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1 Introduction

Covariance identities for functionals on the Wiener and Poisson spaces have been

obtained in Houdré and Pérez-Abreu (1995). In this note we provide a simplified

proof of these identities in the general context of normal martingales, and we make

precise some statements in Houdré and Pérez-Abreu (1995) on covariance identities

with the gradient of Carlen and Pardoux (1990) on Poisson space. The identity proved

in Houdré and Pérez-Abreu (1995) is

Cov(F,G) =
k=n∑
k=1

(−1)k+1

k!
E

[∫
Rk
+

(Dt1 · · ·DtkF )(Dt1 · · ·DtkG)dt1 · · · dtk

]
(1.1)

+
(−1)n

n!
E

[∫
Rn
+

∫
max(t1,...,tn)

E [Dt1 · · ·DtnDsF | Fs]

× E [Dt1 · · ·DtnDsG | Fs] dst1 · · · dtn] ,

where D is the operator defined by lowering the degree of multiple stochastic integrals

with respect to Brownian motion, or with respect to the standard Poisson process,
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and F,G ∈
⋂k=n+1

k=1 IDk,2, where IDk,2 is the L2 domain of Dk, defined by completion

with respect to the norm

∥F∥2ID(∆n)
= E[F 2] + E

[∫
Rn
+

(Dtn · · ·Dt1F )2dt1 · · · dtn

]
.

Since Dtk · · ·Dt1F is symmetric in (t1, . . . , tk), Relation (1.1) can be rewritten as

Cov(F,G) =
k=n∑
k=1

(−1)k+1E

[∫
∆k

(Dtk · · ·Dt1F )(Dtk · · ·Dt1G)dt1 · · · dtk
]

(1.2)

+(−1)nE

[∫
∆n+1

E
[
Dtn+1 · · ·Dt1F | Ftn+1

]
E
[
Dtn+1 · · ·Dt1G | Ftn+1

]
dt1 · · · dtn+1

]
,

with ∆n = {(t1, . . . , tn) ∈ Rn
+ : 0 ≤ t1 < · · · < tn}, n ≥ 1. The proof of Houdré and

Pérez-Abreu (1995) relies in particular on the commutation relation

Dtδ(u) = ut + δ(Dtu) (1.3)

between D and its adjoint δ. It is claimed in Houdré and Pérez-Abreu (1995), that

(1.1) also holds on Poisson space if one takes for D the gradient operator of Carlen

and Pardoux (1990) defined as

D̂tf(T1, . . . , Tn) = −
k=n∑
k=1

∂kf(T1, . . . , Tn)(1[0,Tk](t)− Tk), (1.4)

where (Tk)k≥1 denote the jump times of a standard Poisson process. However this is

incorrect and the proof given there is only formal since

a) the operator D̂ can not be iterated due to the non-differentiability in Tk of the

indicator function 1[0,Tk](t), hence (1.1) can not hold for D̂,

b) the commutation relation (1.3) is not satisfied by D̂ (see Relation (4.4) below),

c) the adjoint of D̂ coincides with the compensated Poisson integral only on processes

of zero integral on [0, 1] (see Th. 3.1 in Carlen and Pardoux (1990)), and as a

consequence the Clark formula does not hold for D̂.
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We show that (1.3) is in fact not needed in order to prove the covariance identity

(1.1), in particular such an identity still holds for a modification D̃ of D̂ (see (4.1

below) which does not satisfy (1.3). For this we develop an abstract derivation of the

covariance identity (1.2) with a shortened proof (see Th. 1 below) requiring essentially

the Clark formula as assumption on the operator D.

We proceed as follows: first in Sect. 2 we provide a simplified proof of covariance

identities that relies on minimal hypothesis, in particular it does not require (1.3) and

it applies to any normal martingale with the chaos representation property. Apart

from the the Wiener and Poisson processes, examples of such martingales are given

by the family of Azéma martingales. Second, in Sect. 3 we show that this extended

covariance identity also applies to a modification D̃ of the gradient of Carlen and

Pardoux (1990), which is by nature completely different from D.

2 Covariance identities and inequalities

Let (Mt)t∈R+ be a martingale on (Ω,F , P ) such that

(i) d⟨Mt,Mt⟩ = dt, i.e. (Mt)t∈R+ is a normal martingale.

Let (Ft)t∈R+ denote the filtration generated by (Mt)t∈R+ . Let S be a dense subspace

of L2(Ω,F , dP ), and let

U =

{
i=n∑
i=1

1[ai,bi]Fi : Fi ∈ S, 0 ≤ ai < bi, i = 1, . . . , n, n ≥ 1

}
.

Let D : L2(Ω, dP ) → L2(Ω× R+, dP × dt) and δ : L2(Ω× R+, dP × dt) → L2(Ω, dP )

be linear operators defined respectively on S and U with the duality relation

E[⟨DF, u⟩L2(R+)] = E[Fδ(u)], F ∈ S, u ∈ U , (2.1)

which implies the closability of D and δ. Let ID([a,∞[), a > 0, denote the completion

of S under the norm

∥F∥2ID([a,∞[)
= E[F 2] +

∫ ∞

a

(DtF )2dt,

i.e. (DtF )t∈[a,∞[ is defined in L2(Ω× [a,∞[) for F ∈ ID([a,∞[). We assume that
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(ii) D satisfies a Clark representation formula, i.e. every F ∈ ID([0,∞[) has a

representation

F = E[F ] +

∫ ∞

0

E[DtF | Ft]dMt. (2.2)

We further assume that

(iii) For all F ∈ S and a.e. (t1, . . . , tn) ∈ ∆n, Dtn · · ·Dt1F ∈ ID([tn,∞[).

Let ID(∆n) be the completion of S under the norm

∥F∥2ID(∆n)
= E[F 2] + E

[∫
∆n

(Dtn · · ·Dt1F )2dt1 · · · dtn
]
.

Examples of operators satisfying (ii) and (iii) will be given in Sect. 3 by annihilation

operators on multiple stochastic integrals with respect to normal martingales, and

also in Sect. 4 by the operator D̃ which is of a completely different nature. Condition

(ii) implies

(iv) δ coincides with the Itô integral with respect to (Mt)t∈R+ on the adapted pro-

cesses in U , since

E[⟨DF, u⟩L2(R+)] = E

[∫ ∞

0

E[DtF | Ft]u(t)dt

]
= E

[∫ ∞

0

E[DtF | Ft]dMt

∫ ∞

0

u(t)dMt

]
= E

[
(F − E[F ])

∫ ∞

0

u(t)dMt

]
= E

[
F

∫ ∞

0

u(t)dMt

]
= E[Fδ(u)].

And (iv) reciprocally implies (ii) if {δ(u) : u ∈ U , u adapted} is dense in L2(Ω,F , dP ):

E[(F − E[F ])δ(u)] = E[Fδ(u)] = E[⟨DF, u⟩L2(R+)]

= E

[∫ ∞

0

E[DtF | Ft]dMt

∫ ∞

0

u(t)dMt

]
= E

[∫ ∞

0

E[DtF | Ft]dMtδ(u)

]
.

A representation result for F ∈ ID([a,∞[) can be stated as a consequence of the Clark

formula:
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Lemma 1 Let a ∈ R+ and F ∈ ID([a,∞[). We have

F = E[F | Fa] +

∫ ∞

a

E[DtF | Ft]dMt. (2.3)

Proof. Relation (2.3) holds if F ∈ S, because

F −
∫ ∞

a

E[DtF | Ft]dMt = E[F ] +

∫ a

0

E[DtF | Ft]dMt

is Fa-measurable, and ∫ ∞

a

E[DtF | Ft]dMt

is orthogonal to L2(Ω,Fa, dP ) in L2(Ω,F , dP ). A density argument concludes the

proof. □

The following Lemma is an immediate consequence of (2.3) with the fact that (Mt)t∈R+

is a normal martingale.

Lemma 2 We have for F ∈ ID([a,∞[):

E[(E[F | Fa])
2] = E[F 2]− E

[∫ ∞

a

(E[DbF | Fb])
2db

]
.

Next we prove the extension of the covariance identity of Houdré and Pérez-Abreu

(1995), with a shortened proof.

Theorem 1 Let n ∈ N and F,G ∈
⋂k=n+1

k=1 ID(∆k). We have

Cov(F,G) =
k=n∑
k=1

(−1)k+1E

[∫
∆k

(Dtk · · ·Dt1F )(Dtk · · ·Dt1G)dt1 · · · dtk
]

(2.4)

+(−1)nE

[∫
∆n+1

E
[
Dtn+1 · · ·Dt1F | Ftn+1

]
E
[
Dtn+1 · · ·Dt1G | Ftn+1

]
dt1 · · · dtn+1

]
.

Proof. By bilinearity we may take F = G. For n = 0, (2.4) is a consequence of

the Clark formula. Let n ≥ 1. Applying Lemma 2 to Dtn · · ·Dt1F with a = tn and

db = dtn+1, and integrating on (t1, · · · , tn) ∈ ∆n, we obtain

E

[∫
∆n

(E[Dtn · · ·Dt1F | Ftn ])
2 dt1 · · · dtn

]
= E

[∫
∆n

(Dtn · · ·Dt1F )2dt1 · · · dtn
]

−E

[∫
∆n+1

(
E
[
Dtn+1 · · ·Dt1F | Ftn+1

])2
dt1 · · · dtn+1

]
,

which concludes the proof by induction. □
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We note the inclusion IDk,2 ⊂ ID(∆k), k ≥ 1, which shows that even on Wiener space,

Th. 1 extends (1.1). This fact will also allow us to apply Th. 1 to the gradient of

Carlen and Pardoux (1990), see Sect. 3. The variance inequality

k=2n∑
k=1

(−1)k+1∥DkF∥2L2(∆k)
≤ Var(F ) ≤

k=2n−1∑
k=1

(−1)k+1∥DkF∥2L2(∆k)
,

F ∈
⋂k=2n

k=1 ID(∆k), is a consequence of Th. 1, and extends (2.15) in Houdré and

Pérez-Abreu (1995).

3 Normal martingales

In this section we show that the hypothesis (ii) and (iii) are satisfied by the gradient

operator D defined by lowering the degree of multiple stochastic integrals with respect

a family of martingales that includes Brownian motion and the compensated Poisson

process as particular cases. Let (Mt)t∈R+ be a normal martingale, i.e. (Mt)t∈R+

satisfies (i). The multiple stochastic integral In(fn) of the symmetric square-integrable

function fn ∈ L2(R+)
◦n is defined as

In(fn) = n!

∫
∆n

fn(t1, . . . , tn)dMt1 · · · dMtn , n ≥ 1,

with

E[In(fn)Im(gm)] = n!1{n=m}⟨fn, gm⟩L2(R+)◦n , (3.1)

and

E[In(fn) | Ft] = In(fn1
◦n
[0,t]), fn ∈ L2(R+)

◦n, n ≥ 1, t ∈ R+.

Note that since (Mt)t∈R+ is normal it is equivalent to define In(fn) in L2(Ω,F , dP )

by integration on ∆n or on {(t1, . . . , tn) : 0 ≤ t1 ≤ · · · ≤ tn}. We assume that

(Mt)t∈R+ has the chaos representation property, i.e. every F ∈ L2(Ω,F , dP ) has a

decomposition F =
∑∞

n=0 In(fn). Let

S =

{
k=n∑
k=0

Ik(fk) : fi ∈ Cc(Rk
+) ∩ L2(R+)

◦k, i = 0, . . . , n n ≥ 0

}
.

Let D : L2(Ω, dP ) −→ L2(Ω× R+, dP × dt) be defined on S as

DtIn(fn) = nIn−1(fn(∗, t)), t ∈ R+,
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and let δ be defined on U by

δ(In(fn ⊗ 1[a,b])) = In+1(fn ◦ 1[a,b]), 0 ≤ a < b,

where fn ◦ 1[a,b] denotes the symmetrization of fn ⊗ 1[a,b]. It is well-known that from

(3.1) the duality relation (2.1) is satisfied by D and δ. The Clark formula (ii) is a

consequence of the chaos representation property:

F = E[F ] +
∞∑
n=1

n!

∫
∆n

fn(t1, . . . , tn)dMt1 · · · dMtn

= E[F ] +
∞∑
n=1

n

∫ ∞

0

In−1(fn(∗, tn)1{∗≤tn})dMtn = E[F ] +

∫ ∞

0

E[DtF | Ft]dMt.

Corollary 1 Let F,G ∈
⋂k=2n

k=1 ID(∆k) have chaos expansions F =
∑∞

n=0 In(fn) and

G =
∑∞

n=0 In(gn) then (2.4) can be written as

Cov(F,G) =
k=n∑
k=1

(−1)k+1

∞∑
l=k

(l − k)!

k!
⟨fl, gl⟩L2(Rl

+)

+(−1)n
∞∑

l=n+1

(l − n− 1)!

(n+ 1)!l
⟨fl, gl⟩L2(Rl

+).

Proof. We have

E[(Dtk · · ·Dt1F )(Dtk · · ·Dt1G)] =
∞∑
l=k

(l − k)!⟨fl(t1, . . . , tk, ∗), gl(t1, . . . , tk, ∗)⟩L2(Rl−k
+ ),

and

E
[
E
[
Dtn+1 · · ·Dt1F | Ftn+1

]
E
[
Dtn+1 · · ·Dt1G | Ftn+1

]]
=

∞∑
l=n+1

(l − n− 1)!⟨fl(t1, . . . , tn+1, ∗), gl(t1, . . . , tn+1, ∗)⟩L2([0,tn+1]l−n−1).

□

This corollary has a particular interpretation when (Mt)t∈R+ is Brownian motion,

resp. the Poisson process, and multiple stochastic integrals are written as generalized

Hermite, resp. Charlier, polynomials.

We close this section with other examples of normal martingales with the chaos
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representation property. Let (ϕt)t∈R+ be a real-valued deterministic function with

it = 1{ϕt=0} and λt = (1 − it)1/ϕ
2
t , t ∈ R+. Let (Bt)t∈R+ be a standard Brownian

motion, and let (Nt)t∈R+ be a standard Poisson process independent of (Bt)t∈R+ , with

intensity νt =
∫ t

0
λsds, t ∈ R+. If (Mt)t∈R+ is written as

dMt = itdBt + ϕt(dNt − λtdt), t ∈ R+, M0 = 0, (3.2)

then it satisfies the hypothesis of this section. In this case itDt is still a derivation

operator, we have the product rule

Dt(FG) = FDtG+GDtF + ϕtDtFDtG, t ∈ R+, (3.3)

cf. Prop. 1.3 of Privault (1999a), and Dt can be written as

Dt =
jt
ϕt

∆ϕ
t + itDt,

where ∆ϕ
t is the finite difference operator defined on random functionals by addition

at time t of a jump of height ϕt to (Mt)t∈R+ This provides an extension of Cor. 4.3

in Houdré and Pérez-Abreu (1995). Other examples of normal martingales with the

chaos representation property are given by the family of Azéma martingales.

4 Covariance identities for the local gradient on

Poisson space

In this section we consider a modification of the gradient introduced by Carlen and

Pardoux (1990) (see also Elliott and Tsoi (1993)), and show that it satisfies the

hypothesis (ii) and (iii). Let (Tk)k≥1 denote the jump times of the standard Poisson

process (N(t))t∈R+ , with T0 = 0. Let S denote the set of smooth random functionals

F of the form

F = f(T1, . . . , Tn), f ∈ C1
c (Rn

+), n ≥ 1.

Let D̃ denote the closable gradient defined as

D̃tF = −
k=n∑
k=1

1[0,Tk](t)∂kf(T1, . . . , Tn), t ∈ R+, F ∈ S. (4.1)

Remarks:
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a) (4.1) is the definition of Bouleau and Hirsch (1991), p. 236, and Privault (1994).

It differs from the definition (1.4) of Carlen and Pardoux (1990) used in Houdré

and Pérez-Abreu (1995).

b) The adjoint δ̃ of D̃, defined by the duality

E[F δ̃(u)] = E[⟨D̃F, u⟩L2(R+)], F ∈ Dom(D̃), u ∈ Dom(δ̃),

also coincides with the stochastic integral with respect to the compensated Pois-

son process (Ñ(t))t∈R+ on the square-integrable adapted processes, (see Prop. 9

of Privault (1994)) whereas for the adjoint of D̂ defined in (1.4) this property

holds only on square-integrable adapted processes (ut)t∈[0,1] with P -a.s. zero

mean on [0, 1], see Th. 3.1 in Carlen and Pardoux (1990).

c) As a consequence of (b), the Clark formula is not satisfied by the gradient (1.4).

The Clark formula (ii) is satisfied by D̃, see Prop. 5.3.3 in Bouleau and Hirsch (1991)

and Th. 1 in Privault (1994). Note that D̃ can not be iterated, hence the covariance

identity can not hold for D̃ as stated in (1.1). However we have for all Fa-measurable

F ∈ S:
D̃tF = 0, t ≥ a,

and since D̃ has the derivation property this shows that FG ∈ ID([a,∞[) for all

F ∈ L2(Ω,Fa, dP ), G ∈ S, with

D̃t(FG) = FD̃tG, t ≥ a. (4.2)

Although D̃tn · · · D̃t1F is in general not defined in L2(Ω, dP ) even for F ∈ S, we have
1[0,Tk](tn) ∈ L2(Ω,Ftn , dP ) for all tn ∈ R+ and k ≥ 1. Hence Relation (4.2) shows by

induction that if (t1, . . . , tn) ∈ ∆n then D̃tn · · · D̃t1F ∈ ID([tn,∞[), with

D̃tn · · · D̃t1F = (−1)n
∑

1≤k1,...,kn≤m

1[0,Tk1
](t1) · · · 1[0,Tkn ]

(tn)∂k1 · · · ∂knf(T1, . . . , Tm),

F = f(T1, . . . , Tm), hence S ⊂ ID(∆n), and hypothesis (iii) is satisfied. The following

is then an application of Th. 1.
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Corollary 2 Let n ∈ N and F,G ∈
⋂k=n+1

k=1 ID(∆k). We have

Cov(F,G) =
k=n∑
k=1

(−1)k+1E

[∫
∆k

(D̃tk · · · D̃t1F )(D̃tk · · · D̃t1G)dt1 · · · dtk
]

(4.3)

+(−1)nE

[∫
∆n+1

E
[
D̃tn+1 · · · D̃t1F | Ftn+1

]
E
[
D̃tn+1 · · · D̃t1G | Ftn+1

]
dt1 · · · dtn+1

]
.

As a corollary we obtain a covariance identity for functionals of the jump times (Tk)k≥1

of the standard Poisson process which are gamma distributed random variables. This

corrects (4.20) in Houdré and Pérez-Abreu (1995).

Corollary 3 Let f, g ∈ C2
c (R2

+). We have

Cov(f(T1, . . . , Tm), g(T1, . . . , Tm)) =
m∑

i,j=1

E[Ti ∧ Tj∂if(T1, . . . , Tm)∂jg(T1, . . . , Tm)]

−
m∑

i,j,k,l=1

E

[∫ Ti∧Tk

0

Tj ∧ Tl ∧ tE [∂i∂jf(T1, . . . , Tm) | Ft]E [∂k∂lg(T1, . . . , Tm) | Ft] dt

]
.

Proof. We have∫ ∞

0

D̃tf(T1, . . . , Tm)D̃tg(T1, . . . , Tm)dt =
k=m∑
i,j=1

Ti ∧ Tj∂if(T1, . . . , Tm)∂jg(T1, . . . , Tm),

and∫ ∞

0

∫ t

0

E
[
D̃tD̃sf(T1, . . . , Tm) | Ft

]
E
[
D̃tD̃sf(T1, . . . , Tm) | Ft

]
dsdt

=
m∑

i,j,k,l=1

∫ ∞

0

∫ t

0

E
[
1[0,Ti](t)1[0,Tj ](s)∂i∂jf(T1, . . . , Tm) | Ft

]
×E

[
1[0,Tk](t)1[0,Tl](s)∂k∂lg(T1, . . . , Tm) | Ft

]
dsdt

=
m∑

i,j,k,l=1

∫ ∞

0

∫ t

0

1[0,Ti](t)1[0,Tj ](s)1[0,Tk](t)1[0,Tl](s)E [∂i∂jf(T1, . . . , Tm) | Ft]

×E [∂k∂lg(T1, . . . , Tm) | Ft] dsdt

=
m∑

i,j,k,l=1

∫ ∞

0

Tj ∧ Tl ∧ t1[0,Ti∧Tk](t)E [∂i∂jf(T1, . . . , Tm) | Ft]

×E [∂k∂lg(T1, . . . , Tm) | Ft] dt.

□
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In particular we have

Cov(Tm, f(T1, . . . , Tm)) =
i=m∑
i=1

E[Ti∂if(T1, . . . , Tm)],

which compares to (4.21) in Houdré and Pérez-Abreu (1995), and

Cov(Tm, f(Tm)) = E[Tmf
′(Tm)].

This last identity is easily checked by integration by parts on R+. Let pk(s) =

1{k≥0}e
−ssk/k!, s ≥ 0, denote the density function of Tk+1 on R+, k ≥ 0, with

∂spk(s) = pk−1(s)− pk(s), s ∈ R+, k ≥ 1.

Cov(Tm, f(Tm)) = E[Tmf(Tm)]−mE[f(Tm)]

=

∫ ∞

0

xf(x)pm−1(x)dx−m

∫ ∞

0

f(x)pm−1(x)dx

= m

∫ ∞

0

f(x)(pm(x)− pm−1(x))dx = −m

∫ ∞

0

f(x)∂xpm(x)dx

= m

∫ ∞

0

f ′(x)pm(x)dx =

∫ ∞

0

xf ′(x)pm−1(x)dx = E[Tmf
′(Tm)].

In the general setting of normal martingales with the chaos representation property,

the function fn in the development of F =
∑∞

n=0 In(fn) is given by

fn(t1, . . . , tn) =
1

n!
E[Dtn · · ·Dt1F ], a.e. t1, . . . , tn,

and this is true for the compensated Poisson process in particular. However on Poisson

space, D̃tn · · · D̃t1 , (t1, . . . , tn) ∈ ∆n, can not be used as Dtn · · ·Dt1 to give the chaos

decomposition of a random variable, for example we have

D̃tn · · · D̃t1f(Tk) = (−1)n1[0,Tk](tn)f
(n)(Tk), (t1, . . . , tn) ∈ ∆n,

and

E[D̃tn · · · D̃t1f(Tk)] = (−1)nE[1[0,Tk](tn)f
(n)(Tk)]

= (−1)n
∫ ∞

tn

f (n)(t)pk−1(t)dt, (t1, . . . , tn) ∈ ∆n,

which differs from

E[Dtn · · ·Dt1f(Tk)] = −
∫ ∞

tn

f ′(t)P
(n)
k (t)dt,
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computed in Th. 1 of Privault (1999b), where Pk(t) =
∫ t

0
pk−1(s)ds is the distribution

function of Tk. In particular, for n ≥ 2 and (t1, . . . , tn) ∈ ∆n,

E[D̃tn · · · D̃t1F | Ftn ] ̸= E[Dtn · · ·Dt1F | Ftn ],

although we have for n = 1:

E[D̃tF | Ft] = E[DtF | Ft], t ∈ R+, F ∈ S,

cf. Prop. 20 of Privault (1994), hence (2.4) is truly different from (4.3), except if

n = 0: in this case both identities coincide on Dom(D) ∩Dom(D̃).

Finally we note that the correct form of the commutation relation between D̃ and δ̃

is

D̃tδ̃(u) = −δ̃(1[t,∞[(·)u′(·)) + u(t), u ∈ C∞
c (R+),

which can be proved as follows:

D̃tδ̃(u) = D̃t

∫ ∞

0

u(s)(dNs − ds) =
∞∑
k=1

D̃tu(Tk)

= −
∞∑
k=1

1[0,Tk](t)u
′(Tk) = −

∫ ∞

0

1[0,s](t)u
′(s)dNs

= −
∫ ∞

0

1[0,s](t)u
′(s)(dNs − ds)−

∫ ∞

0

1[0,s](t)u
′(s)ds

= −δ̃(1[t,∞[(·)u′(·)) + u(t). (4.4)
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