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Abstract—The fifth-generation (5G) wireless networks are
expected to provision value-added services with ubiquitous cover-
age, which makes data security unprecedentedly critical. In this
context, physical layer security has emerged as a promising solu-
tion to safeguard data transmission by exploiting characteristics
of the wireless medium. Despite the recent technological advance
in physical layer security and wireless transmission, secrecy
outages (i.e., data breaches) and service outages (i.e., connection
failures) will inevitably happen and incur financial losses. This
economical consequence is a fact that is mostly overlooked by
the existing literature. To provide financial protection against
secrecy outage and service outage, we introduce a cyber insurance
framework for wireless users in cellular networks, where each
user pays a premium to an insurer for a future financial
compensation if an outage occurs to him/her. In particular, we
derive the network risks of the cellular users in terms of secrecy
outage probability and service outage probability as well as the
financial risk of the cyber insurer in terms of the ruin probability
which indicates the chance that the insurer experiences a deficit
in affording the losses of outage users. Through numerical
evaluation, we demonstrate the impact of network performance
on the financial risk of the insurer. The numerical results also
show that the ruin probability of the insurer can be effectively
reduced by equipping a larger number of antennas at base
stations or increasing network frequency reuse.

Index terms- Physical layer security, cyber insurance, col-
lective risk theory, ruin probability, stochastic geometry.

I. INTRODUCTION

Provisioning secured wireless data services with ubiquitous
coverage is a pivotal task for the fifth-generation (5G) wireless
networks due to the dramatic expansion in wireless access
through mobile devices over the Internet. Especially, mobile
communication systems are carrying increasingly important
confidential information, e.g., for financial transactions, health-
care monitoring, and control, through value-added wireless
services such as e-commerce, e-health care, and cloud-based
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applications. Loss, damage, or delay of such information can
cause serious consequences to the users. One evidence is in
a recent digital economy survey by Marsh & McLennan [2],
which estimated that 445 billion dollars of global financial
loss were incurred by cyber risks in 2016. Moreover, in the
form of cyber crime, cyber risk damage cost will rise to 6
billion dollars annually by 2021 in which the expenditure on
cyber security will become 1 trillion dollars over the years
from 2017 to 2021 [3].

Due to the broadcast nature of the wireless medium, a
wireless channel is prone to extra cyber risks in wireless
physical layer, e.g., caused by eavesdropping and/or jamming,
making it challenging to secure data transmission. Tradi-
tionally, wireless communication security has been mainly
entrusted to encryption implemented in the network layer
or application layer, e.g., cryptographic protocols, to secure
transmission [4]. However, an encryption process involves a
high computational complexity of key distribution and requires
a dedicated channel for private key exchanges, which largely
hinders its applicabilities for mobile Internet. Alternatively,
physical layer security [4]–[6] has emerged and caught sig-
nificant research attention. It uses channel codes, e.g., Wyner
codes [7], to provide direct secure communications. Thus, by
exploiting characteristics of the wireless medium (e.g., fading,
interference, and noise), physical layer security techniques
avoid the use of computation resources (e.g., signal processing
on cryptographic keys) and significantly reduce signaling
overhead. Therefore, physical layer security can serve as an
alternative or complement to the encryption to strengthen
wireless security.

Recently, physical layer security in massive multiple-input
multiple-output (MIMO) cellular networks has caught in-
creasing attention. As a fundamental enabling technology for
5G communication systems, massive MIMO technology that
employs a large-scale antenna array can produce sharp beams
in narrow directions, and thus, generate significantly lower
information leakage to facilitate physical layer security against
eavesdropping [8], [9]. Existing literature has mainly focused
on the precoder design for multiuser downlink transmission
and artificial-noise (AN)-aided jamming. Secure transmission
in a downlink massive MIMO system in the presence of
a single eavesdropper with multiple antennas is investigated
in [10]–[12]. In [10], a matched-filter precoding scheme is
designed, and the system secrecy rate and secrecy outage
probability are analyzed. As an extension, the work in [11] first
examines different combinations of linear data and artificial
noise precoders, and then designs linear precoders based on
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matrix polynomials to strike a balance between complexity and
performance. In [12], downlink precoder design is investigated
in the case with a limited number of RF chains to reduce
hardware cost. Lower bounds on the achievable secrecy rate
are derived for both analog and hybrid digital/analog pre-
coding. Furthermore, the work in [13] extends the AN-aided
jamming design to the scenario with multiple eavesdroppers.
Directional jamming is introduced, which injects noise only
at selected beams to lower secrecy outage probability in an
energy-efficient manner.

Nevertheless, as pointed out in [14], the precoder design
of artificial noise usually involves high complexity in large
matrix inversion and null-space computation, especially for
massive MIMO systems. To address this issue, the work in [14]
introduces the use of low transmit power as a way to secure the
massive MIMO channels instead of artificial noise injection.
It is proven that the power scaling can always guarantee
secure transmission if the ratio of the antenna number of
the eavesdropper to that of the base station (BS) is below
a threshold. Different from aforementioned works on massive
MIMO that all consider passive eavesdroppers, the work in
[15] investigates the case with an active eavesdropper. The
active eavesdropper can perform pilot contamination attacks
at the BS by impairing the training signals. Optimal transmit
power of the BS allocated for data and artificial noise is
derived, as well as the minimum transmit power to guarantee
data security. In [16], an overview of detection techniques for
active eavesdroppers is presented, and a possible solution to
cope with them is discussed.

A. Motivations and Contributions
Although physical layer security techniques manage to

improve the robustness and resilience of wireless services,
existing cyber risks in cellular networks cannot be completely
prevented by developing and deploying system-based security
solutions alone. As a result, secrecy outages and service
outages (i.e., due to connection failures), which are two typical
cyber risks in wireless communication systems, inevitably
happen and incur financial losses to the users.

Cyber insurance is a risk management mechanism that
transfers the cyber risks undertaken by the insureds to a third-
party insurer [17]. It has a potential to eliminate the financial
loss of network users incurred from cyber risks. This inspires
us to introduce cyber insurance as a solution to protect network
users’ interest from secrecy outage and service outage as a
complement to technological solutions and system approaches
(such as physical layer security techniques).

Cyber insurance emerges as one of the most quickly expand-
ing markets of insurance business as indicated by the World
Economic Forum [18]. A recent cyber security survey [19]
reports that 46% of all UK businesses identified at least one cy-
ber breach or attack in 2016. Moreover, 74% of UK businesses
deem cyber security as a high priority for their operation.
However, it is challenging to apply cyber insurance to enhance
wireless security, due to the difficulty in characterizing and
assessing wireless risks [20]. This motivates us to incorporate
risk modeling and quantification of cellular networks into a
cyber insurance framework.

In this paper, we introduce the concept of cyber insurance
to protect wireless users against cyber losses. Our objective is
to formulate a cyber insurance framework for risk evaluation
and management for future generation wireless systems. In this
framework, mobile users can buy cyber insurance from a third-
party insurer by paying a certain amount of premium. The
insurer then affords the risk of the users and pays indemnities
to the users when losses occur to them because of cyber risks.
In particular, considering a massive MIMO-enabled cellular
network in the presence of eavesdroppers, the insured users’
risks are indicated as service unavailability (represented by
the service outage probability) and data breach (represented
by the secrecy outage probability). Meanwhile, the insurer’s
risk is measured by the ruin probability [21], i.e., the chance
that the insurer is unable to cover all the indemnities. The
goal of the cyber insurance framework is to evaluate the
risks of both the insured users and insurer. To this end, we
focus on investigating the network performance in a large-
scale cellular network based on a stochastic geometry analysis.
Based on a spatial point process modeling, we characterize
the long-term performance of a user in presence of the
cyber risks by exploiting statistics of random spatial network
distribution and broadcast channels. For cyber insurance, as
the losses occur randomly to a population of insured users,
we model the stochastic loss claim process of the users based
on Cramer-Lundberg model (i.e., compound Poisson model)
from collective risk theory [22]. Utilizing the analytical results
of network performance, we introduce an analytical approach
to evaluate the ruin probability of the insurer.

Important findings from the proposed cyber insurance
framework include the following. 1) Larger repulsion in the
deployment of BSs contributes to the decrease of the ruin
probability while larger repulsion in the deployment of eaves-
droppers increases the ruin probability. 2) To manage the ruin
probability below a certain level, the indemnities induced by
service outages and secrecy outages can be balanced by setting
a proper transmission rate of codewords and/or the number of
antennas. 3) A high initial reserve is more beneficial to reduce
the ruin probability in the case when the indemnity for an
outage is relatively high.

In summary, the proposed cyber insurance framework will
be useful for both insured users and the insurer. For example,
the insured users can be aware of their cyber risk level by
evaluating service outage and secrecy outage. The evaluation
results would be helpful for the users to make decisions
whether or not to purchase cyber insurance. The insurer can
assess the capital risks and optimize their portfolio. It is
worth noting that this paper is the first work that considers
physical layer security from the perspective of both network
performance and corresponding financial effects. The proposed
unified framework will pave the way to more converged
research in wireless security and cyber insurance areas, both
of which become more important to sustain reliable and secure
next-generation wireless networks.

Notations: In the following, we use E[·] to denote ex-
pectation over all random variables in [·], EX [·] to denote
the expectation over random variable X , and P[Z] to denote
the probability that an event Z occurs. We denote G(θ, δ)
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as the gamma distribution with shape parameter θ and scale
parameter δ and E(a) as the exponential distribution with rate
parameter a. 1{A} denotes an indicator function that takes the
value of 1 if the event A happens, and takes the value of 0
otherwise. R, R+, N and C denote the sets of real numbers,
positive real numbers, natural numbers and complex numbers.
Besides, xa denotes the location of a, and ‖xa − xb‖ is used
to represent the Euclidean norm between coordinates xa and
xb.

II. RELATED WORK

Existing literature has investigated insurance for cyber net-
works, yet almost all of them are for the wired Internet. Cyber
insurance differs from traditional insurance in two unique
aspects [17]: 1) cyber insurance needs to cover risks caused
by smart and intentional attacks instead of natural failures; 2)
cyber risks do not have geographical limitations, as simultane-
ous cyber risks can occur domain-wide, system/platform-wide,
or even Internet-wide by virtue of their identical or similar
vulnerabilities. Due to these fundamental differences, studies
have been conducted to analyze the impact of cyber risks
on cyber insurance. In [23], it is revealed that underwriting
users with interdependent cyber risks can not only result
in improved profit for an insurer but also motivate more
efforts by the insured users to improve their security. The
reason is that cyber insurance forces the users’ joint efforts
to reduce correlated risks in exchange for reduced premium
payment. In [24], an insurer’s preference over risk dependency
is studied, by investigating an insurance market consisting of a
primary client and a third-party client. The risks of the former
are correlated with those of the latter while the latter has
independent risks. It is demonstrated that it is more beneficial
for the insurer to underwrite both clients, as this reduces the
collective risks.

Another mainstream of studies is to explore the benefits
of cyber insurance. In [25], an economic model is developed
to analyze the benefit of cyber insurance to both insurer
and insured users of the Internet. Considering epidemic risks
including worms, viruses, and botnet-driven attacks, the model
shows that cyber insurance can effectively motivate Internet
users to invest in security protection. The work in [26] studies
whether or not cyber insurance can improve network security.
The analysis indicates that cyber insurance can result in im-
proved network security only when the insurer adopts premium
discrimination amongst the insureds. The work in [27] further
investigates the effect of moral hazard, which occurs when
insureds reduce security protection, which the insurer is un-
aware of. It is shown that in a market with moral hazard, cyber
insurance fails to motivate the insureds to improve security
protection. Moreover, the work in [28] provides evidence
that cyber insurance can also serve as an incentive for a
monopolistic insurer to invest in security, helping the insured
users to increase the protection level.

However, to the best of our knowledge, a cyber insurance
model for wireless services has not be discussed and intro-
duced before. Moreover, performance modeling to understand
the effect of network vulnerability on the insurer’s capital risk

is missing from the literature. Therefore, they are the focus of
this paper.

III. NETWORK MODEL AND CYBER INSURANCE
FRAMEWORK

In this section, we first introduce the considered system
model of a massive MIMO-enabled cellular network in the
presence of eavesdroppers. Then, we present the cyber insur-
ance framework as a solution to transfer the cyber risks of the
wireless users.

A. Massive MIMO-enabled Cellular Network Model

As shown in Fig. 1, we consider a massive MIMO-enabled
cellular network in which all the BSs provision downlink
wireless service for users. Each BS is equipped with a
large-scale antenna array of L antennas while each user
adopts a single antenna. Meanwhile, there exist randomly
distributed single-antenna eavesdroppers intending to wiretap
the transmitted data from the BSs. The spatial locations of
the BSs and eavesdroppers are assumed to follow independent
homogeneous α-Ginibre point processes (GPPs) [29], denoted
as ΦB and ΦE , with spatial densities ρB and ρE and repulsion
factors αB and αE , respectively. More details of α-GPP are
presented in Section IV-A.

We consider time division duplex (TDD) at the BSs. The
channel state information (CSI) estimation can be obtained
through uplink training by exploiting the uplink-downlink
channel reciprocity [9]. Each BS is considered to have several
time-frequency resource blocks. Let Ns denote the maximum
number of users that can be supported simultaneously on each
resource block. For TDD, Ns is governed by the length of the
uplink pilot sequence [30]. The BSs adopt linear zero-forcing
beamforming (ZFBF) [31] with equal power per wireless
downlink to serve legitimate users simultaneously over a time-
frequency resource block1. As a result, Gaussian noise or
uncorrelated intra-cell interference does not have effects in the
massive MIMO regime (i.e., L � Ns � 1) [38]. Besides, all
the wireless channels are assumed to follow Rayleigh fading.
For cell association, each user is served by a massive MIMO-
based BS that provides the strongest average received signal
power [39]. For spectrum allocation of each BS, we consider
frequency reuse with a factor ξ ∈ (0, 1]. The factor represents
the percentage of interfering BSs in the network that are
allocated with the same spectrum frequency. We assume the
interfering BSs are an independent thinning process of ΦB .
For the analysis of this paper, we focus on a full-load network
scenario in which a typical user is served on a resource block
with the maximum number of Ns users.

1Apart from our adopted ZFBF, other linear precoding schemes, such
as maximum ratio transmission (MRT) [32], regularized channel inversion
(RCI) [33], and maximum signal-to-leakage-plus-noise ratio (SLNR) [34],
and nonlinear precoding schemes, such as Costa precoding [35], can be
incorporated into our system model straightforwardly to evaluate the net-
work performance. Furthermore, power allocation of MIMO system can
be optimized to reduce service outage probability [36] and secrecy outage
probability [37]. We do not evaluate the impact of different precoding schemes
or power allocation schemes in this paper as they are out of the scope of this
study.
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Fig. 1. A cellular network model for downlink service in the presence of eavesdroppers.

TABLE I
NOTATIONS.

Symbol Definition
ΦB , ΦE The point processes representing the BSs and eavesdroppers, respectively
αB , αE Repulsion factors for the BSs and the eavesdroppers, respectively
PB The transmit power of base stations
ρB , ρE The density of base stations and eavesdroppers, respectively
L The number of antennas at a massive MIMO-enabled BS
σ2 The variance of AWGN
Ns The number of users simultaneously served by one resource block
ηu, ηe Received SIR and received SINR of a typical user and an eavesdropper e ∈ ΦE , respectively
Rt, Re The transmission rate of the codewords and redundant subcodes, respectively

Let PB denote the transmit power of the BS on each
resource block. If a typical user u establishes a downlink
connection with the serving BS, denoted as BS 0, its received
signal power can be calculated as follows [40, eqn. (1)]:

P0,u =
PB
Ns
Gβ

‖x0 − xu‖µ
, (1)

where PB
Ns

represents the allocated transmit power to u,
G = L − Ns + 1 represents the antenna array gain of the
massive MIMO-enabled BS adopting ZFBF2, β is a frequency
dependent constant typically calculated as 3×108

4πν [41] with
carrier frequency ν, x0 and xu denote the location of the
serving BS 0 and user u, respectively, and µ denotes the path-
loss exponent.

Let Φ0
B denote the set of the BSs that use the same

frequency band as that of BS 0. The inter-cell interference
observed by a typical user is given by

Iu = PBβ
∑
b∈Φ0

B

hb,u
Ns‖xb − xu‖µ

, (2)

where hb,u ∼ G(Ns, 1) [36] denotes the channel gain between

2Due to the hardening effect of a massive MIMO channel, the transmitted
signals from the BS only undergo long-term effects. Besides, we note that,
compared to single-antenna transmission, the average received signal power
is scaled by (L−Ns+1)

Ns
in massive MIMO transmission with ZFBF.

BS b ∈ Φ0
B and the typical user, and xb denotes the location

of BS b ∈ Φ0
B .

Therefore, the received signal-to-interference-ratio (SIR) at
the typical user can be calculated as follows

ηu =
P0,u

Iu
=

G‖x0 − xu‖−µ∑
b∈Φ0

B
hb,u‖xb − xu‖−µ

. (3)

The eavesdroppers are considered as non-colluding devices
that overhear and intercept the secrecy information of legit-
imate users individually without active attacks. The received
signal-to-interference-plus-noise ratio (SINR) at an eavesdrop-
per e ∈ ΦE , is given by

ηe =
PBh0,eβ

Ns‖x0 − xe‖µ(Ie + σ2)
, (4)

where h0,e ∼ E(1) [41] is the small-scale fading channel
gain between the serving BS 0 of the typical user and an
eavesdropper e ∈ ΦE , xe denotes the location of e ∈ ΦE , σ2

is the variance of additive white Gaussian noise (AWGN), and
Ie is the accumulated interference at e expressed as follows:

Ie = PBβ
∑
b∈Φ0

B

hb,e
Ns‖xb − xe‖µ

, (5)

where hb,e ∼ G(Ns, 1) [41] is the small-scale fading channel
gain between the interfering BS b ∈ Φ0

B and eavesdropper
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e ∈ ΦE .
We assume that the broadcast channel of each BS is

exposed to all the eavesdroppers. In presence of non-colluding
eavesdroppers, the secrecy outage probability of a legitimate
user is dominated by the most malicious eavesdropper [42],
i.e., the eavesdropper that achieves the highest receive SINR,
expressed as follows:

ηe? = max
e∈ΦE

{
PBh0,eβ

Ns‖x0 − xe‖µ(Ie + σ2)

}
. (6)

Table I summarizes the main notations used in the paper.

B. Cyber Insurance Framework

In this paper, cyber insurance is introduced as a solution to
recover the losses from the cyber risks, i.e., secrecy outage
and service outage, in the considered system. As shown in
Fig. 2, cyber insurance is a mechanism to transfer the risks
associated with an insured, e.g., a network user, to a third-party
insurer. To establish a cyber insurance contract, an insured
pays an upfront premium, in exchange for the insurer’s liability
of an indemnity payment upon a cyber loss occurrence. For the
insured, cyber insurance is to provide financial compensation
in the event of a cyber loss at a cost, i.e., premium, to get
insurance protection. For the insurer, cyber insurance allows
to obtain monetary benefit from the insured in advance, for
affording uncertain future risks of the insured.

We consider a cyber insurance framework with cellular
network users as the insureds and a third-party corporation
other than the service provider as the insurer. Implementing
such a cyber insurance framework usually involves a four-
step procedure as illustrated in Fig. 3. In Step 1 “Risk
Identification”, the user identifies its own risk from historical
information and network statistics via communication with the
service provider, and decides whether to buy a cyber insurance.
Once the user determines to buy it, a request is sent to the
insurer. In Step 2 “Risk Assessment”, upon receiving a request,
the insurer needs to assess the potential risks that the user
faces by evaluating the conditions of the network. Based on
the assessment results, the insurer also needs to evaluate its
own exposure to capital risk for carrying the liabilities to the
user. In Step 3 “Contract Establishment”, after the cyber risks
of the user are well investigated, the insurer formulates an
insurance contract specifying the liabilities and the amount of
indemnity. The contract is validated once the user accepts the
conditions of the contract and pays the premium. In Step 4
“Contract Execution”, both the insurer and user execute the
contract. Once a loss occurs (due to an outage of any type) to
the user, a report is made by the user to claim for indemnity
payment (Step 4.1 “Claim”). If a service outage is claimed,
the insurer confirms with the service provider about the user’s
loss3. If a secrecy outage is claimed, the user needs to provide
to the insurer evidence (e.g., the record of illegal transactions)
to support the claim (Step 4.2 “Proof of loss”). The indemnity

3We assume that the service provider has performance records of its
subscribed users. Different techniques [43]–[45] in the existing literature can
be employed for service outage detection. However, these techniques are out
of the scope of this paper.

is approved to compensate the user once the loss is affirmed
(Step 4.3 “Indemnity”).

IV. NETWORK SERVICE PERFORMANCE ANALYSIS

In this section, we analyze the performance of users in
a large-scale massive MIMO-enabled cellular network. In
particular, we consider service outage probability and secrecy
outage probability as the performance metrics of the user’s
risk.

A. Geometric Modeling

In this paper, the performance analysis of the massive
MIMO-enabled cellular network is based on α-GPP modeling.
α-GPP is a particular type of determinantal point process [46]
that abstracts correlation among the randomly located spatial
points with a coefficient α (α = −1/κ for a positive integer
κ). α indicates the repulsion degree of the spatial points
which is largest when κ = 1. The repulsion monotonically
decreases with the increase of κ. This converts α-GPP into
the widely used Poisson point process (PPP) [47] when κ
goes to infinity. Stochastic geometry analysis based on α-
GPP provides analytical expressions in terms of Fredholm
determinants [48], which is shown to be an efficient way
for numerical evaluation of the relevant quantities. Due to its
versatility and tractability, α-GPP has recently been widely
adopted in modeling cellular networks [49], wireless sensor
networks [50], device-to-device communication systems [51],
and wireless relay networks [52].

Without loss of generality, we restrict the analysis on a
generic point located at x to an observation window Ox,
denoted as a circular Euclidean plane centered at x with a
positive radius R. For any α-GPP Φ, let ρ denote the spatial
density of the points of Φ and K represent an almost surely
finite collection of Φ located inside the observation window
Ox. We introduce here some fundamental properties of α-GPP
to facilitate the performance analysis in this paper.

Proposition 1. [53, Lemma 1] Let r denote the distance
between the origin and its closest point in an α-GPP Φ. The
probability density function (PDF) of r is given by

fr(r) = 2 exp(−πρr2)
∏
n≥0

(
1+α

γ(n+1, πρr2)

n!

)− 1
α

×
∑
n≥0

(πρ)n+1r2n+1

n!

(
1+α

γ(n+1, πρr2)

n!

)−1

, (7)

where γ(z, a) ,
∫ a

0
e−ttz−1 dt, z ∈ C, a ≥ 0, denotes the

lower incomplete Gamma function.

Proposition 2. [54, Lemma 3] Let ϕ represent an arbitrary
real-valued function. For an α-GPP Φ, the Laplace transform
of
∑
k∈K ϕ(xk) can be evaluated as

E

[
exp

(
−
∑
k∈K

sϕ(xk)

)]
=
∏
n≥0

(
1 +

2α(πρ)n+1

n!

×
∫ R

0

(
1− exp(−sϕ(r))

)
exp(−πρr2)r2n+1dr

)− 1
α

. (8)
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Fig. 2. Illustration of risk transfer of wireless users in the cyber insurance framework.

Fig. 3. Procedures of the cyber insurance framework.

B. Performance Metrics

The BSs are considered to adopt the well-known Wyner’s
encoding scheme [7] to secure confidential information to the
legitimate users. In Wyners encoding scheme, a confidential
message is associated with a redundant subcode selected
randomly from a mother codebook. The subcode introduces
randomness to increase eavesdroppers’ uncertainty about the
transmitted confidential message. Let Rt and Re denote the
transmission rate of the codewords and redundant subcodes,
respectively. If the value of Re is greater than the capacity
of the link of the most malicious eavesdropper, information
secrecy of a legitimate user can be guaranteed. Otherwise, a
secrecy outage occurs.

The wireless service provided by a BS is considered to be
unsuccessful if the received SIR at its intended user is lower
than a target threshold τu. The service outage probability of a
typical user is defined as follows:

P , P[ηu < τu], (9)

where ηu is defined in (3), and τu = 2Rt − 1.
In the presence of non-colluding eavesdroppers, a secrecy

outage occurs to a typical user when the most malicious
eavesdropper, denoted as e?, achieves a received SINR greater

than τe = 2Re − 1 [42]. Thus, the secrecy outage probability
is defined as follows:

O , P[ηe? > τe]. (10)

C. Analytical Results

According to the Slivnyaks theorem [55], the analysis of
the users’ performance is performed for an arbitrary user con-
sidered to be located at the origin. We characterize the service
outage probability and secrecy outage probability based on
α-GPP modeling introduced in Section IV-A as follows.

Theorem 1. The service outage probability of a typical user in
the massive MIMO-enabled cellular network in the presence
of malicious eavesdroppers can be expressed as follows:

P=1−2

∫ R

0

exp(−πξρBr2)
∏
n≥0

(
1+α

γ(n+1, πξρBr
2)

n!

)− 1
α

×
∑
n≥0

(πξρBr)
n+1rn

n!

(
1+α

γ(n+1, πξρBr
2)

n!

)−1

×L−1

{
1

s

∏
k≥0

(
1+

2αB(πξρB)k+1

k!

∫ R

r

exp
(
−πξρBl2

)
l2k+1
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×
[
1−
(

1+
sβ

Nslµ

)−Ns]
dl

)− 1
αB
}(
β(L−Ns+1)

τuNsrµ

)
dr. (11)

where L−1{z}(x) represents the inverse Laplace transform of
z evaluated at x.

The proof of Theorem 1 is shown in Appendix I.

Theorem 2. The secrecy outage probability of a typical user
in the massive MIMO-enabled cellular network in the presence
of malicious eavesdroppers can be expressed as follows:

O ≈ 1−
∏
k≥0

[
1+

2αE(πρE)k+1

k!

∫ R

0

∏
j≥0

(
1+

2αB(πξρB)j+1

j!

×
∫ R

0

(
1−
(

1+
τer

µ

lµ

)−Ns)
exp

(
−πξρBl2

)
l2j+1dl

)− 1
αB

×exp

(
− τeNsr

µσ2

PBβ
−πρEr2

)
r2k+1dr

]− 1
αE

. (12)

The proof of Theorem 2 is provided in Appendix II.
It is noted that, by taking advantage of the stochastic geom-

etry approach, calculation of the service outage probability in
(12) does not require the CSI and location information of the
eavesdroppers. This is because our proposed cyber insurance
framework needs the long-term ergodic performance instead of
the instantaneous performance of the cellular network. More-
over, the information of eavesdropper density and repulsion
factor are required to evaluate the secrecy outage probability
of users. The information can be collected by the BSs. In
particular, the presence of an eavesdropper can be detected
as its RF front-end may leak the local oscillator power [56].
The BSs can jointly detect the presence of the eavesdroppers
to estimate the eavesdroppers’ spatial density and repulsion
factor, which can be utilized to evaluate the secrecy outage
probability of the considered system.

V. CYBER-INSURANCE AND RUIN PROBABILITY

We consider a third-party insurer offering a cyber-insurance
plan to the cellular users. Each user pays the same premium
to the insurer. In the event of a service outage, e.g., because of
fading and interference, or a secrecy outage, e.g., because of
eavesdropping, the insurer will compensate the user with the
corresponding amount of indemnities denoted by mP and mO,
respectively. For the insurer, its income is from U users buying
the insurance plan and paying the premium periodically. On
the contrary, the expense comes from the indemnities of
the users due to outage incidents. The insurer is therefore
interested in the ruin which is an event that its capital reserve,
i.e., initial reserve plus accumulated income minus aggregate
claim amount, becomes negative (i.e., deficit). In the following,
we analyze the ruin probability of the insurer [57], [58].

A. Cyber-Insurance Model

Consider that the arrival moments of claims are indepen-
dent. Denote Nt as the number of claims that arrive from
time 0 to time t ≥ 0. We model (Nt)t≥0 as a homogeneous
Poisson process, and denote its intensity as λ. Let Ck (k ≥ 1)
denote the k-th claim’s amount. Ck’s are independent and

identically-distributed (i.i.d.). Sequence (Ck)k≥1 is indepen-
dent of (Nt)t∈R+ . Also, let

Yk ,
k∑
j=1

Cj , k ∈ N,

where Y0 = 0. Here, Yk is the aggregate amount of k claims.
The income of the insurer can be represented by a non-

decreasing, time-dependent premium function f : R+ → R+.
The function maps t > 0 to the aggregated premium income
f(t). The aggregated premium income is received during time
0 and time t given that f(0) = 0. We assume that the insurer
sells an insurance plan with a constant premium rate cu > 0
per user per unit time. Thus, we have f(t) = ct with c , U ·cu.

The k-th claim amount, Ck, can take two values mP and
mO with probabilities p and q, respectively. Here, p and
q = 1 − p denote the conditional probabilities of service
outage and secrecy outage, respectively, if an outage occurs.
So we have p = P

P+O·pl , where P is the service outage
probability obtained from Theorem 1, and O is the secrecy
outage probability obtained from Theorem 2. Here pl is the
probability that a secrecy outage causes an actual loss to the
legitimate user4, i.e., the eavesdropper exploits the received
information for its own benefit and incurs a loss to the
user. Then, the intensity of (Nt)t≥0 can be expressed as
λ = P +O · pl.

Define

S(t) = YNt =

Nt∑
k=1

Ck, t ∈ R+,

in which we have S(t) = 0 if Nt = 0. According to the
compound Poisson risk model, the claim process (S(t))t∈R+

represents the aggregate claim amount. The claim process is
then modeled by the compound Poisson process.

The reserve process (Ry(t))t≥0 is defined as follows:

Ry(t) = y + f(t)− S(t) (13)

= y + ct−
Nt∑
k=1

Ck, t ≥ 0,

where y ≥ 0 is the amount of initial reserve and f(t) is the
aggregated premium obtained during time 0 and time t > 0.

We consider a finite time horizon denoted by T > 0. Then,
the finite-time ruin probability is expressed as follows [59]:

ψ(y, T ) = P
[
∃ t ∈ [0, T ] : Ry(t) < 0

]
.

Let y+M[0,T ] denote the lowest level of the reserve process
in (13) between time 0 and time T , where

M[0,T ] , inf{f(t)− S(t), t ∈ [0, T ]}, (14)

which is an explicit probabilistic representation expression that
can be used for Monte Carlo simulations.

4For a time unit of insurance policy period, pl can be obtained by dividing
the number of claims by the number of secrecy outages. The number of
claims can be estimated based on the historical statistics while the number of
secrecy outages can be calculated by multiplying the estimated secrecy outage
probability in (12) with the total number of insured users.
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Fig. 4. Samples of insurers total reserve (Initial reserve y = 10, premium
rate c = 1, pl = 1).

In the compound Poisson risk model, the ruin probability
ψ(y, T ) is computed as

ψ(y, T ) = P
[
M[0,T ] < −y

]
, y ≥ 0, (15)

and the density of M[0,T ] at −y < 0 is expressed as

−∂ψ(y, T )

∂y
. (16)

The density of M[0,T ] in (16) indicates the sensitivity of
the ruin probability with respect to the initial reserve y. In
other words, it shows how fast the ruin probability changes
with a certain amount of initial reserve. The density is useful
to analyze how the insurer is sensitive to a certain control
parameter.

Here, we show an example of the insurer’s reserve over
time. The indemnities of a service outage and a secrecy
outage are set to 3 and 7 monetary units, respectively. With
1000 insured users under service outage probability of 0.01
and secrecy outage probability of 0.01, Figs. 4a and 4b

illustrate the insurer’s reserves with and without a ruin event,
respectively. When an outage of any type, i.e., service outage
or secrecy outage, happens to one of the users, the insurer
has to pay the corresponding claim, and as such, the reserve
sharply drops. A ruin event happens when such a drop makes
the reserve fall below zero as shown in the blue circle in
Fig. 4a. When a ruin event happens, the insurer does not have
enough reserves to pay for the claim. Therefore, it is important
to analyze the ruin probability which determines the insurer’s
vulnerability to insolvency.

B. Calculation of Densities of M[0,T ]

In the following, we develop a direct integration by parts
method. The method is to numerically compute the non-
continuous density functions of the infima of jump processes.

Considering the infimum in (14), we note that M[0,T ] ≤
0 = f(0), and thus M[0,T ] takes non-positive values. On the
other hand, we haveM[0,T ] = 0 if and only if no claim occurs
from time 0 to time T (i.e., NT = 0) or the reserve remains
non-negative from time 0 and time T , i.e., f(Tk) − Yk ≥
0 for all k ≥ 1 with Tk ≤ T . Here Tk denotes the arrival
moment of the k-th claim. As a consequence, the probability
that M[0,T ] = 0 is given by

P
[
M[0,T ] =0

]
=P
[
NT = 0

]
+P
[
{M[0,T ]≥0} ∩ {NT ≥1}

]
=e−λT + e−λTE

[ ∞∑
k=1

λk
∫ T

0

∫ tk

0

· · ·
∫ t3

0

∫ t2

0

k∏
i=1

1{f(ti)>Yi}dt1dt2 · · · dtk−1tk

]

= e−λT + e−λT
∞∑
k=1

λk
∑

l1,...,lk∈{0,1}

(
k∏
i=1

pliq1−li

)

×
∫ T

0

∫ tk

0

· · ·
∫ t3

0

∫ t2

0

k∏
i=1

1{f(ti)>(mP−mO)(l1+···+li)+imO}

× dt1dt2 · · · dtk−1dtk. (17)

In (17), t1, t2, ..., tk represent the values taken by
T1, T2, ..., Tk, respectively, and li (i = 1, 2, ..., k) takes
two values: li = 1 means that the i-th claim is for a service
outage, and li = 0 means that the i-th claim is for a secrecy
outage. Thus, the amount of the i-th claim is given by
(mP −mO)li +mO.

Based on the expression

M[0,T ] = inf
0≤t≤T

{f(t)− YNt} = inf
Tk≤T, k≥0

{cTk − Yk}

= 1{NT≥1} inf
Tk≤T, k≥1

{cTk −
k∑
j=1

Ck} (18)

of the infimum over the time interval [0, T ], we compute the
density of M[0,T ], which is efficient for simulations, in the
next Proposition.

Proposition 3. The density of M[0,T ] at z ∈ R is given by

∂

∂z
P
[
{M[0,T ]≥z}∩{NT ≥1}

]
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Fig. 5. Impact of αB (L = 200, Ns = 20, ξ = 0.5, ρE = 10−5, Re = 0.5Rt).

=λE

[
NT∑
j=1

∑
l1,...,l1+NT ∈{0,1}

(
1+NT∏
i=1

pliq1−li

)

× 1{f(Tj−1)−(mP−mO)kj−jmO<z≤$j}

]

+ λE

[ ∑
l1,...,l1+NT ∈{0,1}

(
1+NT∏
i=1

pliq1−li

)
× 1{0<(1+NT )mO+(mP−mO)k1+NT +z<f(T )}

× 1{f(TNT )<(1+NT )mO+(mP−mO)kNT+1+z}

× 1{z<inf1≤l≤NT {f(Tl)−lmO−(mP−mO)kl}}

]
, (19)

where kj , l1 + · · ·+ lj , and

$j , min
{

inf
1≤l≤j

{f(Tl)− lmO − (mP −mO)kl},

inf
j≤l≤NT

{f(Tl)− (l + 1)mO − (mP −mO)kl+1}
}
,

(20)

and therein we adopt the convention inf∅ = +∞.

Proposition 3 can be proved as a consequence of Proposi-
tion 5 in [57]. We omit the proof of Proposition 3 here to save
space.

Note that alternative analytical expressions for the density
of M[0,T ] are also available in [60], [61].

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the cyber insurance
framework in a massive MIMO-enabled cellular network. We
first investigate the impact of network parameters on the
service outage probability P and secrecy outage probability
O obtained in Theorem 1 and Theorem 2, respectively. The
density of the BSs is considered as 5 × 10−5 BS/m2 unless
otherwise specified. The bandwidth of and the transmit power

on each resource block are 10 MHz and 40 dBm, respectively.
The BSs operate on ν = 1.8 GHz frequency. The noise
variance is −174 dBm/Hz [62]. The transmission rate of the
codewords and redundant subcodes are set at 2 bits/s/Hz and
1 bits/s/Hz, respectively, unless otherwise specified. We first
evaluate parameters related to the network deployment, i.e.,
network repulsion factor αB and number of antennas L, and
resource allocations, i.e., frequency reuse coefficient ξ and the
number of users scheduled to serve on each resource block
Ns. Fig. 5 validates the accuracy of P and O under different
αB . The analytical expressions of P and O achieve a close
match with the corresponding Monte Carlo simulation results.
We observe that deploying BSs more dispersedly, i.e., with
large repulsion, helps to decrease both P and O.

In Fig. 6, we demonstrate P andO as functions of Ns. It can
be seen that P increases with Ns and ξ. On the contrary, O is
a decreasing function of Ns and ξ. This can be explained from
the fact that scheduling more users on each resource block re-
duces the transmit power to each user. Moreover, an increment
of frequency reuse results in larger aggregated interference to
both legitimate users and eavesdroppers. Both factors increase
the service outage probability but help to decrease the secrecy
outage probability. In addition, the number of antennas L has a
non-trivial impact on P , but does not affect O (as reflected in
(12)). The reason is evident that large L increases the antenna
array gain for the information signal to the users. Nevertheless,
L does not affect the wiretapped signal due to ZFBF.

Then, we examine the impact of deployment factors of
eavesdroppers, i.e., spatial density ρE and repulsion factor αE .
From (11), the two factors do not affect the service outage
probability. We therefore only demonstrate how the secrecy
outage probability varies with ρE under different values of
αE in Fig. 7. It can be found that larger repulsion in the
distribution of the eavesdroppers increases the occurrence of
secrecy outage. In other words, the eavesdroppers are the
most harmful if they are scattered evenly with the largest
repulsion factor αE = −1. Moreover, the eavesdroppers are
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Fig. 6. Impacts of Ns, ξ and L (ρE = 10−5).
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more malicious if they are deployed in the locations with a
larger path-loss exponent. This is because in a massive MIMO-
enabled cellular network with ZFBF transmission, interference
dominates the wiretapped signals. A larger path exponent
helps to attenuate the aggregated interference which benefits
eavesdropping.

Based on the network performance evaluation, we study the
risk of the insurer by evaluating its ruin probability ψ in (15).
The indemnities of a service outage and a secrecy outage
are set to 3 and 7 monetary unit unless otherwise specified.
We first focus on the influence of network parameters. Fig. 8
depicts how the ruin probability varies with Rt under different
αB . We note that there might exist a minimum of ψ with
respect to Rt. This can be understood from Fig. 5 that P is
an increasing function while O is a decreasing function of
Rt. As a result, when Rt is small and large, we have high O
and high P , respectively, both leading to high ruin probability.
This indicates that the ruin probability can be minimized by

setting a proper code rate Rt.
Fig. 9 compares the ruin probability under different fre-

quency reuse coefficient ξ. Similar to Fig. 8, there might also
exist a minimum of the ruin probability with respect to Ns.
This is due to the fact that the increase of Ns results in larger P
but lower O as shown in Fig. 6. Moreover, employing a larger
number of antennas contributes to smaller ruin probability as
the service outage probability can be mitigated. Interestingly,
the ruin probability decreases with the increase of ξ. This is
due to the fact that the indemnity of secrecy outage probability
O is much larger than that of service outage probability P .
Therefore, though a larger ξ increases P and decreases O,
the effect of O dominates that of P on the ruin probability.
This indicates that, in practice, heavy frequency reuse in
the emerging ultra-dense cellular networks benefits the cyber
insurer.

Fig. 10 shows the impact of the density of eavesdroppers
ρE on the ruin probability ψ. It can be found that ψ increases
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exponentially with ρE . This implies that increasing the density
of eavesdroppers is more disruptive to the insurer when ρE
becomes larger.

Next, we demonstrate the effects of indemnity and initial
reserve on the ruin probability in Fig. 11. The indemnity of a
service outage mP is fixed at 3 while that of secrecy outage
mO varies from 4 to 8. It is found that the impact of mP
on the ruin probability becomes more pronounced with the
increase of mP . Additionally, it is evident that increasing the
initial reserve is an effective way to lower the ruin probability
especially when the indemnity is large. However, such a large
initial reserve incurs a substantial opportunity cost to the
insurer as the reserve cannot be used for financial investment
to generate another stream of revenue.

Fig. 12 shows the density of M[0,T ] as a function of
premium rate cu with different initial reserve y. It is observed
that the density of M[0,T ] is a decreasing function of the
premium rate. When the premium rate is small, the density
of M[0,T ] is very sensitive to the amount of initial reserve.
This indicates that when the premium income of the insurer
is low, a small decrease of the initial reserve can result in
a significant increase in the ruin probability. This sensitivity
analysis is helpful for the insurer to set a proper premium
rate based on its initial reserve to control the variation of
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Fig. 12. Density of M[0,T ] as a function of premium rate cu.

ruin probability. For example, considering an uncertainty that
the available initial reserve could vary from 8 to 12, in order
to control the sensitivity of ruin probability within 0.01, the
insurer should charge a premium rate no less than 0.425.
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VII. CONCLUSION

In this paper, we present a cyber insurance framework
for wireless services, in which the network users pay a
premium to the insurer in order to protect themselves from
the loss due to cyber risks. Specifically, considering secrecy
outage and service outage as the cyber risks, we introduce a
quantitative approach to assess the vulnerabilities of insured
users in the subscribed network and in turn the capital risks
carried by the third-party insurer. The combination of network
analysis and economic analysis provides insights to understand
the interplay between wireless systems and cyber insurance
business. Our proposed cyber insurance framework is general
and can be customized to different emerging network scenarios
for future generation networks. The analysis can be useful
for further optimization of the benefits of the insurer and/or
insureds, which will be one of our future research directions.

APPENDIX I: PROOF OF Theorem 1

Proof. Let r0,u = ‖x0 − xu‖. Following the definition of
service outage probability in (9), we have

P = P
[
PBβ(L−Ns + 1)r−µ0,u

NsIu
< τu

]
= Er0,u

[
P

[
Iu
PB

>
β(L−Ns + 1)

τuNsr
µ
0,u

∣∣∣∣r0,u

]]

= 1−
∫ ∞

0

F Iu
PB
|r0,u

(
β(L−Ns + 1)

τuNsrµ

)
fr0,u(r)dr, (21)

where F Iu
PB
|r0,u(x) is the conditional cumulative distribution

function (CDF) of Iu
PB

given r0,u, and fr0,u(r) is the PDF of
r0,u which can be expressed as follows from Proposition 1.

fr0,u(r) = 2 exp(−πρBr2)
∏
n≥0

(
1+α

γ(n+1, πρBr
2)

n!

)− 1
α

×
∑
n≥0

(πρBr)
n+1rn

n!

(
1+α

γ(n+1, πρBr
2)

n!

)−1

. (22)

Let LIu(s) = E[exp(−sIu)] denote the Laplace transform
of Iu evaluated at s. By the definition of Laplace transform,
the conditional CDF of Iu

PB
can be calculated as follows:

F Iu
PB
|r0,u(x) = L−1

{
1

s
L Iu
PB

(s)

}
(x)

= L−1

{
1

s
E
[

exp

(
−sIu
PB

)]}
(x)

= L−1

{
1

s
E
[

exp

(
− sβ

∑
b∈Φ0

B

hb,u
Ns‖xb − xu‖µ

)]}
(x)

= L−1

{
1

s
E
[ ∏
b∈Φ0

B

Mhb,u

(
− sβ

Ns‖xb − xu‖µ

)]}
(x), (23)

where Mhb,u(·) is the MGF of hb,u. Since hb,u ∼ G(Ns, 1),
Mhb,u(·) can be calculated as Mhb,u(z) = (1 − z)−Ns .

Therefore, we have

F Iu
PB
|r0,u(x) = L−1

{
1

s
E

[ ∏
b∈Φ0

B

(
1 +1{‖xb−xu‖>r0,u}

× sβ

Ns‖xb − xu‖µ

)−Ns]}
(x)

(a)
=L−1

{
1

s

∏
k≥0

(
1+

2αB(πξρB)k+1

k!

×
∫ R

0

[
1−
(

1+
1{l>r0,u}sβ

Nslµ

)−Ns]
exp

(
−πξρBl2

)
× l2k+1dl

)− 1
αB

}
(x)

=L−1

{
1

s

∏
k≥0

(
1+

2αB(πξρB)k+1

k!

∫ R

r0,u

[
1−
(

1+
sβ

Nslµ

)−Ns]

× exp
(
−πξρBl2

)
l2k+1dl

)− 1
αB

}
(x), (24)

where (a) follows Proposition 2.
Plugging (24) and (22) into (21), we have the result in (11),

which concludes the proof.

APPENDIX II: PROOF OF Theorem 2
Proof. Since all the eavesdroppers can wiretap the broadcast
information from BS 0 and receive interference from the
same set of interfering BSs, there exists a correlation among
the SINR at the eavesdroppers. However, this correlation is
strongly weakened by the channel fading and the eavesdrop-
pers’ random spatial locations. In the following, we use an
approximation that the interference received at the eavesdrop-
pers are independent for analytical tractability. We validate
that this approximation is tight through numerical results in
Section VI.

According to the definition in (10), we can derive the
secrecy outage probability as follows:

O = P[ηe? > τe] = 1− P[ηe? ≤ τe]

= 1− P
[

max
e∈ΦE

{
PBh0,eβ

Ns‖x0 − xe‖µ(Ie + σ2)

}
≤ τe

]
= 1− E

[ ∏
e∈ΦE

P
[
h0,e≤

τeNs‖x0 − xe‖µ(Ie + σ2)

PBβ

]]
(b)
= 1− E

[ ∏
e∈ΦE

EIe
[
1− exp

(
− τeNs‖x0 − xe‖µIe

PBβ

)
× exp

(
− τeNs‖x0 − xe‖µσ2

PBβ

)]]
= 1− E

[ ∏
e∈ΦE

(
1− LIe

(
τeNs‖x0 − xe‖µ

PBβ

)

× exp

(
− τeNs‖x0 − xe‖µσ2

PBβ

))]

= 1− E

[
exp

(∑
e∈ΦE

ln

(
1− LIe

(
τeNs‖x0 − xe‖µ

PBβ

)
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× exp

(
− τeNs‖x0 − xe‖µσ2

PBβ

)))]
(c)
≈ 1−

∏
k≥0

(
1+

2αE(πρE)k+1

k!

∫ R

0

LIe
(
τeNsr

µ

PBβ

)

× exp

(
− τeNsr

µσ2

PBβ
−πρEr2

)
r2k+1dr

)− 1
αE

, (25)

where LIe
(
τeNsr

µ

PBβ

)
is the Laplace transform of Ie evalu-

ated at τeNsr
µ

PBβ
, (b) follows the CDF of h0,e ∼ E(1), i.e.,

P[h0,e ≤ x] = 1 − exp(−x), and (c) follows the approxi-
mation that the interference received at each eavesdropper is
independent and applies Proposition 2.

We then continue to characterize the Laplace transform of
Ie as follows:

LIe(s) = E
[

exp (−sIe)
]

=E

[ ∏
b∈Φ0

B

exp

(
− sPBhb,eβ

Ns‖xb − xe‖µ

)]

=E

[ ∏
b∈Φ0

B

Mhb,e

(
− sPBβ

Ns‖xb − xe‖µ

)]

= E

[ ∏
b∈Φ0

B

(
1 +

sPBβ

Ns‖xb − xe‖µ

)−Ns]

=
∏
j≥0

(
1+

2αB(πξρB)j+1

j!

∫ R

0

[
1−
(

1 +
sPBβ

Nslµ

)−Ns]

× exp
(
−πξρBl2

)
l2j+1dl

)− 1
αB

, (26)

in which the last equality applies Proposition 2.
Finally, inserting (26) into (25) yields the result in (12).
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