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1 Introduction

One of the aims of this work is to answer the apparently elementary question of how

to define a “stochastic integrable dynamical system”. Stochastic analysis, initiated

by Norbert Wiener’s mathematical construction of Brownian motion in the 1920s, is
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nowadays a very elaborated subject due to its rapid development since 1980, cf. [9],

[15], [20]. It is used always more in applications ranging from physics to life sciences

and economics.

The theory of Stochastic Differential Equations (SDEs), due to Kyosi Itô, is a corner-

stone of modern stochastic analysis. One way to look at SDEs is to see them as some

probabilistic deformations of ordinary differential equations (ODEs). In particular, as

for ODEs, regularity conditions on the coefficients of the SDE insuring the existence

and uniqueness of the solutions have been known for a long time (Lipschitz conditions

are sufficient). When those coefficients are linear, explicit formulas inspired by the

corresponding classical ODE are available and, in this sense, these equations are inte-

grable as the ones resulting, obviously, from diffeomorphic transformations of those.

But, interestingly, no rigorous and general concept of integrability seems to have been

defined for SDEs. In [14], however, it is shown how a stochastic theorem of Noether

allows one to define the probabilistic counterparts of first integrals for special systems

and, the associated relations between diffusions, called “stochastic quadratures”, see

also [17] in the jump case.

This contrasts strongly with the historical development of ODEs, where the concept

of integrability appeared quite early with Liouville and others. One reason for this

difference lies in the motivations of the scientists involved then and now. In the early

stages of the ODE theory, the central problem to be solved was the N body problem,

the most famous problem of classical dynamical system theory. In fact, the various

approaches of classical mechanics, as it is taught nowadays, have precisely been suc-

cessively elaborated with this specific target in mind.

Nothing analogue to the N body problem has accompanied the development of stochas-

tic analysis. This explains, in parts, why this theory is often regarded as abstract and

difficult by theoretical physicists. It is, indeed, quite hard to understand even in

what sense stochastic analysis could be a dynamical theory at all. A way to strongly

reduce the gap with the theory of dynamical systems has been initiated in the mid
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eighties and developed under the name of Euclidean Quantum Mechanics (also re-

ferred to by some authors as “Stochastic Deformation”, cf. [13]). A first dynamical

attempt was due to Nelson twenty years earlier, however his non-Euclidean framework

[16], founded on the Schrödinger equation and not on heat equations like ours, never

sucessfully considered the notion of integrability.

In this Euclidean context, indeed, the basic tools of classical mechanics, the Hamil-

tonian, Lagrangian and variational ones were deformed so as to accomodate with the

continuous but nowhere differentiable trajectories solving some SDE. Those underly-

ing stochastic processes enjoy very special properties, as could be expected, and are

known as “Bernstein processes” or “reciprocal processes”. Since then, they have reap-

peared in many different contexts, and under different names, often without reference

to their motivational origin, cf. [22]. An unusual property of Bernstein processes

is their invariance under time reversal, even when their infinitesimal coefficients are

explicitly time dependent. This particularity lies, in fact, at the heart of their origi-

nal construction, cf. [2], [4], [3]. The expression “stochastic deformation” mentioned

above is indeed appropriate in this original perspective; those Bernstein processes are

deformations of classical trajectories in the same sense as quantum mechanics can be

regarded as a deformation of classical mechanics, especially along the line of Feyn-

man’s path integrals.

We are going to use those ingredients in order to answer our “elementary” questions,

in the simplest possible context of the underlying classical theory, where the notion

of integrability is completely obvious. We shall see that, even in this simple case, the

answer requires some ingenuity, and certainly not the use of well known methods of

the traditional theory of stochastic processes. On the other hand, the result is con-

vincing since it provides not only the deformation of the classical answer but, as well,

that of all the independent approaches to obtain this answer in classical mechanics.

Through the whole work, the term “classical” will therefore refer to a result known

to be true for smooth trajectories, i.e. before applying the stochastic deformation

advocated here.
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The outline of this paper is as follows. In Section 2 we review the theory of one dimen-

sional classical integrable systems. In Section 3 we introduce a stochastic deformation

of such a system, and in Section 4 we present the deformation of its Characteristics.

Section 5 is concerned with the random time reversal of the construction, and in

Section 6 we consider the free case V = 0 as an example with explicit calculations.

2 One dimensional classical integrability

A remarkable particularity of one dimensional conservative Newtonian dynamical sys-

tems is that, in the terms used by the old masters of classical mechanics, they are

“integrable by quadrature”. This means that the solutions of their equations of mo-

tion can be expressed in terms of their coefficients by solving algebraic equations and

integration.

More precisely, for an elementary (mass 1) particle with position x(τ) in a continuous

potential V , the Newton and energy conservation laws during a time interval I = (s, u)

take the form

ẍ(τ) = −∇V (x(τ)), (2.1)

and
1

2
|ẋ(τ)|2 + V (x(τ)) = α, τ ∈ I, (2.2)

for α a constant.

Next we review several classical approaches to the solution of the above problem. In

the sequel, the notation F [x(·)] will denote a functional of the whole trajectory x(·)
and the function F (x) of a real variable will refer to the value of the same functional

evaluated at the initial (or final) condition x(t) = x ∈ IR.

4



Integration by quadrature

Let now t ∈ I = (s, t) be fixed and let x = x(t). From Condition (2.2) we can solve

(2.1) using the following reduction procedure:

τ − t =



∫ x(τ)

x

dξ√
2(α− V (ξ))

if ẋ(t) > 0, t ≤ τ ≤ τp ≤ u,

−
∫ x(τ)

x

dξ√
2(α− V (ξ))

ẋ(t) < 0, t ≤ τ ≤ τn ≤ u,

(2.3)

where τp = sup{r ∈ [t, u) : ẋ(r′) > 0, r′ ∈ [t, r]} and τn = sup{r ∈ [t, u) : ẋ(r′) <

0, r′ ∈ [t, r]}, cf. [6], where each of τp and τn can be infinite when I is.

In addition it is well known, cf. [1], that the solution trajectory

x(·) : I −→ [0, y]

τ 7−→ x(τ),

where y > 0, is a critical point of the “reduced” action functional built from the

Poincaré one-form:

Wα[x(·)] =

∫ y

x

p(τ)dx(τ), (2.4)

on the smooth and energy conditioned path space

Ωα
x,t =

{
I 3 τ 7−→ x(τ) ∈ [0, y], of class C2, s.t x(t) = x and (2.2) holds

}
,

where p = ẋ = ∂L/∂ẋ is the momentum for the Lagrangian

L(x, ẋ) =
1

2
|ẋ|2 − V (x) (2.5)

of our elementary Newtonian system (2.1).

An important observation, for what follows, is that since the ODE (2.1) is autonomous,

it is time reversible in the sense that if

x(·) : I −→ [0, y]
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τ 7−→ x(τ)

is a (smooth) solution, then the same is true of its time reversal x̂(τ) = x(u+ s− τ)

with

˙̂x(τ) = −ẋ(u+ s− τ), τ ∈ I, (2.6)

when I is bounded. The same elementary dynamical system can, of course, be anal-

ysed using the method of Characteristics (or of Hamilton-Jacobi), cf. [1], [8].

Hamilton-Jacobi equation

Another approach to the problem (2.1)-(2.2) is, indeed, to compute the action func-

tional S(x, t) of the system by solving the final value Hamilton-Jacobi (HJ) nonlinear

partial differential equation

−∂S
∂t

+H

(
x,−∂S

∂x

)
= 0, (2.7)

where

H(x, p) =
1

2
|p|2 + V (x) (2.8)

is the associated Hamiltonian, and to recover the momentum and position of the

system from the knowledge of S(x, t), as illustrated below. Note that two Hamilton-

Jacobi equations, mutually adjoint in time, should in fact be associated with any

elementary dynamical system, cf. [3] for more on this topic.

When V (x) is bounded and time independent, the separation of time and space vari-

ables allows us to look for a one-parameter family (Sα)α∈IR of solutions of (2.7) of the

form

Sα(x, t) =Wα(x)− α(τ − t), (2.9)

where the Hamilton characteristic function Wα solves the reduced Hamilton-Jacobi

equation

H

(
x,−∂Wα

∂x

)
= α, (2.10)

which is another formulation of the underlying conservation of energy principle, for

our L(x, ẋ) defined in (2.5).
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The reduced Hamilton-Jacobi equation (2.10) can be solved by

Wα(x) =

∫ y

x

√
2(α− V (ξ)) dξ, (2.11)

which is called Hamilton’s characteristic function.

Next, consider the canonical transformation of variables generated by Wα(x), i.e.

∂Wα

∂α
(x) =

∫ y

x

dξ√
2(α− V (ξ))

(2.12)

and
∂Wα

∂x
(x) = −

√
2(α− V (x)). (2.13)

Clearly, by (2.2) we have

p(x) = −∂Wα

∂x
(x),

and this connects Hamilton’s characteristic function (2.11) to the action functional

Wα(x) since we have

d

dt
Wα(x(t)) = ẋ(t)

∂Wα

∂x
(x(t)) = −ẋ(t)p(x(t)), (2.14)

as in (2.4). In addition, by (2.3) we have

d

dt

∂Wα

∂α
(x(t)) =

d

dt

∫ y

x(t)

dξ√
2(α− V (ξ))

= − ẋ(t)√
2(α− V (ξ))

= −1,

hence

mα(x(t)) :=
∂Wα

∂α
(x(t))

satisfies the following “time equation”
d

dt
mα(x(t)) = −1,

mα(y) = 0.

(2.15)

By Relation (2.12) this equation has the same content as our integration by quadrature

(2.3) (modulo the sign of ẋ(t)) and, in this sense, deserves its name.
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Method of characteristics

Our classical dynamical problem (2.1) is solved by the Hamilton-Jacobi method of

characteristics as, taking the gradient of (2.10) and using (2.13), we recover the start-

ing Newton equation (2.1), i.e.

d

dt
p(t) = p(t)

∂p

∂x
(t) = −∇V (x(t)).

In the general case, i.e. when the separation (2.9) of the space and time variables is

not possible in the HJ Equation (2.7), one should look for critical points of the action

functional

S[x(·)] :=

∫ u

s

L(x(τ), ẋ(τ)) dτ, (2.16)

instead of those of (2.4), where the Lagrangian L(x, ẋ) is defined on the unconditioned

space

Ω =
{
x ∈ C2(I;R) : x(s) and x(u) are fixed

}
of smooth paths. Then (cf. [1]), the critical points of S[x(·)] solve the Euler-Lagrange

equation:
d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= 0 (2.17)

which, for our elementary system, coincides of course with (2.1).

The relation between the reduced action (2.4) and (2.16) rests on the fact that S can

be extended to an Hamiltonian functional

SH [x(·), p(·)] =

∫ u

s

p(τ)dx(τ)−
∫ u

s

H(x(τ), p(τ))dτ (2.18)

=

∫ u

s

(p(τ)ẋ(τ)−H(x(τ), p(τ)))dτ,

on the smooth paths in the phase space of our system, and on the remarkable obser-

vation, relying on the properties of the Legendre transform, that the critical points

of (2.18) coincide with those of (2.16) (cf. [1], [3]), so that (2.16) and (2.18) can be

identified along those smooth extremals.
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We close this section by recalling a fundamental invariance principle in the classical

calculus of variations, which states that, for any (differentiable) function m(q, τ), and

a given LM = LM(q, q̇), the modified Lagrangian

L := LM(x(τ), ẋ(τ)) +
dm

dτ
(x(τ), τ) (2.19)

is dynamically equivalent to LM . The extra time derivative

dm

dτ
(x(τ), τ) =

∂m

∂τ
(x(τ), τ) + ẋ(τ) · ∇m(x, τ)

is called a “null Lagrangian” (cf. [8]). The equivalence class of Lagrangians associated

with this invariance is precisely at the origin of the theory of canonical transformations

(symplectomorphisms) in Hamiltonian mechanics [1], [8].

3 Stochastic deformation

Our plan is now to deform stochastically the framework described in Section 2 so

that all the above-mentioned statements can be generalized to Brownian-like trajec-

tories. This means, in particular, that our new path spaces will be much larger than

in Section 2, and will contain all continuous paths. It is also clear that the generic

non-differentiability of those paths requires the introduction of a number of additional

regularizations (in the sense used in Quantum Field Theory, for instance), as most of

the expressions of Section 2 do not make sense anymore along such irregular paths.

By “stochastic deformation” we mean, here, a program of minimal deformation of the

tools introduced in Section 2 according to a (positive) deformation parameter ~. By

“minimal” we mean a program aiming to preserve the essential part of the various

classical structure involved in Section 2.

Let t ∈ I be fixed. Any smooth trajectory τ 7→ x(τ) considered in Section 2 will now

be deformed into the solution (Zτ )τ∈[t,u] of an Itô stochastic differential equation of

the form 
dZ(τ) = B(Z(τ), τ) dτ + ~1/2 dWτ , τ ≥ t,

Z(t) = x,

(3.1)
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where (Wτ )τ∈IR+ is a standard Brownian motion and B(z, τ) is a drift such that Equa-

tion (3.1) has a unique solution. The deformations considered here belong to the class

of Bernstein or reciprocal processes, cf. Section 5 and [3], [4], [22].

The solution (Z(τ))τ∈[t,u] of (3.1) is a real-valued stochastic process defined on a prob-

ability space (Ω,G, P ), equipped with an increasing family (Pτ )τ∈I ⊂ G of σ-algebras

(i.e. a “filtration”) generated by the Brownian motion (Wτ )τ∈I , i.e. Pr represents the

past information generated by (Z(τ))τ∈[t,u] up to time r ∈ [t, u].

Any such diffusion (Z(τ))τ∈[t,u] admits an infinitesimal generator Dτ of the form

Dτf(Z(τ), τ) =
∂f

∂τ
(Z(τ), τ) +B(z, τ) · ∇f(Z(τ), τ) +

~
2

∆f(Z(τ), τ), (3.2)

interpreted here as a deformation (in the parameter }) of the time derivative
d

dτ
along the classical flow associated with B(z, τ). Here, unlike in the classical theory of

stochastic processes, cf. [9], we include the time partial derivative
∂

∂τ
in the definition

of the infinitesimal generator Dτ . In particular, (3.2) applied to f(τ, z) = z yields

Dτ Z(τ) = B(Z(τ), τ). (3.3)

Recall, cf. [22], [4], that the stochastic deformation of the action (2.16) is given by

SL(x, t) = Ext

[∫ τ̂

t

L(Z(τ), Dτ Z(τ)) dτ

]
(3.4)

with Lagrangian

L(q, q̇) =
1

2
|q̇|2 + V (q), (3.5)

where τ̂ denotes any Markov time (also called stopping time) with finite expectation

and Ext denotes the conditional expectation given Z(t) = x. Note that the left-hand

side of (3.5) depends implicitly on the Markov time τ̂ . Such Markov times will be

needed afterwards. The relevant diffusion process Z will be defined, indeed, in spatial

intervals and τ̂ will represent, typically, an exit time from such intervals, relevant for

the boundary conditions of the PDE solved by processes that are critical for the given
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functional.

A process Z = (Z(τ))τ∈[t,u] in the domain of a functional F [Z] of the form (3.4) is

called critical for F , cf. [22], [4], [3], if the directional derivative of F at Z along any

direction δZ vanishes in the sense that

δF = Ext
[
∇F [Z](δZ)

]
= 0, (3.6)

where the dependence of F in the process (Z(τ))τ∈I is denoted by F [Z]. In (3.6), ∇F

denotes the a.s. Gâteaux derivative

∇F [Z](δZ) = lim
ε→0

F [Z + εδZ]− F [Z]

ε
(3.7)

and δZ is an absolutely continuous function in the Cameron-Martin space [15] equipped

with the scalar product

〈ϕ1|ϕ2〉 :=

∫ ∞
0

ϕ̇1(τ)ϕ̇2(τ)dτ.

Consequently the probability measure induced by the shift (Z(τ) + εδZ(τ))τ∈I is ab-

solutely continuous with respect to the law of (Zτ )τ∈I , and the variation F [Z+εδZ]−
F [Z] of F [Z] is well defined in (3.7).

For the special case of a functional such as (3.4), the computation of the directional

derivative (3.6) has been done explicitly in [4], [3]. It amounts, as in the classical

case, to a time integration by parts under the integral sign, using Itô’s formula, and

relies on the fact that δZ is differentiable and arbitrary in the Cameron-Martin space.

In Stochastic Analysis (and in Feynman’s approach) it is related to an integration

by parts formula on a path space, cf. [15]. Interestingly, such integration by parts

formulas have been regarded as a fundamental (but informal) tool since the inception

of Feynman’s space-time approach. They played again a central role 40 years later, in

Malliavin’s stochastic calculus of variations, cf. [3] for more details. These formulas

are available, in fact, even when the underlying processes are not Markovian, cf. [21].
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In particular it has been shown in [4] that the critical points Z[·] of SL(x, t) in the

class (3.1) are characterized by the drift

B(z, τ) = ~∇ log η(z, τ),

where η(z, τ) is any positive solution of the backward heat equation:

}
∂η

∂τ
(z, τ) = −~2

2
∆η(z, τ) + V (z)η(z, τ), τ ∈ I, (3.8)

and that they solve almost surely the stochastic deformation

Dτ

(
∂L

∂Dτ Z(τ)

)
− ∂L

∂Z(τ)
= 0, τ ∈ I, (3.9)

of the Euler-Lagrange equation (2.17), which can be rewritten here as the stochastic

deformation

Dτ Dτ Z(τ) = ∇V (Z(τ)) (3.10)

of the Newton equation (2.1).

Next, for any constant α ∈ IR we introduce a deformation of the energy conservation

law (2.2) as
1

2
|Bα|2(z, τ) +

~
2
∇Bα(z, τ)− V (z) = α, (3.11)

cf. also Relation (4.3) below. We shall use later the fact that (3.11) is a Riccati

equation for Bα(z, t).

Note that the sign of the potential V (z) in the deformed energy conservation relation

(3.11) is different from that of (2.2), which is to be expected when deforming, with

well defined probability measures, the structure of classical mechanics. This is an-

other expression of the familiar fact that Feynman’s path integral is not well defined

probabilistically, but the Feynman-Kac formula is, cf. [3] for instance. For simplicity,

we shall consider here the class of real-valued bounded continuous potentials V (z)

such that |V (z)| < α, z ∈ IR. Relation (3.11) shows that the following finite and

positive kinetic energy condition follows:

0 <
1

2
|Bα|2 +

}
2
∇Bα < 2α. (3.12)
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Notice that, although for smooth trajectories (} = 0) the positivity is, of course,

trivial, here it is not so because of the deformation term }1/2dWt. In particular, a

divergence of Bα cannot be excluded anymore in the calculations.

In Theorem 3.3 below we will state the stochastic deformation of the variational prin-

ciple relative to the reduced action (2.4) under Condition (3.11), using the reduced

action defined in (3.13) below.

We will need the following Lemmas 3.1 and 3.2. Here, ◦ denotes the Stratonovich

differential, cf. [9], [10], and τ̂ denotes any integrable Markov time with respect to

(Pr)r∈I .

Lemma 3.1. Let α ∈ IR and assume that the equation

Dτm(z) = β, z ∈ IR, τ ∈ I,

has a smooth solution mβ(z) for some β ∈ IR, β 6= 0. Then the trajectories (Zα(τ))τ∈[t,u]

solving the deformed Newton equation (3.10) under the deformed energy conservation

relation (3.11) are critical points of the deformed reduced action

Ext

[∫ τ̂

t

Bα(Z(τ)) ◦ dZ(τ)

]
(3.13)

whose Lagrangian is

LM = |Bα|2 +
~
2
∇Bα,

among all the solutions (Zα(τ))τ∈[t,u] of (3.1) with drift Bα(z, τ) satisfying (3.11).

Proof. Using Itô-Stratonovich calculus, Condition (3.11) and Relation (3.5), we

rewrite (3.4) as

SL(x, t) = Ext

[∫ τ̂

t

L(Z(τ), DτZ(τ))dτ

]
= Ext

[∫ τ̂

t

Bα(Z(τ), τ) ◦ dZ(τ)

]
−Ext

[∫ τ̂

t

(
1

2
|Bα(Z(τ), τ)|2 +

~
2
∇Bα(Z(τ), τ)− V (Z(τ))

)
dτ

]
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= Ext

[∫ τ̂

t

Bα(Z(τ), τ) ◦ dZα(τ)

]
− αExt[τ̂ − t] (3.14)

= Ext

[∫ τ̂

t

(
LM(Zα(τ), τ)− α

β
Dτmβ(Zα(τ))

)
dτ

]
,

on the restricted class of stationary diffusions (Zα(τ))τ∈I with drift Bα(z, τ) satisfying

(3.11). The conclusion follows from Lemma 3.2 below which shows that LM − α
β
Dτmβ

is dynamically equivalent to LM , and from the relation

Ext

[∫ τ̂

t

Bα(Z(τ), τ) ◦ dZα(τ)

]
= Ext

[∫ τ̂

t

LM(Zα(τ), τ)dτ

]
.

�

In the next lemma we check that the stochastic actions built on a Lagrangian LM

and its Gauge transformation of the form LM + Dτm are dynamically equivalent as

a deformed analog of (2.19) above. As a consequence, we will describe the dynam-

ics of the system via the stochastic Euler-Lagrange equation using anyone of those

Lagrangians.

Lemma 3.2. Given m(z) in the domain of Dτ , any smooth Lagrangian

LM(Z(τ), DτZ(τ))

is dynamically equivalent to

L(Z(τ), DτZ(τ)) = LM(Z(τ), DτZ(τ)) +Dτm(Z(τ))

in the sense that LM and LM +Dτm both satisfy the same stochastic Euler-Lagrange

equation (3.9).

Proof. Let the Lagrangian L(Z(τ), DτZ(τ)) be defined by

L(Z(τ), DτZ(τ)) = Dτm(Z(τ)).

Using (3.2), this means that

L(Z(τ), DτZ(τ)) = DτZ(τ) · ∇m(Z(τ)) +
}
2

∆m(Z(τ)),
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is linear in DτZ, hence

Dτ
∂L

∂DτZ(τ)
− ∂L
∂Z(τ)

= 0.

This shows that the critical processes for L = LM+L and LM solve the same stochastic

Euler-Lagrange equation (3.9), hence m(Z(τ)) does not bring any new dynamical

constraint. �

In the sequel we let

τ y = inf
{
τ ∈ [t, u] : Z(τ) = y |Z(t) = x

}
(3.15)

denote the first exit time from [0, y] at y > 0 after time t.

Theorem 3.3. The trajectories (Z(τ))τ∈[t,u] ⊂ [0, y] solving the deformed Newton

equation (3.10) are critical points of the deformed reduced action

Ext

[∫ τy

t

Bα(Z(τ), τ) ◦ dZ(τ)

]
(3.16)

among all the solutions (Zα(τ))τ∈[t,u] of (3.1) with drift Bα(z, τ) satisfying the de-

formed energy conservation relation (3.11). In addition, the critical diffusion (Zα(τ))τ∈[t,u]

solve the a.s. deformation
Dτm(Zα(τ)) = −1, τ ∈ [t, τ y],

m(y) = 0,
(3.17)

of the time equation (2.15), where m(x) is the function

m(x) := Ext[τ
y]− t, x ∈ [0, y]. (3.18)

Proof. First, we note that by Itô’s calculus we have

m(Zα(τ)) + τ = m(Zα(t)) + t+ }1/2
∫ τ

t

∇m(Zα(r))dWr +

∫ τ

t

(1 +Drm(Zα(r)))dr,

(3.19)

hence

1 +Dτm(Zα(τ)) = 0, τ ∈ [t, u],
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since (τ +m(Zα(τ)))τ∈[t,u] is a Pτ -martingale by (3.18), which shows the first part of

(3.17). Next we note that by (3.19) and Dynkin’s formula [12] as in [3] we have

Ext[m(Zα(τ))] = m(x) + Ext

[∫ τ̂

t

Dτm(Zα(τ))dτ

]
(3.20)

= m(x)− Ext[τ̂ − t], τ ∈ [t, u],

with

m(y) = Eyt[τ
y]− t = 0,

which shows the second part of (3.17). To conclude with the proof of (3.16) we apply

Lemma 3.1 with τ̂ = τ y.

What has been already said for (smooth) critical points of stochastic actions of the

form (3.4) and the linearization (3.26) of the Riccati equation expressing the energy

conservation law, shows how to build explicitly the stationary diffusions (Zα(τ))τ∈[t,u].

Starting from a (smooth) positive stationary solution of the backward heat equation

(3.8), of the form

η(x, t) = gα(x)e−αt/~, (3.21)

for

−}2

2
∆g(x) + V (x)g(x) = −αg(x), (3.22)

the drift and probability density of (Zα(τ))τ∈[t,u] are respectively given by

Bα(x) = ~
∇gα
gα

(x), (3.23)

and

P (Zα(τ) ∈ dx) = |gα(x)|2dx, τ ∈ I, (3.24)

cf. [22].

However, such an arbitrary (Zα(τ))τ∈[t,u] suffers from a serious flaw, in our dynamical

system perspective, since it is clearly allowed to reach any border of the spatial interval

[0, y], at the bilateral random time

τ[0,y] = inf
{
τ ≥ t : Zα(τ) = 0 or Zα(τ) = y |Zα(t) = x

}
. (3.25)
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In fact, the variational argument used in Theorem 3.3 shows that it is the first exit

time τ y at y after t, and not τ[0,y], which is dynamically relevant. Hence, in order to

make sense in our framework, a diffusion (Zα(τ))τ∈[t,u] given by (3.23) with (3.24) has

to satisfy the unilateral boundary condition required by Theorem 3.3 and (3.17).

Such critical processes will be constructed by conditioning the diffusion (Zα(τ))τ∈[t,u]

to reach y only. J. L. Doob has shown long ago how to do this (cf. [5]), and the

solution is nowadays called a Doob transform of the original process.

It is well-known that the solution Bα(x) of the Riccati equation (3.11) can be written

as

Bα(x) = }∇ log(c+g
+
α (x) + c−g

−
α (x)), (3.26)

where g+α and g−α are two (positive) linearly independent solutions of the time inde-

pendent heat equation (3.22) and c+, c− ∈ IR are arbitrary constants, not both equal

to 0.

For a given, strictly positive, gα(z) as in (3.21), not vanishing at z = 0, let

g+α (z) = gα(z)

∫ z

0

|gα(ξ)|−2dξ, z ∈ [0, y], (3.27)

which satisfies the same PDE (3.22) as gα(x). Next, defining

q+α (z) =
g+α (z)

gα(z)

gα(y)

g+α (y)
, (3.28)

it is easy to check that q+α (z) is positive and solves, a.s.,
Dτq

+
α (Zα(τ)) = Bα(Zα(τ), τ) · ∇q+α (Zα(τ)) +

~
2

∆q+α (Zα(τ)) = 0,

q+α (0) = 0, q+α (y) = 1,

(3.29)

hence (q+α (Zα(τ)))τ [t,u] is a positive, forward martingale which allows us to produce

a new diffusion (Z+
α (τ))τ∈[t,u] starting from the given one (Zα(τ))τ∈[t,u]. According to

Doob [5], this process has the same diffusion coefficient }1/2 as (Zα(τ))τ∈[t,u], and a

17



new drift B+
α (z) of the form

B+
α (z) = ~

∇gα
gα

(z) + ~
∇q+α
q+α

(z) = ~
∇g+α
g+α

(z) (3.30)

In particular, B+
α (z) is singular at z = 0 from (3.27), and this implies that (Z+

α (τ))τ∈I ,

in contrast with (Zα(τ))τ∈I , cannot reach the origin anymore, i.e. 0 becomes an “en-

trance boundary”.

Since g+α (z) is solution of the same stationary free heat equation (3.22) as gα(z), it is

clear by (3.8) and (3.10) that (Z+
α (τ))τ∈[t,u] solves the Newton equation

DτDτZ
+
α (τ) = ∇V (Z+

α (τ)), (3.31)

as well as the deformed time equation (3.17) of Theorem 3.3, i.e.
Dτm(Z+

α (τ)) = −1,

m(y) = 0,
(3.32)

where

m(x) = Ext[τ
y − t], (3.33)

under the boundary condition (3.17). The construction of (Z+
α (τ))τ∈[t,u] from the

initial diffusion (Zα(τ))τ∈[t,u] has clearly introduced an asymmetry between the two

boundaries of our space interval [0, y]. But we could have chosen as well to condition

(Zα(τ))τ∈[t,u] on reaching only the lower border 0, and the analysis would have been

quite similar.

Let us now summarize the above results regarding the counterpart (Z−α (τ))τ∈[t,u] of

(Z+
α (τ))τ∈[t,u]. Let us define, if gα(y) 6= 0,

q−α (x) =
gα(0)

g−α (0)

g−α (x)

gα(x)
, x ∈ [0, y], (3.34)

where

g−α (x) = gα(x)

∫ y

x

|gα(ξ)|−2dξ, x ∈ [0, y]. (3.35)
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Then (q−α (Z−α (τ)))τ∈[t,u] is another positive martingale solving as well (3.29), but with

permuted boundary conditions:

q−α (0) = 1, and q−α (y) = 0. (3.36)

The corresponding Doob transformed process (Z−α (τ))τ∈[t,u], which cannot reach y

anymore, will have the drift

B−α (x) = ~
∇g−α
g−α

(x) (3.37)

which is singular at x = y by (3.35).

4 Deformation of characteristics

In this section we turn to the solution of the above problem by stochastic deformation

of the method of characteristics summarized in Section 2.

We start by defining the deformation W+
α (x) of Hamilton’s characteristic function

(2.11), as the reduced version of the action functional SL(x, t) introduced in (3.4).

Definition 4.1. Given g+α (x) a smooth, positive solution of the form (3.27) of the

stationary free heat equation (3.22), let the deformed Hamilton characteristic function

be defined as

W+
α (x) = −~ log g+α (x), x ∈ [0, y]. (4.1)

It follows from (4.1) and Definition (3.30) that the drift of (Z+
α (τ))τ∈[t,u] can be written

as well as

B+
α (x) = −∇W+

α (x). (4.2)

Using (3.21) we obtain the deformation (4.3) below of the classical equation (2.10).

The name of Bellman, associated with this deformation, has its origin in stochastic

control theory [7].

Proposition 4.1. The action W+
α (z) solves the reduced Hamilton-Jacobi-Bellman

(HJB) equation
1

2
|∇W+

α |2(z)− ~
2

∆W+
α (z)− V (z) = α. (4.3)
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Proof. Using Relation (4.2) we check that the HJB equation (4.3) coincides with the

deformed energy conservation law (3.11). �

It follows as well from (4.2), using the generator (3.2) of (Z+
α (τ))τ∈I , that

DtW
+
α (Z+

α (t)) = −|B+
α (Z+

α (t))|2 − ~
2
∇B+

α (Z+
α (t)),

and therefore, after integration with respect to Etx
∫ τy
t

on both sides and using

Dynkin’s formula and (4.2) when DtW
+
α (x) is sufficiently integrable, we get

W+
α (x) = Etx

[∫ τy

t

B+
α (Z+

α (τ)) ◦ dZ+
α (τ)

]
+ Ext

[
W+
α (Z+

α (τ y))
]
.

On the other hand, we can always adjust the terminal condition in (3.27) in such a

way that g+α (y) = 1, so that by (4.1) we have

W+
α (Z+

α (τ y)) = W+
α (y) = 0,

hence the action W+
α (x) is written as

W+
α (x) = Etx

[∫ τy

t

B+
α (Z+

α (τ)) ◦ dZ+
α (τ)

]
. (4.4)

Then W+
α (x) coincides with the deformed reduced action (3.16) of our Theorem 3.3,

i.e. the first term of the action SL(x, t) in (3.14).

In complete analogy with the smooth case of Section 2, the gradient of the HJB

equation (4.3) now reduces, using (4.2), to

DτDτZ
+
α (τ) = ∇V (Z+

α (τ)) (4.5)

which is our almost sure Newton law by analogy with (2.1). In this sense, the reduced

HJB equation (4.3) allows us to solve our stochastic dynamical problem (3.10) in

the same sense as the Hamilton-Jacobi method of characteristics solves the classical

problem (2.1). This observation remains true in the general, time dependent, case

mentioned in Section 3, cf. [23].
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Defining now, inspired by what was done before (2.15),

m+
α (x) =

∂W+
α

∂α
(x), (4.6)

it is easy to check from (4.1) and by differentiation of (4.3) that, along the conditioned

diffusion (Z+
α (τ))τ∈[t,u], we have

Dτm
+
α (Z+

α (τ)) = −1, τ ∈ [t, u],

m+(y) = 0,
(4.7)

which recovers (3.32) with its proper unilateral boundary condition.

On the other hand, the diffusion (Z−α (τ))τ∈[t,u] with drift (3.37) will solve, a.s., the

Newton equation

DτDτZ
−
α (τ) = ∇V (Z−α (τ)),

and the time equation 
Dτm

−
α (Z−α (τ)) = −1

m−α (0) = 0,
(4.8)

where

m−α (x) =
∂W−

α

∂α
(x), (4.9)

and

W−
α (x) = −~ log g−α (x), (4.10)

which is another solution of the same reduced HJB equation (4.3). The relation

between the two conditioned processes can be exposed in a deeper way, however,

through time reversal, as developed in the next section.

5 Random time reversal

As noted in Section 3, up to now our construction uses a single increasing filtration

(Pτ )τ∈I , where Pτ represents the past information about our deformed mechanical

system up to time τ . But any critical diffusions of the action SL(x, t), associated

with a (backward) heat equation as described in the proof of Theorem 3.3 is, in fact,
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time-symmetrizable, even when its drift B(z, τ) is time dependent. This is specific to

the class of Bernstein (or reciprocal) processes.

It has indeed been shown, cf. [11], [22], [4], [3], that for s ≤ τ ≤ u, and any Borel set

A ⊂ R we have

P (Zτ ∈ A) =

∫
A

η∗(z, τ)η(z, τ)dz, (5.1)

where, besides the positive solution η(z, τ) of the backward heat equation mentioned

before, appears a positive solution η∗(z, τ) of the PDE

−}∂η
∗

∂τ
(z, τ) = −~2

2
∆η∗(z, τ) + V (z)η∗(z, τ), (5.2)

adjoint to (3.8) with respect to the time parameter. This solution η∗(z, τ) is associated

with another, decreasing, filtration (Fτ )τ∈I , containing the future information about

our system. With respect to (Fτ )τ∈I , the process (Zτ )τ∈I has, of course, the same

diffusion coefficient }1/2 and a different drift given by

D∗τZ(τ) = B∗(Z(τ), τ) = −~∇η
∗

η∗
(Z(τ), τ), (5.3)

where D∗τ is the (backward) infinitesimal generator defined by

D∗τ =
∂

∂τ
+B∗ · ∇ − ~

2
∆. (5.4)

The change of sign in (5.4) with respect to (3.2) comes from the transition from for-

ward to backward Itô calculus, cf. [9], [10].

The original construction of Bernstein processes was quite distinct from the tradi-

tional one of diffusion processes. It can precisely be regarded as a deformation of the

solution of the classical variational problem (2.16), where the data of x(s) and x(u),

in Ω, is replaced by the one of two (nodeless) probability densities at time s and u.

More precisely, given a time interval [s, u], two strictly positive boundary probability

densities ps(dx) and pu(dx), and the integral kernel of the heat equation (5.2) (with

V (x) such that this kernel is strictly positive), one shows that there is a unique diffu-

sion process (Z(τ))τ∈[s,u] having those boundary probabilities. Its probability density
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at time τ ∈ [s, u] is of the form (5.1), i.e.

pτ (z)dz = η∗(z, τ)η(z, τ)dz.

Moreover, this process is critical for the action (3.4)-(3.5), cf. [22], [4], [3] and refer-

ences therein.

Denoting by Ext the expectation conditioned by the future condition Zt = x, it has

been shown that the same process (Z(τ))τ∈I is also a critical point of the action time

reversed of (3.4), namely, for any Markov time τ̂ ∗ with finite expectation we have

S∗L(x, t) = Ext

[∫ t

τ̂∗
L(Z(τ), D∗τZ(τ))dτ

]
. (5.5)

The proof relies on the fact that, in contrast with what happens for regular diffusion

processes, the time reversal

Ẑ(τ) := Z(u+ s− τ), τ ∈ I,

is, here, well defined and has generator D∗τ instead of Dτ , with same Lagrangian

L =
1

2
|q̇|2 + V (q).

The diffusions critical for the associated actions are, indeed, invariant under time

reversal on I by construction, cf. [22]. This property is due to the special product

form (5.1) for η(z, τ) solving the backward heat equation on I and η∗(z, τ) its time

adjoint equation (5.2). The two drifts are related through their probability density

(η∗η)(z, τ) via

B∗(z, τ) = B(z, τ)− ~∇ log(η∗η)(z, τ). (5.6)

As observed in (3.21), however, we only need to consider here the stationary diffusions

(Zα(τ))τ∈[t,u], and therefore stationary solutions of the backward heat equation and

its time adjoint (5.2), i.e. 
η(x, t) = gα(x)e−αt/~

η∗(x, t) = gα(x)eαt/~,

(5.7)
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so that the relation between drifts reduces here to the very classical looking one

B∗α(x) = −Bα(x), (5.8)

cf. (2.6) in the classical case.

Now we can take the time reversal of Equation (3.29), the equation solved by the

positive martingale q+α (Zα(τ)), using Dt 7→ −D∗t , then

D∗t q
+∗
α (Zα(t)) = −Dtq

+∗
α (Zα(t)) = 0, (5.9)

so that

q+∗α (x) = q−α (x), x ∈ [0, y]. (5.10)

It can be shown (cf. [19]) that the various boundary conditions needed for the above

construction are compatible if the relation

q+∗α (x) = 1− q+α (x) (5.11)

holds between q+α (x) and its time reversal q+∗α (x) = q−α (x). In this case, there is a dual

probabilistic interpretation of these two martingales as

q+α (Zα(t)) = P (τ y < τ 0 |Zα(t)), (5.12)

and

q+∗α (Zα(t)) = q−α (Zα(t)) = P (τ y∗ < τ 0∗ |Zα(t)). (5.13)

In the first expression (5.12) the time τ y, resp. τ 0, denotes the first (random) exit

time of (Zα(τ))τ∈[t,u] from [0, y] at the point y, resp. 0, after the time t. In the second

expression (5.13), the time τ y∗ , resp. τ 0∗ , is the last entrance time of (Zα(τ))τ∈I in [0, y]

at the point y, resp. 0, before the time t.

If needed, the expectation of the bilateral exit time τ[0,y], defined in (3.25) as

τ[0,y] = min(τ 0, τ y), (5.14)
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i.e. the first time that (Zα(τ))τ∈[t,u] reaches either boundary 0 or y, can be expressed

as a weighted sum of the solutions of Equations (4.7) and (4.8) by

mα(x) = Ex,t
[
τ[0,y]

]
= q+α (x)m+

α (x) + q−α (x)m−α (x), (5.15)

which solves as well the time equation

Dtmα(Zα(t)) = −1, (5.16)

but with the bilateral boundary conditions

mα(0) = mα(y) = 0. (5.17)

This mean time m(x), however, does not seem to be appropriate to our deformation of

classical dynamical systems. On the other hand, using τ 0, τ y and their time reversed

versions, we have indeed achieved a stochastic deformation of our one dimensional

integrable system such that all the classical tools available to describe the solution

with smooth trajectories are deformed as well along the way.

Let us conclude this section by observing that the method used here is considerably

more general than our results. For instance, Bernstein processes of the Lévy type

(i.e. with jumps) have been constructed [18] and should allow for the same kind of

analysis.

6 Example: the free case V = 0

We start from any positive solution gα(x) of (3.22) with V = 0, without restrictions

on the boundary ∂Λ = {0, y} of Λ = [0, y] other than not being zero, for example

gα(x) = exp

(
−
√

2α

}
(y − x)

)
, x ∈ [0, y],

where α > 0 by (3.12). Next we choose the constants in (3.26) as

c+ =
gα(y)

g+α (y)
and c− =

gα(0)

g−α (0)
,
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where, for any x ∈ Λ,

g+α (x) =
sinh(x

√
2α/})

sinh(y
√

2α/})
, g−α (x) =

sinh((y − x)
√

2α/})

sinh(y
√

2α/})
,

are the two linearly independent solutions of (3.22) required by our construction.

The process (Zα(τ))τ∈[t,u] of Theorem 3.3 is a Brownian motion stated at x at time t,

with constant drift Bα(z) =
√

2α given by (3.23) and variance }, i.e. dZα(τ) =
√

2αdτ + }1/2dWτ

Zα(t) = x,

Its deformed energy fulfills the conservation law (3.11) and (Zα(τ))τ∈[t,u] is a critical

point of the action (3.4) with Lagrangian

L(q, q̇) =
1

2
|q̇t|2,

therefore it solves the a.s. Euler-Lagrange equation (3.9) with V = 0 andDτDτZα(τ) =

0. Note that this process can reach both sides of ∂Λ and therefore is not appropriate

dynamically. The positive expression

q+α (x) =
g+α (x)gα(y)

gα(x)g+α (y)
=

1− e−2x
√
2α/}

1− e−2y
√
2α/}

, (6.1)

of (3.28), in our example, yields a positive martingale in Zα(τ) solving (3.29) and its

boundary conditions q+α (0) = 0, q+α (y) = 1. By Doob’s transform it produces a new

diffusion (Z+
α (τ))τ∈[t,u] with drift

B+
α (x) = }

∇g+α (x)

g+α (x)
=
√

2α coth(x
√

2α/}),

given by (3.30), which is singular at x = 0, meaning that the origin cannot be reached

by (Z+
α )τ∈[t,u]. In addition it solves as well the above Euler-Lagrange equation and

the time equation

Dtm
+
α (Z+

α (t)) = −1,

together with its unilateral boundary condition (3.17).
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Explicitly, the solution of
Dtm

+
α (Z+

α (t)) = B+
α · ∇m+

α (Z+
α (t)) +

}
2

∆m+
α (Z+

α (t)) = −1,

m+
α (Z+

α (τ y)) = m+
α (y) = 0.

is given by

m+
α (x) =

y√
2α

(
1 + e−2y

√
2α/}

1− e−2y
√
2α/}

)
− x√

2α

(
1 + e−2x

√
2α/}

1− e−2x
√
2α/}

)
. (6.2)

Alternatively, one can compute the deformed Hamilton characteristic functions W+
α of

(4.1), solving by construction the (free) reduced Hamilton-Jacobi-Bellman equation

(4.3). We also check, using (4.1), that

m+
α (x) =

∂W+
α

∂α
(x) = − }

g+α (x)

∂g+α
∂α

(x)

coincides with (6.2). The symmetric conditioning operation can be done in relation

with our starting diffusion Zα(τ), to produce a Doob transformed process (Z−α (τ))τ∈[t,u]

in terms of the new positive martingale

q−α (x) =
gα(0)g−α (x)

g−α (0)gα(x)
=
e−2x

√
2α/} − e−2y

√
2α/}

1− e−2y
√
2α/}

(6.3)

solving as well (3.29) but with the permuted boundary conditions q−α (0) = 1, q−α (y) =

1. It can also be observed that the relation (5.11) holds true. The new process

(Z−α (τ))τ∈[t,u] has the drift (3.37)

B−α (x) = }
∇g−α (x)

g−α (x)
= −
√

2α
e−2x

√
2α/} + e−2y

√
2α/}

e2x
√
2α/} − e−2y

√
2α/}

,

singular at the right boundary point y which cannot be reached by (Z−α (τ))τ∈[t,u].

The associated time equations and boundary conditions are
Dtm

−
α (Z−α (t)) = B−α · ∇m−α (x) +

}
2

∆m−α (x) = −1

m−α (Z−α (τ y)) = m−α (y) = 0.
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whose solution is

m−α (x) =
x√
2α

(
1 + e2(x−y)

√
2α/}

1− e2(x−y)
√
2α/}

)
− y√

2α

(
e2x
√
2α/} − 1

(1− e2(x−y)
√
2α/})(e2y

√
2α/} − 1)

)
, (6.4)

which coincides with (4.9) for W−
α (x) = −} log g−α (x), another solution of the free

reduced Hamilton-Jacobi-Bellman equation (4.3).

If needed, the bilateral expected time for leaving the interval Λ = [0, y] can be com-

puted via (6.1), (6.2), (6.3) and (6.4), according to (5.15).
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