x1, . . . , xn, y1, . . . , ym) = fn(x1, . . . , xn)gm(y1, . . . , ym),

(x1, . . . , xn, y1, . . . , ym) ∈ Xn+m. The action of D and δ on multiple integrals is given

by the following proposition.

Proposition 3 We have for fn ∈ Cc(Xn):

DxIn(fn) = 1{x/∈γ}
i=n∑
i=1

In−1(fn( · · ·︸︷︷︸
i−1

, x, · · ·︸︷︷︸
n−i

)), x ∈ X,

and for gn ∈ Cc(Xn+1):

δ(In(gn(∗, ·))) = In+1(gn). (7)

Proof. Let γ̃ = γ−σ. We have, using the relation 1∆n(x1, . . . , xn)εx(dxi)εx(dxj) = 0:

DxIn(fn) = Dx

∫
∆n

fn(x1, . . . xn)γ̃(dx1) · · · γ̃(dxn)

=
∫

∆n

fn(x1, . . . , xn)
i=n∏
i=1

(γ̃(dxi) + (1− γ({xi}))εx(dxi))

−
∫

∆n

f(x1) · · · f(xn)γ̃(dx1) · · · γ̃(dxn)

= (1− γ({x}))
i=n∑
i=1

∫
∆n−1

fn(x1, . . . , x̂i, . . . , xn)γ̃(dx1) · · · γ̂(dxi) · · · γ̃(dxn)

= (1− γ({x}))
i=n∑
i=1

In−1(fn( · · ·︸︷︷︸
i−1

, x, · · ·︸︷︷︸
n−i

)), x ∈ X,
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where x̂i and γ̂(dxi) respectively denote the omission of xi, and γ̃(dxi). On the other

hand,

δ(In(gn(∗, ·))) =
∫
X
In(gn(x1, . . . , xn, x))(γ\x)γ̃(dx)

=
∫
X

∫
∆n

1{x/∈{x1,...,xn}}gn(x1, . . . , xn, x)γ̃(dx1) · · · γ̃(dxn)γ̃(dx)

=
∫

∆n+1

gn(x1, . . . , xn, x)γ̃(dx)γ̃(dx1) · · · γ̃(dxn) = In+1(gn). 2

In (7), the integral In operates on any (n− 1)-subset of the n variables (x1, . . . , xn).

If fn is symmetric then

DxIn(fn) = 1{x/∈γ}nIn−1(fn(∗, x)), x ∈ X.

Moreover, since σ is diffuse we have

DxIn(fn) = nIn−1(fn(∗, x)), σ(dx)− a.e.

Prop. 2 implies the Kabanov multiplication formula, i.e. taking f, u ∈ Cc(X) and

F = In(f⊗n) we have

I1(u)In(f⊗n) = In+1(u⊗f⊗n)+n(u, f)L2(X,σ)In−1(f⊗(n−1))+nIn((uf)⊗f⊗(n−1)). (8)

We use the convention I0(f0) = f0, f0 ∈ IR.

Remark 4 Relation (8) implies that FP coincides with the vector space generated

by

{In(f1 ⊗ · · · ⊗ fn) : f1, . . . , fn ∈ C∞c (X), n ∈ IN}.

This remark shows in particular that a linear relation on FP needs only be proved

on elements of the form In(f1 ⊗ · · · ⊗ fn), f1, . . . , fn ∈ C∞c (X), n ∈ IN. We end this

section with a definition that usually requires the notion of Fock space, but can also

be stated on configuration spaces.

Definition 6 The differential second quantization of an operator H : C∞c (X) −→
C∞c (X) is the operator dΓ(H) defined as

dΓ(H)F = δ(HDF ), F ∈ FC∞b ∪ FP .
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4 Integration by parts characterization

Let πσ denote the Poisson measure with intensity σ on ΥX , such that γ 7→ γ(A) is

Poisson distributed with mean σ(A), A ∈ B, and such that{∫
X
ϕ1dγ, . . . ,

∫
X
ϕndγ

}
are independent random variables if ϕ1, . . . , ϕn ∈ Cc(X) have disjoint supports. For

fn ∈ L2(X, σ)⊗n and gm ∈ L2(X, σ)⊗m, let fn�gm denote the symmetrization of

fn ⊗ gm in n + m variables. The multiple integral In(fn) satisfies under πσ the

well-known isometry property

(In(fn), Im(gm))L2(ΥX ,πσ) = 1{n=m}n!(fn, gm)L2(X,σ)⊗n

for fn, gm in the symmetric tensor products L2(X, σ)�n, L2(X, σ)�m, which allows to

extend the mapping In to a continuous operator from L2(X, σ)�n into L2(ΥX , πσ).

A linear isometric isomorphism is constructed between the symmetric Fock space

Γ(L2(X, σ)) =
∞⊕
n=0

L2(X, σ)�n

and L2(ΥX , πσ), associating fn ∈ L2(X, σ)�n to In(fn). The operators

D : Γ(L2(X, σ)) −→ Γ(L2(X, σ))⊗ L2(X, σ)

and

δ : Γ(L2(X, σ))⊗ L2(X, σ) −→ Γ(L2(X, σ))

are identified from Prop. 3 to the gradient and divergence operators on Γ(L2(X, σ)),

i.e.

Df�n = nf�(n−1) ⊗ f, δ
(
f�n ⊗ g

)
= f�n�g, f, g ∈ L2(X, σ). (9)

The following well-known result follows from the identification of L2(ΥX , πσ) with

Γ(L2(X, σ)).

Proposition 4 Under πσ the operators D : L2(ΥX , πσ) −→ L2(ΥX , πσ) ⊗ L2(X, σ)

and δ : L2(ΥX , πσ) ⊗ L2(X, σ) −→ L2(ΥX , πσ) are closable and mutually adjoint,

with

Eπσ [(DF, u)L2(X,σ)] = E[Fδ(u)], F ∈ FC∞b , u ∈ UC∞b .

We now show D and δ are mutually adjoint only under {πσ ⊗ σ, πσ}. This converse

to Prop. 4 completes the analog result of [3] concerning ∇Υ and its adjoint divΥ
π .
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Proposition 5 Let π be a probability measure on ΥX such that ∀h ∈ C∞c (X),

I1(h)(= δ(h)) has finite moments of all orders under π. Assume that

Eπ [δ(u)] = 0, ∀u ∈ UP , (10)

or equivalently

Eπ
[
(DF, h)L2(X,σ)

]
= Eπ [Fδ(h)] , ∀F ∈ FP , h ∈ C∞c (X). (11)

Then π is the Poisson measure πσ with intensity σ.

Proof. First, we note that from Remark 4, if I1(h) has finite moments of all orders

under π, ∀h ∈ C∞c (X), then δ(u) is integrable under π, ∀u ∈ UP . Relation (10)

implies (11) from Prop. 2. Conversely, if

Eπ
[
δ(gIn(f⊗n))

]
= 0, f, g ∈ C∞c (X),

then Eπ [δ(gIn+1(f⊗n+1))] = 0, since

E
[
δ(g)In+1(f⊗(n+1))− (g,DIn+1(f⊗(n+1)))L2(X,σ)

]
= 0,

and from the Kabanov multiplication formula (Prop. 2):

δ(gIn+1(f⊗(n+1)))

= δ(g)In+1(f⊗(n+1))− (g,DIn+1(f⊗(n+1)))L2(X,σ) − (n+ 1)δ((gf)In(f⊗n)).

Hence by induction, (11) implies (10), given Remark 4. Let us now show that π = πσ.

We have for h ∈ C∞c (X) and n ≥ 1, using (11):

Eπ

[(∫
X
hdγ

)n]
= Eπ

[
δ(h)

(∫
X
hdγ

)n−1
]

+
(∫

X
hdσ

)
Eπ

[(∫
X
hdγ

)n−1
]

= Eπ

(h,D (∫
X
hdγ

)n−1
)
L2(X,σ)

+
(∫

X
hdσ

)
Eπ

[(∫
X
hdγ

)n−1
]

= Eπ

[∫
X
h(x)

(
h(x) +

∫
X
hd(γ\x)

)n−1

σ(dx)

]

= Eπ

[∫
X
h(x)

(
h(x) +

∫
X
hdγ

)n−1

σ(dx)

]

=
k=n−1∑
k=0

(
n− 1
k

)(∫
X
hn−kdσ

)
Eπ

[(∫
X
hdγ

)k]
.

This induction relation defines the moments of γ 7→
∫
X hdγ under π. Moreover it

holds under πσ from Prop. 4, hence the moments of γ 7→
∫
X hdγ under π are that
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of a Poisson random variable with intensity
∫
X hdσ. By dominated convergence this

implies

Eπ

[
exp

(
iz
∫
X
hdγ

)]
= exp

∫
X

(eizh − 1)dσ, z ∈ IR, h ∈ C∞c (X),

hence π = πσ.
2

This proposition can be modified as follows.

Proposition 6 Let π be a probability measure on ΥX such that δ(u) is integrable,

∀u ∈ UC∞b . Assume that

Eπ [δ(u)] = 0, u ∈ UC∞b , (12)

or equivalently

Eπ
[
(DF, u)L2(X,σ)

]
= Eπ [Fδ(u)] , F ∈ FC∞b , u ∈ UC∞b . (13)

Then π is the Poisson measure πσ with intensity σ.

Proof. Clearly, (12) implies (13) as in the proof of Prop. 5. The implication (13) ⇒
(12) follows in this case by taking F = 1. Denoting the characteristic function of

γ 7→
∫
X hdγ by ψ(z) = Eπ[exp (iz

∫
X hdγ)], z ∈ IR, we have:

d

dz
ψ(z) = iEπ

[∫
X
hdγ exp

(
iz
∫
X
hdγ

)]
= iEπ

[
δ(h) exp

(
iz
∫
X
hdγ

)]
+ iEπ

[∫
X
hdσ exp

(
iz
∫
X
hdγ

)]
= iEπ

[(
h,D exp

(
iz
∫
X
hdγ

))
L2(X,σ)

]
+ iψ(z)

∫
X
hdσ

= i(h, eizh − 1)L2(X,σ)Eπ

[
exp

(
iz
∫
X
hdγ

)]
+ iψ(z)

∫
X
hdσ

= iψ(z)(h, eizh)L2(X,σ), z ∈ IR.

We used the relation

Dx exp
(
iz
∫
X
hdγ

)
= (eizh(x) − 1) exp

(
iz
∫
X
hdγ

)
, x ∈ X,

which holds from the definition of Dx as a finite difference operator, cf. Def. 5. With

the initial condition ψ(0) = 1 we obtain

ψ(z) = exp
∫
X

(eizh − 1)dσ, z ∈ IR. 2

11



Corollary 1 Let π be a probability measure on ΥX such that In(f⊗n) is integrable

under π, ∀f ∈ C∞c (X). The relation

Eπ
[
In(f⊗n)

]
= 0, ∀f ∈ C∞c (X), n ≥ 1, (14)

holds if and only if π is the Poisson measure πσ with intensity σ.

Proof. If (14) holds then by polarisation,

Eπ [δ(g ⊗ In(f1 ⊗ · · · ⊗ fn))] = 0, g, f1, . . . , fn ∈ C∞c (X), n ≥ 0,

and from Remark 4, Eπ[δ(u)] = 0, u ∈ UP , hence π = πσ from Prop. 5.
2

In the sequel we make the following hypothesis.

Definition 7 We now assume that

(i) X is a Riemannian manifold with volume element m,

(ii) σ(dx) = ρ(x)m(dx) with ρ ∈ L2
loc(X,m),

(iii) divXσ is defined on every ∇Xf , f ∈ C∞c (X), with∫
X
g(x)divXσ ∇Xf(x)σ(dx) =

∫
X
< ∇Xg(x),∇Xf(x) >TxX σ(dx), f, g ∈ C1

c (X).

Let also HX
σ denote the Laplace-Beltrami operator on X, defined as HX

σ = divXσ ∇X .

As a corollary of our pointwise lifting of gradients we obtain Th. 5-2 of [3], page 489,

by taking expectations in Remark 3, and a characterization of the Poisson measure.

Corollary 2 (i) The isometry relation

Eπ
[
< ∇ΥF,∇ΥG >L2

γ(TX)

]
= Eπ

[
< ∇XDF,∇XDG >L2

σ(TX)

]
, F,G ∈ FC∞b ,

(15)

holds if π is the Poisson measure πσ with intensity σ.

(ii) Under the hypothesis {HX
σ f : f ∈ C∞c (X)} = C∞c (X), Relation (15) implies

that π = πσ.

Proof. (i) Remark 3, Prop. 4 and Prop. 5 show that (15) holds if π = πσ. (ii)

if (15) is satisfied, then taking F = In(u�n) and G = I1(h), h, u ∈ C∞c (X), gives

Eπ
[
δ
(
< ∇XDF,∇Xh >TX

)]
= 0, i.e. Eπ

[
δ((HX

σ h)uIn−1(u�(n−1)))
]

= 0, n ≥ 1,

hence π = πσ from Cor. 1.

12



2

Remark 5 Instead of δ, the proof of Relation (15) in [3] consists in using (2) and

the relation

Eπσ

[∫
X
ε+
x < ∇ΥF,∇ΥG >TxX σ(dx)

]
= Eπσ

[∫
X
< ∇ΥF,∇ΥG >TxX γ(dx)

]
,

F,G ∈ FC∞b , cf. e.g. [14].

Let divΥ
πσ denote the adjoint of ∇Υ under πσ, defined as

Eπσ
[
FdivΥ

πσG
]

= Eπσ
[
< ∇ΥF,∇ΥG >L2

γ(TX)

]
,

on G ∈ FC∞b such that FC∞b 3 F 7→ Eπσ
[
< ∇ΥF,∇ΥG >L2

γ(TX)

]
extends to a

bounded operator on L2(ΥX , πσ). By density of FC∞b in L2(ΥX , πσ) it follows from

Cor. 2 that under πσ, divΥ
πσ∇

Υ coincides with dΓ(HX
σ ). The following remark is

connected to Th. 1 of [23].

Remark 6 Assume that there exists a unique probability measure σ on (X,B) such

that ∫
X
fdivXσ ∇Xϕdσ =< ∇Xf,∇Xϕ >L2

σ(TX), ϕ, f ∈ C∞c (X). (16)

(i) Let ρ be a probability measure on (X,B). The relation

Eπ

[∫
X
ux(γ\x)divXσ ∇Xϕ(x)γ(dx)

]
= Eπ

[
< ∇Xu,∇Xϕ >L2

ρ(TX)

]
, (17)

u ∈ UC∞b , ϕ ∈ C∞c (X), holds if ρ = σ and π = πσ.

(ii) If δ(u) is integrable under π, ∀u ∈ UC∞b , then under the hypothesis

{HX
σ f : f ∈ C∞c (X)} = C∞c (X), (18)

Relation (17) implies ρ = σ and π = πσ.

Proof. (i) From the above discussion, (17) is satisfied if π = πσ. (ii) Taking u = f ∈
C∞c (X) in (17) implies ρ = σ from (16). Moreover from (17), Relation (16) becomes

Eπ

[∫
X
ux(γ\x)HX

σ ϕ(x)γ(dx)
]

= Eπ
[
< ∇Xu,∇Xϕ >L2

σ(TX)

]
= Eπ

[
< u,HX

σ ϕ >L2(X,σ)

]
.

i.e.

Eπ
[
δ
(
uHX

σ ϕ
)]

= 0, u ∈ UC∞b , ϕ ∈ C∞c (X),

hence π is the Poisson measure πσ with intensity σ from Prop. 5, under the hypothesis

(18).
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2

In particular one can choose X to be the Wiener space as in [23]. In this case, σ is

the Wiener measure from the integration by parts characterizations (Th. 1.2) of [22].

Finally we mention a result also known as the Skorohod isometry, which can be

proved from Prop. 2 and will be used in the sequel.

Proposition 7 For u ∈ UP ∪ UC∞b we have

Eπσ
[
δ(u)2

]
= E

[
‖u‖2

L2(X,σ)

]
+ E

[∫
X

∫
X
Dxu(y)Dyu(x)σ(dx)σ(dy)

]
. (19)

Proof. We have, applying Prop. 2 and the relation Dxδ(u) = u(x) + δ(Dxu):

Eπσ
[
δ(u)2

]
= Eπσ

[
δ(uδ(u)) + (u,Dδ(u))L2(X,σ) + δ(uDδ(u))

]
= Eπσ

[
(u,Dδ(u))L2(X,σ)

]
= Eπσ

[
‖u‖2

L2(X,σ) +
∫
X
u(x)δ(Dxu)σ(dx)

]
= Eπσ

[
‖u‖2

L2(X,σ) +
∫
X
Dyu(x)Dxuyσ(dx)σ(dy)

]
. 2

5 Second quantization and carré du champ oper-

ators

In this section we compute the carré du champ operator associated to second quan-

tized operators. The difference with the previous sections is that we are not restricted

to the structure given by ∇X . The following definition is adapted from [24], cf. also

[9].

Definition 8 Let M be a metric space with Borel measure ν. The carré du champ

associated to an operator H defined on a domain D ⊂ L2(M, ν) stable by pointwise

multiplication and by H is the bilinear operator ΓM : D ×D −→ D defined as

ΓM(ϕ, ψ) =
1

2
(HM(ϕψ)− ϕHMψ − ψHMϕ), ϕ, ψ ∈ D.

- The operator ΓM is local if it satisfies the property

ΓM(ϕψ, φ) = ψΓM(ϕ, φ) + ϕΓM(ψ, φ), ϕ, ψ, φ ∈ D.

- The operator HM is said to be conservative on D under ν if∫
M

(HMu)dν = 0, ∀u ∈ D.

14



Only the conservativity assumption makes use of the measure ν. If ΓM is local, then

HMf(ϕ1, . . . , ϕn) =
n∑

i,j=1

∂i∂jf(ϕ1, . . . , ϕn)ΓM(ϕi, ϕj)

+
i=n∑
i=1

∂if(ϕ1, . . . , ϕn)HMϕi, ϕ1, . . . , ϕn ∈ D,

f ∈ P(IRn), and HM is called a diffusion operator. The following lemma shows how

to compute the carré du champ of a second quantized (or “lifted”) operator.

Lemma 1 Let HX be an operator on C∞c (X) with carré du champ ΓX .

(i) The carré du champ of dΓ(HX) is

ΓΥ(F,G) = δ
(
ΓX(DF,DG)

)
−1

2

(
(DF,HXDG)L2(X,σ) + (HXDF,DG)L2(X,σ)

)
,

(20)

F,G ∈ FC∞b .

(ii) If HX is conservative on C∞c (X) under σ, then

ΓΥ(F,G) = δ
(
ΓX(DF,DG)

)
+
∫
X

ΓX(DF,DG)dσ, F,G ∈ FC∞b . (21)

Proof. We have from Prop. 3 and (5):

1

2
dΓ(HX)(F 2) =

1

2
δ
(
HXD(F 2)

)
= δ

(
FHXDF +HX(DFDF )

)
= Fδ

(
HXDF

)
− (DF,HXDF )L2(X,σ) − δ

(
DFHXDF

)
+δ

(
DFHXDF + ΓX(DF,DF )

)
= FdΓ(HX)F − (DF,HXDF )L2(X,σ) + δ

(
ΓX(DF,DF )

)
,

hence (20) holds. If HX is conservative on C∞c (X) under σ,

−1

2

(
(DF,HXDG)L2(X,σ) + (HXDF,DG)L2(X,σ)

)
=
∫
X

ΓX(DF,DG)dσ,

hence (21).
2

If HX is conservative on C∞c (X), then we can also write

ΓΥ(F,G)(γ) =
∫
X

ΓX(DxF,DxG)(γ\x)γ(dx), F,G ∈ FC∞b .

Proposition 8 Let HX be a conservative diffusion operator on C∞c (X) under σ with

local carré du champ ΓX . Then

15



(i) dΓ(HX) is a diffusion operator with carré du champ

ΓΥ(F,G) = δ
(
ΓX(DF,DG)

)
+
∫
X

ΓX(DF,DG)dσ, F,G ∈ FC∞b . (22)

(ii) dΓ(HX) is conservative on FC∞b under πσ,

(iii) the Dirichlet form (F,G) 7→ E(F,G) associated to dΓ(HX) and defined as

E(F,G) = Eπσ
[
ΓΥ(F,G)

]
satisfies

E(F,G) = Eπσ

[∫
X

ΓX(DF,DG)dσ
]
, F,G ∈ FC∞b .

Proof. (i) Given Lemma 1 it suffices to prove that the locality property is satisfied.

We have D(F 2) = 2FDF +DFDF and

δ
(
ΓX(D(F 2), DG)

)
+
∫
X

ΓX(D(F 2), DG)dσ

= 2δ
(
FΓX(DF,DG)

)
+ δ

(
ΓX(DFDF,DG)

)
+2F

∫
X

ΓX(DF,DG)dσ +
∫
X

ΓX(DFDF,DG)dσ

= 2δ
(
FΓX(DF,DG)

)
+ 2δ

(
DFΓX(DF,DG)

)
+ 2(DF,ΓX(DF,DG)))L2(X,σ)

+2F
∫
X

ΓX(DF,DG)dσ

= 2Fδ
(
ΓX(DF,DG)

)
+ 2F

∫
X

ΓX(DF,DG)dσ = 2FΓX(DF,DG).

The statements (ii) and (iii) are a consequence of Cor. 2, Prop. 5 and (22): the

conservativity of dΓ(HX) states that Eπσ [δ(HXDF )] = 0, F ∈ FP , and (iii) holds

because Eπσ [δ(ΓX(DF,DG))] = 0, F,G ∈ FC∞b .
2

In particular if HX is the generator of a local Dirichlet form EX on X with carré du

champ ΓX , then dΓ(HX) is the generator of a local Dirichlet form on ΥX with carré

du champ

ΓΥ(F,G) = δ(ΓX(DF,DG)) + EX(F,G), F,G ∈ FC∞b .

As a particular case, for HX
σ = divXσ ∇X we retrieve Remark 3 which holds inde-

pendently of the measure π chosen on ΥX . In the following corollary we use the

assumptions of Def. 7.

Corollary 3 The differential second quantization dΓ(HX
σ ) of the Laplace-Beltrami

operator HX
σ = divXσ ∇X on X is a diffusion operator with local carré du champ

ΓΥ(F,G)(γ) =< ∇ΥF,∇ΥG >L2
γ(TX), F,G ∈ FP . (23)
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Proof. From Prop. 8 it suffices to prove (23). Given Prop. 8, the mapping

(F,G) 7→< ∇ΥF,∇ΥG >L2
γ(TX), F,G ∈ FP ,

satisfies the locality property since ∇Υ is a derivation. Since ΓΥ is also local from

Prop. 8, it suffices to prove that (23) holds for G(γ) =
∫
X udγ and F (γ) =

∫
X vdγ,

u, v ∈ C∞c (X). Since u and v are deterministic, we have from Prop. 1 and (22):

(∇ΥF,∇ΥG)L2
σ(TX) =

∫
X
< ∇Xu,∇Xv >TxX γ(dx) =

∫
X

ΓX(u, v)dγ

= δ
(
ΓX(u, v)

)
+
∫
X

ΓX(u, v)dσ = ΓΥ(F,G),

ΓX being defined as ΓX(u, v) =< ∇Xu,∇Xv >L2
σ(TX), u, v ∈ C∞c (X).

2

Relation (23) shows that ΓΥ is the carré du champ associated to the Dirichlet form

of Th. 4-1 of [3]. If F = I1(u) and G = I1(v), u, v ∈ C∞c (X), are first chaos random

variables we retrieve as a particular case the identity

ΓΥ(F,G)(γ) =
∫
X

ΓX(u, v)dγ,

which is apparent in e.g. Relation (4.7) of [3], page 476. This also shows that the

expression of dΓ(HX
σ ) for first chaos random variables:

dΓ(HX
σ )f

(∫
X
ϕ1dγ, . . . ,

∫
X
ϕndγ

)

=
i=n∑
i=1

∂if
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

) ∫
X
HX
σ ϕidγ

+
n∑

i,j=1

∂i∂jf
(∫

X
ϕ1dγ, . . . ,

∫
X
ϕndγ

) ∫
X
< ∇Xϕi,∇Xϕj >TX dγ,

cf. (4.3) and (4.7), pp. 474 and 476 of [3], can be extended to F1, . . . , Fn ∈ FC∞b :

dΓ(HX
σ )f (F1, . . . , Fn) =

i=n∑
i=1

∂if (F1, . . . , Fn) dΓ(HX
σ )Fi

+
n∑

i,j=1

∂i∂jf (F1, . . . , Fn) ΓΥ(Fi, Fj).

Th. 9-18 of [5] also follows from the application of (23) to the special case of adapted

functionals.
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6 Stochastic integration

In this section we work with the triple (HX
σ , EXσ ,ΓXσ ) of conservative generator,

Dirichlet form and carré du champ given by ∇X . If X = IR+ then it is well-known

that divΥ
πσ and δ ◦ divXσ both coincide with the compensated Poisson stochastic in-

tegral on adapted processes, cf. [10], [15], [19]. We show that this property is a

consequence of Prop. 8 and can be extended to a Riemannian manifold X using

a definition of adaptedness that does not require an ordering on X, extending the

Wiener space construction of [26].

Definition 9 Let V = {∇Xh : h ∈ UC∞b }. Let u : X ×ΥX −→ TX be a mapping

in V written as

u =
i=n∑
i=1

Fi∇Xhi, F1, . . . , Fn ∈ FC∞b , h1, . . . , hn ∈ C∞c (X).

(i) v ∈ V is said to be a ∇Υ-adapted vector if < ∇Xhi(x),∇Υ
x Fi(γ) >TxX= 0

∀x ∈ X, γ ∈ ΥX , i = 1, . . . , n.

(ii) v ∈ V is said to be a D-adapted vector if for all i, j ∈ {1, . . . , n}, x ∈ X, and

γ ∈ ΥX :

< ∇Xhi(x),∇XDxFj(γ) >TxX= 0 or < ∇Xhj(x),∇XDxFi(γ) >TxX= 0,

(24)

for at least one such representation of v.

(iii) Let L2
ad(Υ

X ×X,TX) denote the completion under the norm

v 7→ ‖v‖L2(ΥX×X,TX;πσ) + Eπσ

[∫
X

(
divXσ v

)2
dσ
]1/2

of the subset of V made of vectors that are both ∇Υ-adapted and D-adapted.

If X = IR+, then processes which are adapted in the usual sense with respect to

the canonical Poisson filtration are identified to ∇Υ-adapted vectors. We define the

bilinear form tracex on TxX ⊗ TxX by

tracexu⊗ v =< u, v >TxX , u⊗ v ∈ TxX ⊗ TxX, x ∈ X.

The following proposition shows that the operators divΥ
πσ and δ ◦ divXσ coincide on

L2
ad(Υ

X ×X,TX) with the Poisson stochastic integral.

18



Proposition 9 (i) Let π be a probability under which divπ∇Xh is defined, h ∈
C∞c (X), and such that FC∞b is dense in L2(ΥX , π). We have

divΥ
π v =

i=n∑
i=1

GidivΥ
π∇Xhi −

∫
X

tracex∇Υ
x v(x)γ(dx), (25)

where v ∈ V is written as v(x, γ) =
∑i=n
i=1 ∇Xhi(x)Gi(γ), x ∈ X, γ ∈ ΥX .

(ii) If π is the Poisson measure πσ with intensity σ, then

divΥ
πσv =

∫
X

divXσ vdγ −
∫
X

tracex∇Υ
x v(x)γ(dx), v ∈ V . (26)

(iii) For all simple ∇Υ-adapted vector v ∈ V we have

divΥ
πσ(v) = δ ◦ divXσ (v) =

∫
X

divXσ vdγ. (27)

(iv) The Poisson integral extends to L2
ad(Υ

X × X,TX) as a continuous operator

with the relation

divΥ
πσ(v) = δ ◦ divXσ (v) =

∫
X

divXσ vdγ, v ∈ L2
ad(Υ

X ×X,TX), (28)

and the equality

Eπσ

[(
δ ◦ divXσ (v)

)2
]

= Eπσ
[
‖divXσ v‖2

L2(X,σ)

]
, v ∈ L2

ad(Υ
X ×X,TX). (29)

Proof. (i) We assume that v is of the form v = G∇Xh with h ∈ C∞c (X) andG ∈ FC∞b .

We have G∇ΥF = ∇Υ(FG)− F∇ΥG, hence

Eπ
[
G < ∇ΥF,∇Xh >L2

γ(TX)

]
= Eπ

[
< ∇Υ(FG),∇Xh >L2

γ(TX) −F < ∇ΥG,∇Xh >L2
γ(TX)

]
,

i.e.

Eπ
[
FdivΥ

π v
]

= Eπ
[
F
(
GdivΥ

π∇Xh− < ∇ΥG,∇Xh >L2
γ(TX)

)]
, F ∈ FC∞b ,

hence (25).

(ii) Cor. 2 shows that under πσ,

Eπσ
[
(∇ΥF,∇Xh)L2

γ(TX)

]
= Eπσ

[
< ∇XDF,∇Xh >L2

σ(TX)

]
, h ∈ C∞c (X),

i.e. since
∫
X divXσ ∇Xhdσ = 0:

Eπσ
[
FdivΥ

πσ (v)
]

= Eπσ
[
Fδ

(
divXσ ∇Xh

)]
= Eπσ

[
F
∫
X

divXσ ∇Xhdγ
]
, F ∈ FC∞b ,
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hence

divΥ
πσ (v) =

∫
X

divXσ ∇Xhdγ,

which implies (26) from (25).

(iii) If v ∈ V is ∇Υ-adapted then < ∇Xh(x),∇Υ
xG >TxX= 0, x ∈ X, hence

tracex∇Υ
x vx = 0, which proves (27) from (25) by linearity.

(iv) For all D-adapted vector v ∈ V we have∫
X

∫
X
DxdivXσ v(y)DydivXσ v(x)σ(dx)σ(dy)

=
n∑

i,j=1

< divXσ ∇Xhi, DGj >L2(X,σ)< divXσ ∇Xhj, DGi >L2(X,σ)

=
n∑

i,j=1

< ∇Xhi,∇XDGj >L2
σ(TX)< ∇Xhj,∇XDGi >L2

σ(TX)= 0,

hence the Skorohod isometry (19) shows that (29) holds, and δ ◦ divXσ extends to a

continuous operator on L2
ad(Υ

X ×X,TX), which proves (28) by density.
2

If X = IR, σ being the Lebesgue measure, we find the classical result

divΥ
πσ(v) = δ ◦ divXσ (v) = −δ(∇Xv) = −

∫
IR+

∇Xv(t)dNt,

for ∇Xv ∈ V , v = 0 on IR−, adapted to the canonical filtration of the standard

Poisson process (Nt)t∈IR+ on IR+, cf. [10], [15], [19].

Remark 7 By duality, (28) shows the projection identity

E[(∇ΥF, v)L2
γ(TX)] = E[(∇XDF, v)L2(X,σ)], F ∈ FC∞b , (30)

for all ∇Υ-adapted vector v ∈ V.

In case X = IR+, (30) can be interpreted as an equality between the adapted pro-

jections of ∇ΥF and ∇XDF with the respect to the canonical Poisson filtration, cf.

[19].

7 The Gaussian case

The aim of this section is to examine the Gaussian counterpart of the above con-

struction. We consider a centered random Gaussian measure W with variance σ on
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the Riemannian manifold X, on a probability space (Ω, µ). For h ∈ L2(X, σ), the

first order stochastic integral of h is denoted by

I1(h) =
∫
X
h(x)W (dx).

If {h1, . . . , hd} is orthonormal in L2(X, σ) and n1 + · · ·+ nd = n, let

In(h�n1
1 � · · ·�h�ndd ) = Hn1(I1(h1)) · · ·Hnd(I1(hd)),

where (Hn)n∈IN denotes the family of Hermite polynomials. The isometry property

(In(fn), Im(gm))L2(Ω,µ) = 1{n=m}n!(fn, gm)L2(X,σ)�n

allows to define In(fn) for any fn in the symmetric tensor product L2(X, σ)�n, and

to identify L2(Ω, µ) to the Fock space Γ(L2(X, σ)). Under this identification the

annihilation operator D becomes a derivation operator. Let δ denote the adjoint

of D, also called the Skorohod integral, and defined as in (9). The construction

presented here does not rely on Brownian motion as in [7], [12]. It is in fact the

direct analogue of the construction presented above on configuration spaces. Let

∇W be the gradient defined on

S = {f(I1(h1), . . . I1(hn)) : f ∈ C∞b (IRn), h1, . . . , hn ∈ C∞c (X)}

by

∇W
x F =

i=n∑
i=1

∂if(I1(h1), . . . , I1(hn))∇Xhi(x), x ∈ X,

for F ∈ S of the form F = f(I1(h1), . . . , I1(hn)), i.e. for u = ∇Xh, h ∈ C∞c (X):

(∇WF, u)L2
σ(TX) =

i=n∑
i=1

∂if(I1(h1), . . . , I1(hn))(∇Xhi, u)L2
σ(TX)

=
i=n∑
i=1

∂if(I1(h1), . . . , I1(hn))(hi, divXσ u)L2(X,σ),

or more formally:

(∇WF, u)L2
σ(TX) = lim

ε→0

F (dW + divXσ udσ)− F (dW )

ε
.

Given the relation

Dxf(I1(h1), . . . , I1(hn)) =
i=n∑
i=1

∂if(I1(h1), . . . , I1(hn))hi(x), , x ∈ X,
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in the Gaussian case the relation between ∇W , ∇X and D becomes simply

∇W
x F = ∇XDxF, x ∈ X, F ∈ S,

in other terms, according to the terminology of Sect. 3.1 of [3], on the Wiener space

D coincides with the flat gradient, which is not the case on the Poisson space.

The following result applies in particular to the Laplace-Beltrami operator HX
σ =

divXσ ∇X .

Theorem 1 If HX is an operator on C∞c (X) with carré du champ ΓX , then dΓ(HX)

is a diffusion operator with carré du champ

ΓW (F,G) = −1

2
((DF,HXDG) + (DG,HXDF )), F,G ∈ S.

If HX is conservative on C∞c (X) under σ, then ΓW (F,G) = ΓX(DF,DG), F,G ∈ S.

Proof. We have

dΓ(HX)(FG) = δ
(
HXD(FG)

)
= δ

(
FHXDG+GHXDF

)
= Fδ

(
HXDG

)
+Gδ

(
HXDF

)
− (DF,HXDG)L2(X,σ) − (DG,HXDF )L2(X,σ)

= FdΓ(HX)G+GdΓ(HX)F − (DF,HXDG)L2(X,σ) − (DG,HXDF )L2(X,σ),

hence

ΓW (F,G) =
1

2

(
dΓ(HX)(FG)− FdΓ(HX)G−GdΓ(HX)F

)
= −1

2

(
(DF,HXDG)L2(X,σ) + (HXDF,DG)L2(X,σ)

)
.

The locality property is satisfied since D is a derivation operator:

ΓW (F 2, G) = (D(F 2), HXDG)L2(X,σ) + (HXD(F 2), DG)L2(X,σ)

= 2F
(
(DF,HXDG)L2(X,σ) + (HXDF,DG)L2(X,σ)

)
= 2FΓW (F,G).

If HX is conservative, then (DF,HXDG) + (HXDF,DG) = ΓX(DF,DG), i.e.

ΓW (F,G) = ΓX(DF,DG), F,G ∈ S.
2

We note that dΓ(HX) is a derivation (i.e. ΓW = 0) if HX is antisymmetric.

The relationship between divWµ and the stochastic integral can be described as fol-

lows. The space L2
ad(Ω×X,TX) of adapted vectors is defined as in the Poisson case,

by completion of simple adapted vectors u : X × Ω −→ TX in V of the form

u =
i=n∑
i=1

Fi∇Xhi, F1, . . . , Fn ∈ S, h1, . . . , hn ∈ C∞c (X),

22



with ∀x ∈ X, ω ∈ Ω, and i, j ∈ {1, . . . , n}:

< ∇Xhi(x),∇W
x Fj(ω) >TxX= 0 or < ∇Xhj(x),∇W

x Fi(ω) >TxX= 0.

Note that in the Gaussian case, the ∇W -adapted vectors are D-adapted since ∇W =

∇XD. As in the Poisson case we have the following result.

Proposition 10 (i) We have for v ∈ V:

divWµ v =
∫
X

divXσ vdW −
∫
X

tracex∇W
x v(x)σ(dx). (31)

(ii) For v ∈ L2
ad(Ω×X,TX) we have the isometry

Eµ

[(
δ ◦ divXσ (v)

)2
]

= Eµ
[
‖divXσ v‖2

L2(X,σ)

]
, v ∈ L2

ad(Υ
X ×X,TX),

and the relation

divWµ v = δ ◦ divXσ v =
∫
X

(divXσ v)dW. (32)

Proof. This proof is close to that of Prop. 9.

(i) We choose v of the form v = G∇Xf with f ∈ C∞c (X) and G ∈ S. We have

Eµ
[
G < ∇WF,∇Xf >L2

σ(TX)

]
= Eµ

[
< ∇W (FG),∇Xf >L2

σ(TX) −F < ∇WG,∇Xf >L2
σ(TX)

]
,

i.e.

Eµ
[
FdivWµ v

]
= Eµ

[
FGdivWµ ∇Xf

]
− Eµ

[
F < ∇WG,∇Xf >L2

σ(TX)

]
, F ∈ S,

hence (25). By duality we have

divWµ
(
∇Xf

)
= δ(divXσ ∇Xf) = I1(divXσ ∇Xf) =

∫
X

divXσ ∇XfdW,

hence (31).

(ii) If v ∈ V is adapted then tracex∇W
x vx = 0, hence (32) holds for simple adapted

processes. Its extension by density to L2
ad(Ω×X,TX) follows as in the Poisson case

from the Skorohod isometry (19) which is well-known to hold also on the Wiener

space.
2

If X = IR+ this corresponds to the relation

divWµ (v) = δ(divXσ v) = −δ(∇Xv) = −
∫

IR+

∇Xv(t)dWt,

where (Wt)t∈IR+ denotes the standard Wiener process on IR+ and ∇Xv ∈ L2(Ω, µ)⊗
L2(IR+, σ) is adapted.
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