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Abstract

We present a multidimensional deep learning implementation of a stochastic branch-
ing algorithm for the numerical solution of fully nonlinear PDEs. This approach is
designed to tackle functional nonlinearities involving gradient terms of any orders, by
combining the use of neural networks with a Monte Carlo branching algorithm. In com-
parison with other deep learning PDE solvers, it also allows us to check the consistency
of the learned neural network function. Numerical experiments presented show that
this algorithm can outperform deep learning approaches based on backward stochastic
differential equations or the Galerkin method, and provide solution estimates that are
not obtained by those methods in fully nonlinear examples.
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1 Introduction

This paper is concerned with the numerical solution of fully nonlinear partial differential

equations (PDEs) of the form∂tu(t, x) +
1

2
∆u(t, x) + f

(
∂λ1u(t, x), . . . , ∂λnu(t, x)

)
= 0,

u(T, x) = ϕ(x), (t, x) = (t, x1, . . . , xd) ∈ [0, T ]× Rd,

(1.1)
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d ≥ 1, where ∆ =
d∑

i=1

∂2/∂x2
i is the standard d-dimensional Laplacian, ∂tu(t, x) = ∂u(t, x)/∂t,

and f is a smooth function of the derivatives

∂λiu(t, x) =
∂λi

1

∂x1

· · · ∂
λi
d

∂xd

u(t, x1, . . . , xd), (x1, . . . , xd) ∈ Rd,

λi = (λi
1, . . . , λ

i
d) ∈ Nd, i = 1, . . . , n. As is well known, standard numerical schemes for

solving (1.1) by e.g. finite differences or finite elements suffer from the curse of dimensionality

as their computational cost grows exponentially with the dimension d.

The deep Galerkin method (DGM) has been developed in [SS18] for the numerical solu-

tion of (1.1) by training a neural network function v(t, x) using the loss function(
∂tv(t, x) +

1

2
∆v(t, x) + f

(
∂λ1v(t, x), . . . , ∂λnv(t, x)

))2

+ (v(T, x)− ϕ(x))2 . (1.2)

See [LZCC22] for recent improvements of the DGM using deep mixed residuals (MIM) with

numerical applications to linear PDEs, and [HFH+22] for the blocked residual connection

method (DLBR) applied to a linear (generalized) Black-Scholes equation.

On the other hand, probabilistic schemes provide a promising direction to overcome

the curse of dimensionality. For example, when f(u(t, x)) = ru(t, x) does not involve any

derivative of u, the solution of the PDE∂tu(t, x) +
1

2
∆u(t, x) + ru(t, x) = 0,

u(T, x) = ϕ(x), (t, x) = (t, x1, . . . , xd) ∈ [0, T ]× Rd,

admits the probabilistic representation

u(0, x) = erTE[ϕ(x+WT )],

where (Wt)t≥0 is a standard Brownian motion. This method can be implemented on a

bounded domain D ⊂ Rd based on the universal approximation theorem and the L2 mini-

mality property

u(0, ·) = inf
v
E
[(
erTϕ(X +WT )− v(X)

)2]
,

where X is a uniform random vector on D and the infimum in v is taken over a neural

functional space.

Probabilistic representations for the solutions of first order nonlinear PDEs can also be

obtained by representing u(t, x) as u(t, x) = Y t,x
t , (t, x) ∈ [0, T ]×R, where (Y t,x

s )t≤s≤T is the
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solution of a backward stochastic differential equation (BSDE), see [Pen91], [PP92]. The

BSDE method has been implemented in [HJE18] using a deep learning algorithm in the

case where f depends on the first order derivative, i.e. λi
1 + · · · + λi

d ≤ 1, 1 ≤ i ≤ n, see

also [HPW20] for recent improvements. The BSDE method extends to second order fully

nonlinear PDEs by the use of second order backward stochastic differential equations, see

e.g. [CSTV07], [STZ12], and [HJE17, BEJ19], and [PWG21], [LLP23], for deep learning

implementations. However, this approach does not apply to nonlinearities in gradients of

order strictly greater than two, see Examples e) and f) below.

Numerical solutions of semilinear PDEs have also been obtained by the multilevel Pi-

card method (MLP), see [EHJK19, HJKN20, EHJK21, HJK22], with numerical experiments

provided in [BBH+20]. However, this approach is currently restricted to first order gradient

nonlinearities, similarly to the deep splitting algorithm of [BBC+21].

In this context, the use of stochastic branching diffusion mechanisms [Sko64], [INW69],

represents an alternative to the DGM and BSDE methods, see [McK75] for an application

to the Kolmogorov-Petrovskii-Piskunov (KPP) equation, [CLM08] for existence of solutions

of parabolic PDEs with power series nonlinearities, [HL12] for more general PDEs with

polynomial nonlinearities, and [HLT21] for an application to semilinear and higher-order

hyperbolic PDEs. This approach has been applied in e.g. [LM96], [HLOT+19] to polynomial

gradient nonlinearities, see also [FTW11], [Tan13], [GZZ15], [HLZ20] for finite difference

schemes combined with Monte Carlo estimation for fully nonlinear PDEs with gradients of

order up to 2.

Extending such approaches to nonlinearities involving gradients of order greater than

two involves technical difficulties linked to the integrability of the Malliavin-type weights

used in repeated integration by parts argument, see page 199 of [HLOT+19]. Such higher

order nonlinearities are also not covered by multilevel Picard [BBH+20] and deep splitting

[BBC+21] methods, or by BSDE methods [HJE18, BEJ19], which are limited to first and

second order gradients, respectively.

In [NPP23], a stochastic branching method that carries information on (functional) non-

linearities along a random tree has been introduced, with the aim of providing Monte Carlo

schemes for the numerical solution of fully nonlinear PDEs with gradients of arbitrary orders.

In this paper, we present a deep learning implementation of the method of [NPP23] using

3



Monte Carlo sampling, the law of large numbers, and the universal approximation theorem.

Our approach to the numerical solution of the PDE (1.1) is based on the following steps:

i) The solution of PDE (1.1) is written as the conditional expectation of a functional of a

random coding tree via the fully nonlinear Feynman-Kac formula Theorem 1 in [NPP23],

see (2.1) below.

ii) The conditional expectation is approximated by a neural network function through the

L2-minimality property and the universal approximation theorem.

We start by testing our method on the Allen-Cahn equation (4.1), for which we report a

performance comparable to that of the deep BSDE and deep Galerkin methods, see Figure 2.

This is followed by an example (4.2) involving an exponential nonlinearity without gradient

term, in which our method outperforms the deep Galerkin method and performs comparably

to deep BSDE method in dimension d = 5, see Figure 3. We also consider a multidimensional

Burgers equation (4.3) for which the deep branching method is more stable than the deep

Galerkin and deep BSDE methods in dimension d = 15, see Figure 5. Next, we consider

a Merton problem (4.6) to which the deep Galerkin method does not apply since its loss

function involves a division by the second derivative of the neural network function. We

also note that the deep branching method overperforms the deep BSDE method in this

case, see Figure 6. Finally, we consider higher order functional gradient nonlinearities in

Equations (4.7) and (4.8), to which the deep BSDE, multilevel Picard and deep splitting

methods do not apply. In those cases, our method also outperforms the deep Galerkin

method in both dimensions d = 1 and d = 5, see Figures 8 and 9.

We also note that since the deep branching method is based on a direct Monte Carlo

estimation, it allows for checking the consistency between the Monte Carlo samples and the

learned neural network function, which is not possible with the deep Galerkin method and

deep BSDE methods, see Figure 7.

Our algorithm, similarly to other branching diffusion methods, suffers from a time ex-

plosion phenomenon due to the use of a branching process. Nevertheless, our method can

perform better than the deep Galerkin and deep BSDE methods in small time and in higher

dimensions, see Figure 2 for the Allen-Cahn equation and Figure 5 for the Burgers equation.

Other approaches to the solution of evolution equations by carrying information on non-

linearities along trees include [But63], see also Chapters 4-6 of [DB02] and [MMMKV17] for
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ordinary differential equations (ODEs), with applications ranging from geometric numeri-

cal integration to stochastic differential equations, see for instance [HLW06] and references

therein. On the other hand, the stochastic branching method does not use series truncations

and it can be used to estimate an infinite series, see [PP22] for an application to ODEs.

This paper is organized as follows. The extension of the fully nonlinear Feynman-Kac

formula of [NPP23] to a multidimensional setting is presented in Section 2, and the deep

learning algorithm is described in Section 3. Section 4 presents numerical examples in which

our method can outperform the deep BSDE and deep Galerkin methods.

The Python codes and numerical experiments run in this paper are available at

https://github.com/nguwijy/deep_branching.

Notation

We denote by N = {0, 1, 2, . . . } the set of natural numbers, and let C0,∞([0, T ]×Rd) be the

set of functions u : [0, T ] × Rd → R such that u(t, x) is continuous in the variable t and

infinitely x-differentiable. For a vector x = (x1, . . . , xd)
⊤ ∈ Rd, we let |x| =

d∑
i=1

|xi|, and let

1p be the vector of 1 at position p and 0 elsewhere. We also consider the linear order ≺ on

Rd such that (k1, . . . , kd) = k ≺ l = (l1, . . . , ld) if one of the following holds:

i) |k| < |l|;

ii) |k| = |l| and k1 < l1;

iii) |k| = |l|, k1 = l1, . . . ki = li, and ki+1 < li+1 for some 1 ≤ i < d.

2 Fully nonlinear Feynman-Kac formula

In this section we extend the construction of [NPP23] to the case of multidimensional PDEs

of the form ∂tu(t, x) +
1

2
∆u(t, x) + f

(
∂λ1u(t, x), . . . , ∂λnu(t, x)

)
= 0,

u(T, x) = ϕ(x), (t, x) = (t, x1, . . . , xd) ∈ [0, T ]× Rd,

where λi = (λi
1, . . . , λ

i
d) ∈ Nd, i = 1, . . . , n, with the integral formulation

u(t, x) =

∫
Rd

φ(T − t, y− x)ϕ(y)dy+

∫ T

t

∫
Rd

φ(s− t, y− x)f
(
∂λ1u(t, y), . . . , ∂λnu(t, x)

)
dyds,

5

https://github.com/nguwijy/deep_branching


where φ(t, x) := e−x2/(2t)/
√
2πt, and (t, x) ∈ [0, T ] × Rd. We refer to e.g. Theorem 1.1 in

[Kry83] for sufficient conditions for existence and uniqueness of smooth solutions to such

fully nonlinear PDEs in the second order case. Our fully nonlinear Feynman-Kac formula

[NPP23] relies on the construction of a branching coding tree, based on the definition of a

set C of codes and its associated mechanismM. In what follows, we use the notation

(a1, . . . , an) ∪ (b1, . . . , bm) := (a1, . . . , an, b1, . . . , bm)

for any sequences (a1, . . . , an), (b1, . . . , bm) or real numbers. In addition, for any function

g : Rn → R, we let g∗ be the operator mapping C0,∞([0, T ] × Rd) to C0,∞([0, T ] × Rd) and

defined by

g∗(u)(t, x) := g
(
∂λ1u(t, x), . . . , ∂λnu(t, x)

)
, (t, x) ∈ [0, T ]× Rd.

In the sequel, we also let ∂λ := ∂λ1
z1
· · · ∂λn

zn , and ∂µ := ∂µ1
x1
· · · ∂µd

xd
, λ = (λ1, . . . , λn) ∈ Nn,

µ = (µ1, . . . , µd) ∈ Nd.

Definition 2.1 We let C denote the set of operators from C0,∞([0, T ]×Rd) to C0,∞([0, T ]×
Rd), called codes, and defined as

C :=
{
Id, (a∂λf)

∗, ∂µ, : λ ∈ Nn, µ ∈ Nd, a ∈ R
}
,

where Id denotes the identity on C0,∞([0, T ]× Rd).

For example, for ν ∈ Nn, µ ∈ Nd, a ∈ R and k ∈ N we have

c(u)(T, x) =


ϕ(x), if c = Id,

a∂νf
(
∂λ1ϕ(x), . . . , ∂λmϕ(x)

)
, if c = (a∂νf)

∗,

∂µϕ(x), if c = ∂µ.

The mechanismM is then defined as a mapping on C byM(Id) := {f ∗}, and

M(g∗) :=
⋃

1≤p≤n
λp=0

{(
f ∗, (∂1pg)

∗)}

⋃
1≤p≤n, 1≤s≤|λp|
1≤ν1+···+νn≤|λp|

1≤|k1|,...,|ks|,
0≺l1≺···≺ls

ki
1+···+ki

s=νi, i=1,...,n

|k1|l1j+···+|ks|lsj=λp
j , j=1,...,d


(∂1pg)

∗,

d∏
i=1

λp
i !(∂νf)

∗

∏
1≤r≤s
1≤q≤n

kq
r ! (lr1! · · · lrd!)

kqr

 ⋃
1≤r≤s
1≤q≤n

(
∂lr+λq , . . . , ∂lr+λq︸ ︷︷ ︸

kqr times

)
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⋃ ⋃
i,j=1,...,n
k=1,...,d

{(
−1

2
(∂1i+1j

g)∗, ∂λi+1k
, ∂λj+1k

)}
, g∗ ∈ C,

and

M(∂µ)

:=
⋃

1≤s≤|µ|, 1≤ν1+···+νn≤|µ|
1≤|k1|,...,|ks|, 0≺l1≺···≺ls

ki
1+···+ki

s=νi, i=1,...,n

|k1|l1j+···+|ks|lsj=µj , j=1,...,d




d∏
i=1

µi!∏
1≤r≤s
1≤q≤n

kq
r ! (lr1! · · · lrd!)

kqr
(∂νf)

∗

 ⋃
1≤r≤s
1≤q≤n

(
∂lr+λqu, . . . , ∂lr+λqu︸ ︷︷ ︸

kqr times

)
 ,

µ ∈ Nd. Given ρ : R+ → (0,∞) a probability density function (PDF) on R+ with tail distri-

bution function F and N (0, σ2) a d-dimensional independent centered normal distribution

with variance σ2, we consider the functional H(t, x, c) constructed in Algorithm 1 along a

random coded tree started at (t, x, c) ∈ [0, T ]× Rd × C, using independent random samples

on a probability space Ω.

Algorithm 1 Coding tree algorithm TREE(t, x, c)

Input: t ∈ [0, T ], x ∈ Rd, c ∈ C
Output: H(t, x, c) ∈ R
H(t, x, c)← 1
τ ← a random variable drawn from the distribution of ρ
if t+ τ > T then

W ← a random vector drawn from N (0, T − t)
H(t, x, c)← H(t, x, c)× c(u)(T, x+W )/F (T − t)

else
q ← the size of the mechanism setM(c)
I ← a random element drawn uniformly fromM(c)
H(t, x, c)← H(t, x, c)× q/ρ(τ)
for all cc ∈ I do

W ← a random vector drawn from N (0, τ)
H(t, x, c)← H(t, x, c)× TREE(t+ τ, x+W, cc)

end for
end if

As in Theorem 1 in [NPP23], the following Feynman-Kac type identity

u(t, x) = E[H(t, x, Id)] (2.1)

for the solution of (1.1) holds under suitable integrability conditions on H(t, x, Id) and

smoothness assumptions on the coefficients of (1.1), see the appendix for calculation details.

7



3 Deep branching solver

Instead of evaluating (2.1) at a single point (t, x) ∈ [0, T ] × Rd, we use the L2-minimality

property of expectation to perform a functional estimation of u(·, ·) as u(·, ·) = v∗(·, ·) on

the support of a random vector (τ,X) on [0, T ]× Rd such that H(τ,X, Id) ∈ L2(Ω), where

v∗ = argmin
{v : v(τ,X)∈L2}

E
[
(H(τ,X, Id)− v(τ,X))2

]
. (3.1)

To evaluate (2.1) on [0, T ]×D, where D is a bounded domain of Rd, we can choose (τ,X)

to be a uniform random vector on [0, T ] × D. Similarly, to evaluate (2.1) on {0} × D, we

may let τ ≡ 0 and let X be a uniform random vector on D.

In order to implement the deep learning approximation, we parametrize v(·, ·) in the

functional space described below. Given ζ : R→ R an activation function such as ζReLU(x) :=

max(0, x), ζtanh(x) := tanh(x) or ζId(x) := x, we define the set of layer functions Lζ
d1,d2

by

Lζ
d1,d2

:=
{
L : Rd1 → Rd2 : L(x) = ζ(Ax+ b), x ∈ Rd1 , A ∈ Rd2×d1 , b ∈ Rd2

}
, (3.2)

where d1 ≥ 1 is the input dimension, d2 ≥ 1 is the output dimension, and the activation

function ζ is applied component-wise to Ax + b. Similarly, when the input and output

dimensions are the same, we define the set of residual layer functions Lρ,res
d by

Lζ,res
d :=

{
L : Rd → Rd : L(x) = x+ ζ(Ax+ b), x ∈ Rd, A ∈ Rd×d, b ∈ Rd

}
, (3.3)

see [HZRS16]. Then, we denote by

NNζ,l,m
d :=

{
Ll ◦ · · · ◦ L0 : Rd → R : L0 ∈ Lζ

d,m, Ll ∈ LζId
m,1, Li ∈ Lζ,res

m , 1 ≤ i < l
}

the set of feed-forward neural networks with one output layer, l ≥ 1 hidden residual layers

each containing m ≥ 1 neurons, where the activation functions of the output and hidden lay-

ers are respectively the identity function ζId and ζ. Any v(·; θ) ∈ NNζ,l,m
d is fully determined

by the sequence

θ :=
(
A0, b0, A1, b1, . . . , Al−1, bl−1, Al, bl

)
of ((d+ 1)m+ (l − 1)(m+ 1)m+ (m+ 1)) parameters.

Since by the universal approximation theorem, see e.g. Theorem 1 of [Hor91],
∞⋃

m=1

NNζ,l,m
d

is dense in the L2 functional space, the optimization problem (3.1) can be approximated by

v∗ ≈ argmin
v∈NNζ,l,m

d+1

E
[
(H(τ,X, Id)− v(τ,X))2

]
. (3.4)
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By the law of large numbers, (3.4) can be further approximated by

v∗ ≈ argmin
v∈NNζ,l,m

d+1

N−1

N∑
i=1

(Hi − v(τi, Xi))
2 , (3.5)

where for all i = 1, . . . , N , (τi, Xi) is drawn independently from the distribution of (τ,X)

and Hi is drawn from Hτi,Xi,Id using Algorithm 1. However, the approximation (3.5) may

perform poorly when the variance of Hi is too high. To solve this issue, we use the expression

v∗ ≈ argmin
v∈NNζ,l,m

d+1

N−1

N∑
i=1

(
M−1

M∑
j=1

Hi,j − v(τi, Xi)

)2

, (3.6)

where for j = 1, . . . ,M , Hi,j is drawn independently from Hτi,Xi,Id using Algorithm 1.

Finally, the deep branching method using the gradient descent method to solve the

optimization in (3.6) is summarized in Algorithm 2.

Algorithm 2 Deep branching method

Input: The learning rate η and the number of epochs P
Output: v(·, ·; θ) ∈ NNζ,l,m

d+1

(τi, Xi)1≤i≤N ← random vectors drawn from the distribution of (τ,X)
(Hi,j)1≤i≤N

1≤j≤M
← random variables generated by TREE(τi, Xi, Id) in Algorithm 1

Initialize θ
for i← 1, . . . , P do

L← N−1
N∑
i=1

(
M−1

M∑
j=1

Hi,j − v(τi, Xi; θ)

)2

θ ← θ − η∇θL
end for

Remark 3.1 In the implementation of Algorithm 2, we perform the following additional

steps:

i) η ← η/10 after every ⌊P/3⌋ steps.

ii) Instead of using η to update θ directly, Adam algorithm is used to update θ, see [KB14].

iii) ζtanh is used because the target PDE solution (1.1) is smooth.

iv) A batch normalization layer is added after the activation function in (3.2)-(3.3) when

ζ ̸= ζId, see [IS15].
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v) ρ is chosen to be the PDF of exponential distribution with rate −(log 0.95)/T .

vi) Given xmin < xmax and xmid = (xmin + xmax)/2, we take

D := [xmin, xmax]× {xmid} × · · · × {xmid},

and we let (τ,X) be the uniform random vector on {0} ×D.

4 Numerical examples

The numerical examples below are run in Python using PyTorch with the default initial-

ization scheme for θ, and the default values N = 1000, P = 3000, η = 0.01, l = 6, m = 20.

Except if otherwise stated, runtimes are expressed in minutes and the examples have been

run on Google Colab with a Tesla P100 GPU.

For comparisons with the deep BSDE and deep Galerkin methods, we select the config-

urations such that all methods have comparable or similar runtimes. For the deep BSDE

method of [HJE18, BEJ19], the time discretization of (0, T/5, 2T/5, 3T/5, 4T/5, T ) and 1000

(resp. 100, 000) number of samples are used in the case of d = 1 (resp. d > 1).

For the deep Galerkin method of [SS18], 10, 000 samples are respectively generated on

{0} × [xmin, xmax]
d, (0, T ) × [xmin, xmax]

d, and {T} × [xmin, xmax]
d. In our experiment, such

generation works better than generating 10, 000 samples respectively on {0}×D, (0, T )×D,

and {T} × D. In addition, we found that batch normalization and learning rate decay in

Remark 3.1 do not work well with deep Galerkin method, hence they are not used in the

simulation below for the deep Galerkin method. The learning rate for the deep Galerkin

method is fixed to be η = 0.001 throughout the training.

The analysis of error is performed on the grid of D̃ = (0, xmin+i∆x, xmid, . . . , xmid)0≤i≤100,

where ∆x = (xmax − xmin)/100. In each of the 10 independent runs, the statistics of the

runtime (in seconds) and the Lp error 100−1
∑
x∈D̃
|true(x) − predicted(x)|p are recorded. In

multidimensional examples with d ≥ 2, every figure is plotted as a function of x1 on the

horizontal axis, after setting (x2, . . . , xd) = (0, . . . , 0).

a) Allen-Cahn equation

Consider the equation

∂tu(t, x) +
1

2
∆u(t, x) + u(t, x)− u3(t, x) = 0, (4.1)
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which admits the traveling wave solution

u(t, x) = −1

2
− 1

2
tanh

(
3

4
(T − t)−

d∑
i=1

xi

2
√
d

)
, (t, x) ∈ [0, T ]× Rd.

Table 1 summarizes the results of 10 independent runs, with M = 100, 000, T = 0.5,

xmin = −8, and xmax = 8.

Method d Mean L1-error Stdev L1-error Mean L2-error Stdev L2-error Mean Runtime
Deep branching 1 1.32E-03 1.05E-04 4.04E-06 7.32E-07 28m
Deep BSDE [HJE18] 1 4.60E-03 9.82E-04 4.08E-05 2.18E-05 101m
Deep Galerkin [SS18] 1 1.40E-03 1.83E-03 6.39E-06 1.57E-05 53m
Deep branching 5 3.63E-03 1.57E-04 2.09E-05 1.19E-06 110m
Deep BSDE [HJE18] 5 4.71E-03 4.23E-04 3.51E-05 8.19E-06 170m
Deep Galerkin [SS18] 5 6.83E-03 6.17E-03 1.36E-04 2.77E-04 134m

Table 1: Summary of numerical results for (4.1).

We check in Table 1 and Figure 1 that all three algorithms show a similar accuracy for the

numerical solution of the Allen-Cahn equation, while the deep branching method appears

more stable.
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-0.1

-8 -6 -4 -2  0  2  4  6  8

True solution
Terminal condition

Deep branching
Deep Galerkin

Deep BSDE

Figure 1: Comparison of deep learning methods for (4.1) with d = 5 and T = 0.5.

Figure 2 compares the L1 errors of deep learning methods, showing that although the deep

branching method has an explosive behavior, under comparable runtimes it can perform

better than the deep Galerkin and deep BSDE methods in small time, in both dimensions

d = 1 and 10. Figure 2 and Table 2 have been run on a RTX A4000 GPU.
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Figure 2: L1 error graphs for (4.1) as functions of time T .

Table 2 ensures that the experiments of Figure 2 are performed within comparable runtimes.

Method d = 1 d = 10
Deep branching 38m 279m
Deep Galerkin [HJE18] 69m 254m
Deep BSDE [SS18] 87m 237m

Table 2: Average runtimes in minutes for Figure 2.

b) Exponential nonlinearity

Consider the equation

∂tu(t, x) +
α

d

d∑
i=1

∂xi
u(t, x) +

1

2
∆u(t, x) + e−u(t,x)(1− 2e−u(t,x))d = 0, (4.2)

which admits the traveling wave solution

u(t, x) = log

1 +

(
d∑

i=1

xi + α(T − t)

)2
 , (t, x) ∈ [0, T ]× Rd.

Table 3 summarizes the results of 10 independent runs, with M = 30, 000 (resp. M = 3, 000)

in dimension d = 1 (resp. d = 5), α = 10, T = 0.05, xmin = −4, and xmax = 4.

Method d Mean L1-error Stdev L1-error Mean L2-error Stdev L2-error Mean Runtime
Deep branching 1 1.17E-02 1.36E-03 4.57E-04 1.32E-04 42m
Deep BSDE [HJE18] 1 1.39E-02 2.26E-03 3.56E-04 1.03E-04 101m
Deep Galerkin [SS18] 1 2.53E-02 2.12E-02 1.72E-03 3.02E-03 61m
Deep branching 5 2.63E-02 4.53E-03 2.69E-03 1.08E-03 146m
Deep BSDE [HJE18] 5 1.88E-02 4.57E-04 1.36E-03 9.86E-05 119m
Deep Galerkin [SS18] 5 1.32E+00 7.78E-01 3.26E+00 2.54E+00 154m

Table 3: Summary of numerical results for (4.2).
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In the case of exponential nonlinearity, our method appears significantly more accurate than

the deep Galerkin method, and performs comparably to the deep BSDE method in dimension

d = 5.
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Deep branching
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Figure 3: Comparison of deep learning methods for (4.2) with d = 5 and T = 0.05.

c) Burgers equation

Next, we consider the multidimensional Burgers equation

∂tu(t, x) +
d2

2
∆u(t, x) +

(
u(t, x)− 2 + d

2d

)(
d

d∑
k=1

∂xk
u(t, x)

)
= 0, (4.3)

with traveling wave solution

u(t, x) =
exp

(
t+ d−1

∑d
i=1 xi

)
1 + exp

(
t+ d−1

∑d
i=1 xi

) , x = (x1, . . . , xd) ∈ Rd, t ∈ [0, T ], (4.4)

see § 4.5 of [HJE17], and § 4.2 of [Cha13]. Figure 4 presents estimates of the solution of the

Burgers equation (4.3) with solution (4.4) in dimensions d = 5 and d = 20, with comparisons

to the outputs of the deep Galerkin method [SS18] and of the deep BSDE method [HJE18].
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(a) Dimension d = 1 with T = 0.5.
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(b) Dimension d = 15 with T = 0.1.

Figure 4: Numerical solution of (4.3) and comparison to (4.4) with ν = d2.

We note in Figure 4−b) that the deep branching method is more stable than the deep

Galerkin and deep BSDE methods in dimension d = 15. In particular, the deep BSDE

estimate explodes under comparable runtimes, as shown in Figure 5. Figure 5 and Table 4

have been run on a RTX A4000 GPU.
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(c) Dimension d = 10.
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(d) Dimension d = 15.

Figure 5: L1 error graphs for the solution of (4.3) as functions of time T .
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Table 4 ensures that the experiments of Figure 5 are performed within comparable runtimes.

Method d = 1 d = 5 d = 10 d = 15
Deep branching 61m 72m 117m 169m
Deep Galerkin [HJE18] 77m 184m 331m 480m
Deep BSDE [SS18] 144m 146m 145m 124m

Table 4: Average runtimes in minutes for Figure 5.

d) Merton problem

Let (Xs)t∈[0,T ] be the solution of the controlled SDE

dXs = (µπsXs − cs)ds+ πsσXsdBs

started at Xt = x, where σ > 0 and (cs)s∈[0,T ] is a square-integrable adapted process. We

consider the Merton problem

u(t, x) = inf
(πs)t≤s≤T , (cs)t≤s≤T

E
[
e−ρ(T−t)X1−γ

T

1− γ
+

∫ T

t

e−ρ(s−t)c1−γ
s

1− γ
ds

]
, (4.5)

where γ ∈ (0, 1). The solution u(t, x) of (4.5) satisfies the Hamilton-Jacobi-Bellman (HJB)

equation

∂tu(t, x) + sup
π,c

(
(πµx− c)∂xu(t, x) +

π2σ2x2

2
∂2
xu(t, x) +

c1−γ

1− γ

)
= ρu(t, x),

which, by first order condition, can be rewritten as

∂tu(t, x)−
(µ∂xu(t, x))

2

2σ2∂2
xu(t, x)

+
γ

1− γ
(∂xu(t, x))

1−1/γ = ρu(t, x), (4.6)

and admits the solution

u(t, x) =
x1−γ(1 + (α− 1)e−α(T−t))γ

αγ(1− γ)
, (t, x) ∈ [0, T ]× R,

where α := (2σ2γρ − (1 − γ)µ2)/(2σ2γ2). As the loss function used in the deep Galerkin

method uses a division by the second derivatives of the neural network function, see (1.2)

and (4.6), it explodes when the second derivatives of the learned neural network function

becomes small during the training. Hence, in Table 5, we only present the outputs of the

deep branching method and of the deep BSDE method of [BEJ19] which deals with second

order gradient nonlinearities. Table 5 summarizes the results of 10 independent runs, with
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µ = 0.03, σ = 0.1, γ = 0.5, ρ = 0.01, T = 0.1 on the interval [xmin, xmax] = [100, 200], where

we take M = 10, 000 in the deep branching method.

Method d Mean L1-error Stdev L1-error Mean L2-error Stdev L2-error Mean Runtime
Deep branching 1 8.49E-03 7.44E-04 1.30E-04 2.52E-05 54m
Deep BSDE [HJE18] 1 1.61E+00 1.05E-01 2.64E+00 3.37E-01 184m

Table 5: Summary of numerical results for (4.6).

An anomaly was detected on the third run when using ζ = ζtanh, and it disappeared after

changing the activation function to ζ = ζReLU.

 20

 22

 24

 26

 28

 100  120  140  160  180  200

Terminal condition
True solution

Deep branching
Deep BSDE

Figure 6: Deep branching vs. deep BSDE method for (4.6) with d = 1 and T = 0.1.

In Figure 7, we plot the Monte Carlo samples generated by Algorithm 1 and the learned

neural network function v(·, ·; θ), see Algorithm 2, for ζ = ζReLU and for ζ = ζtanh on the

third run.
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 500

 1000

 1500

 2000

 2500

 3000

 3500

 100  120  140  160  180  200

Monte Carlo samples
Neural network function

(b) ζ = ζtanh

Figure 7: Monte Carlo samples and the neural network function on the third run.

Figure 7 shows the consistency, or lack thereof, between the Monte Carlo samples and the

learned neural network function, which cannot be observed when using the deep Galerkin or

deep BSDE method.
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e) Third order gradient log nonlinearity

This Example e) and the next Example f) use nonlinearities in terms of third and fourth or-

der gradients, to which the deep BSDE method does not apply. For this reason, comparisons

are done only with respect to the Galerkin method. Consider the equation

∂tu(t, x) +
α

d

d∑
i=1

∂xi
u(t, x) + log

(
1

d

d∑
i=1

(
∂2
xi
u(t, x)

)2
+
(
∂3
xi
u(t, x)

)2)
= 0, (4.7)

which admits the solution

u(t, x) = cos

(
d∑

i=1

xi + α(T − t)

)
, (t, x) ∈ [0, T ]× Rd.

Table 6 summarizes the results of 10 independent runs, with M = 6, 000 in dimension d = 1

(resp. M = 200 in dimension d = 5), α = 10, T = 0.02, xmin = −3, and xmax = 3.

Method d Mean L1-error Stdev L1-error Mean L2-error Stdev L2-error Mean Runtime
Deep branching 1 5.82E-03 1.27E-03 5.52E-05 2.01E-05 78m
Deep Galerkin [SS18] 1 7.50E-02 3.15E-02 9.00E-03 7.34E-03 83m
Deep branching 5 2.77E-02 1.13E-02 3.52E-03 4.65E-03 183m
Deep Galerkin [SS18] 5 6.38E-01 5.74E-03 5.18E-01 1.08E-02 369

Table 6: Summary of numerical results for (4.7).

In the case of log nonlinearity with a third order gradient term, our method appears more

accurate than the deep Galerkin method in dimensions d = 1 and d = 5. Figure 8 presents

a numerical comparison on the average performance of 10 runs.
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Figure 8: Deep branching vs. deep Galerkin method for (4.7) with d = 5 and T = 0.02.
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f) Fourth order gradient cosine nonlinearity

Consider the equation

∂tu(t, x) +
α

d

d∑
i=1

∂xi
u(t, x) + u(t, x)−

(
∆u(t, x)

12d

)2

+
1

d

d∑
i=1

cos

(
π∂4

xi
u(t, x)

4!

)
= 0, (4.8)

which admits the solution

u(t, x) = φ

(
d∑

i=1

xi + α(T − t)

)
, (t, x) ∈ [0, T ]× Rd,

where φ(y) := y4 + y3 + by2 + cy + d for y ∈ R, b = −36/47, c = 24b, d = 4b2, and α = 10.

Table 7 summarizes the results of 10 independent runs, with M = 2, 500 in dimension

d = 1 (resp. M = 50 in dimension d = 5), α = 10, T = 0.04, xmin = −5, and xmax = 5.

Method d Mean L1-error Stdev L1-error Mean L2-error Stdev L2-error Mean Runtime
Deep branching 1 9.62E+00 1.50E+00 3.76E+02 1.62E+02 128m
Deep Galerkin [SS18] 1 2.81E+01 2.77E+01 2.31E+03 4.45E+03 146m
Deep branching 5 1.01E+01 1.16E+00 3.49E+02 1.62E+02 259m
Deep Galerkin [SS18] 5 2.57E+02 1.18E+00 7.75E+04 6.55E+02 670

Table 7: Summary of numerical results for (4.8).

In the case of cosine nonlinearity with a fourth order gradient, our method appears more

accurate than the deep Galerkin methods in dimensions d = 1 and d = 5. Figure 9 presents

a numerical comparison on the average performance of 10 runs.
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Figure 9: Deep branching vs. deep Galerkin method for (4.8) with d = 5 and T = 0.04.

A Multidimensional extension

In this section we sketch the argument extending Theorem 1 in [NPP23] to the multidimen-

sional case, and leading to (2.1). For this, given g ∈ C0,∞([0, T ]×Rd) and µ ∈ Nn such that
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|µ| ≥ 1, we will use the multivariate Faà di Bruno formula

∂µg
∗(u)(t, x) =

(
d∏

i=1

µi!

) ∑
1≤ν1+···+νn≤|µ|

1≤s≤|µ|

(∂νg)
∗(u)(t, x)

∑
1≤|k1|,...,|ks|, 0≺l1≺···≺ls

ki1+···+kis=νi, i=1,...,n

|k1|l1j+···+|ks|lsj=µj , j=1,...,d

∏
1≤r≤s
1≤q≤n

(∂lr+λqu(t, x))k
q
r

kq
r ! (lr1! · · · lrd!)

kqr
,

(A.1)

see Theorem 2.1 in [CS96], applied to the function g∗(u)(t, x) := g
(
∂λ1u(t, x), . . . , ∂λnu(t, x)

)
.

We have

∂tg
∗(u) +

1

2
∆g∗(u)

=
n∑

p=1

∂λp

(
∂tu+

1

2
∆u

)
(∂1pg)

∗(u) +
1

2

n∑
i=1

n∑
j=1

d∑
k=1

(∂λi+1k
u) (∂λj+1k

u) (∂1i+1j
g)∗(u)

= −
n∑

p=1

(∂1pg)
∗(u)∂λpf ∗(u) +

1

2

n∑
i=1

n∑
j=1

d∑
k=1

(∂λi+1k
u) (∂λj+1k

u) (∂1i+1j
g)∗(u)

= −
n∑

p=1

1{λp=0}(∂1pg)
∗(u)f ∗(u)

−
n∑

p=1

(∂1pg)
∗(u)

(
d∏

i=1

λp
i !

) ∑
1≤ν1+···+νn≤|λp|

1≤s≤|λp|

(∂νf)
∗(u)

∑
1≤|k1|,...,|ks|, 0≺l1≺···≺ls

ki1+···+kis=νi, i=1,...,n

|k1|l1j+···+|ks|lsj=λp
j , j=1,...,d

∏
1≤r≤s
1≤q≤n

(∂lr+λqu)k
q
r

kq
r ! (lr1! · · · lrd!)

kqr

+
1

2

n∑
i=1

n∑
j=1

d∑
k=1

(∂λi+1k
u) (∂λj+1k

u) (∂1i+1j
g)∗(u).

Rewriting the above equation in integral form yields

g∗(u)(t, x) =

∫
Rd

φ(T − t, y − x)g(ϕ(y))dy

+

∫ T

t

∫
Rd

φ(s− t, y − x)( n∑
p=1

1{λp=0}(∂1pg)
∗(u)f ∗(u)− 1

2

n∑
i=1

n∑
j=1

d∑
k=1

(∂λi+1k
u(s, y)) (∂λj+1k

u(s, y)) (∂1i+1j
g)∗(u)

+
n∑

p=1

(∂1pg)
∗(u)

(
d∏

i=1

λp
i !

) ∑
1≤ν1+···+νn≤|λp|

1≤s≤|λp|

(∂νf)
∗(u)

∑
1≤|k1|,...,|ks|, 0≺l1≺···≺ls

ki1+···+kis=νi, i=1,...,n

|k1|l1j+···+|ks|lsj=λp
j , j=1,...,d

∏
1≤r≤s
1≤q≤n

(∂lr+λqu(s, y))k
q
r

kq
r ! (lr1! · · · lrd!)

kqr

)
dyds.

(A.2)
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Similarly, for µ ∈ Nd, by the Faà di Bruno formula (A.1) we have

∂µu(t, x) =

∫
Rd

φ(T − t, y − x)∂µu(T, y)dy

+

∫ T

t

∫
Rd

∑
1≤ν1+···+νn≤|µ|

1≤s≤|µ|

∑
1≤|k1|,...,|ks|, 0≺l1≺···≺ls

ki
1+···+ki

s=νi, i=1,...,n

|k1|l1j+···+|ks|lsj=µj , j=1,...,d

d∏
i=1

µi!∏
1≤r≤s
1≤q≤n

kq
r ! (lr1! · · · lrd!)

kqr
(∂νf)

∗(u)
∑
1≤r≤s
1≤q≤n

(
∂lr+λqu(s, y)

)kqrdyds.
(A.3)

Combining (A.2) and (A.3) yields the equation

c(u)(t, x) =

∫ ∞

−∞
φ(T−t, y−x)c(u)(T, y)dy+

∑
Z∈M(c)

∫ T

t

∫ ∞

−∞
φ(s−t, y−x)

∏
z∈Z

z(u)(s, y)dyds,

(A.4)

(t, x) ∈ [0, T ] × R, for any code c ∈ C, as in Lemma 2.3 of [NPP23]. The dimension-free

argument of Theorem 1 in [NPP23] then shows that (2.1) holds provided that H(t, x, Id) is
integrable and the solution of (A.4) is unique.
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[HPW20] C. Huré, H. Pham, and X. Warin. Deep backward schemes for high-dimensional nonlinear
PDEs. Math. Comp., 89(324):1547–1579, 2020.

[HZRS16] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[INW69] N. Ikeda, M. Nagasawa, and S. Watanabe. Branching Markov processes I, II, III. J. Math.
Kyoto Univ., 8-9:233–278, 365–410, 95–160, 1968-1969.

21



[IS15] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, pages 448–456, 2015.

[KB14] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. Preprint
arXiv:1412.6980, 2014.

[Kry83] N.V. Krylov. Boundedly nonhomogeneous elliptic and parabolic equations. Math. USSR, Izv.,
20:459–492, 1983.

[LLP23] W. Lefebvre, G. Loeper, and H. Pham. Differential learning methods for solving fully nonlinear
PDEs. Digital Finance, 5:189–229, 2023.
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