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Abstract

In this survey we review two topics concerning determinantal (or
fermion) point processes. First, we provide the construction of diffusion
processes on the space of configurations whose invariant measure is the law
of a determinantal point process. Second, we present some algorithms to
sample from the law of a determinantal point process on a finite window.
Related open problems are listed.
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1 Introduction

Determinantal (or fermion) point processes have been introduced in [27] to
represent configurations of fermions. Determinantal point processes play a
fundamental role in the theory of random matrices as the eigenvalues of many
ensembles of random matrices form a determinantal point process, see e.g.
[18]. The full existence theorem for these processes was proved in [34], in
which many examples occurring in mathematics and physics were discussed.
The construction of [34] has been extended in [32] with the introduction of the
family of α-determinantal point processes.

Determinantal point processes have notable mathematical properties,
e.g. their Laplace transforms, Janossy densities and Papangelou conditional
intensities admit closed form expressions. Due to their repulsive nature,
determinantal point processes have been recently proposed as models for nodes’
locations in wireless communication, see [28] and [35].

This paper is structured as follows. In Section 2 we give some preliminaries
on point processes, including the definition of determinantal point processes,
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the expression of their Laplace transform (Theorem 2.3), Janossy densities
(Proposition 2.4) and Papangelou intensity (Theorems 2.6 and 2.7), cf. [9],
[10], [16], [16], [29], [23], [18] and [32]. We also refer to [7], [13] and [33] for the
required background on functional analysis.

In Section 3 we review the integration by parts formula for determinantal
point processes and its extension by closability, cf. [8] and [11].

In Section 4 we report a result in [11] on the construction of a diffusion on
the space of configurations which has the law of a determinantal point process
as invariant measure. To this aim we use arguments based on the theory of
Dirichlet forms, cf. [14], [25] and the appendix. It has to be noticed that the
construction of the diffusion provided in [11] differs from that one given in [37],
where alternative techniques are used.

Section 5 deals with the simulation of determinantal point processes.
We provide two different simulation algorithms to sample from the law of a
determinantal point processes on a compact. In particular, we describe the
(standard) sampling algorithm given in [17] (see Algorithm 1 below) and an
alternative simulation algorithm obtained by specializing the well-known rou-
tine to sample from the law of a finite point process with bounded Papangelou
conditional intensity (see e.g. [19], [20], [23] and Algorithm 2 below). We show
that the number of steps in the latter algorithm grows logarithmically with
the size of the initial dominating point process, which gives a rough idea of
the simulation time required by this algorithm. Finally, we propose a new
approximate simulation algorithm for the Ginibre point process, which presents
advantages in terms of complexity and CPU time.

Finally, some open problems are listed in Section 6.

2 Preliminaries

Locally finite point processes, correlation functions, Janossy density
and Papangelou intensity

Let X be a locally compact second countable Hausdorff space, and X be the
Borel σ-algebra on X. For any subset A ⊆ X, let |A| denote the cardinality of
A, setting |A| =∞ if A is not finite. We denote by Nσ the set of locally finite
point configurations on X:

Nσ := {ξ ⊆ X : |ξ ∩ Λ| <∞ for all relatively compact sets Λ ⊂ X}.

In fact, Nσ can be identified with the set of all simple nonnegative integer-
valued Radon measures on X (an integer-valued Radon measure ν is said to be
simple if for all x ∈ X, ν({x}) ∈ {0, 1}). Hence, it is naturally topologized by
the vague topology, which is the weakest topology such that for any continuous
and compactly supported function f on X, the mapping

ξ 7→ 〈f, ξ〉 :=
∑
y∈ξ

f(y)
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is continuous. We denote by Nσ the corresponding Borel σ-field. For ξ ∈ Nσ,
we write ξ∪y0 = ξ∪{y0} for the addition of a particle at y0 and ξ \y0 = ξ \{y0}
for the removal of a particle at y0. We define the set of finite point configurations
on X by

Nf
σ:={ξ ⊆ X: |ξ| <∞},

which is equipped with the trace σ-algebra N f
σ = Nσ|Nf

σ
. For any relatively

compact subset Λ ⊆ X, let Nσ(Λ) be the space of finite configurations on Λ, and
Nσ(Λ) the associated (trace-) σ-algebra. As in [16], we define for any Radon
measure µ on X the (µ-)sample measure Lµ on (Nf

σ,N
f
σ ) by∫

Nf
σ

f(α)Lµ(dα) :=
∑
n≥0

1

n!

∫
Xn
f({x1, . . . , xn})µ(dx1) · · ·µ(dxn), (2.1)

for any measurable f : Nf
σ → R+. Similarly, we define its restriction to the

relatively compact set Λ ⊆ X by∫
Nσ(Λ)

f(α)LνΛ(dα) :=
∑
n≥0

1

n!

∫
Λn
f({x1, . . . , xn})µ(dx1) · · ·µ(dxn),

for any measurable f : Nσ(Λ)→ R+. A simple and locally finite point process η
is defined as a random element on a probability space (Ω,A) with values in Nσ.
We denote its distribution by P. It is characterized by its Laplace transform
Lη, which is defined, for any measurable nonnegative function f on X, by

Lη(f) =

∫
Nσ

e−〈f,ξ〉 P(dξ).

We denote the expectation of an integrable random variable F defined on
(Nσ,Nσ,P) by

E[F (η)] :=

∫
Nσ

F (ξ)P(dξ).

For ease of notation, we define by

ξA := ξ ∩A,

the restriction of ξ ∈ Nσ to a set A ⊂ X. The restriction of P to Nσ(A) is
denoted by PA and the number of points of ξA, i.e. ξ(A) := |ξ ∩ A|, is denoted
by ξ(A). A point process η is said to have a correlation function ρ : Nf

σ → [0,∞)
with respect to (w.r.t.) a Radon measure µ on (X,X ) if ρ is measurable and∫ ∑

α⊂ξ, α∈Nf
σ

f(α)P(dξ) =

∫
Nf
σ

f(α) ρ(α)Lµ(dα),

for all measurable nonnegative functions f on Nf
σ. When such a measure µ

exists, it is known as the intensity measure of η. For α = {x1, . . . , xk}, where
k ≥ 1, we will sometimes write ρ(α) = ρk(x1, . . . , xk) and call ρk the k-th
correlation function. Here ρk is a symmetric function on Xk. Similarly, the
correlation functions of η, w.r.t. a Radon measure µ on X, are (if they exist)
measurable symmetric functions ρk : Xk −→ [0,∞) such that

E

[
k∏
i=1

η(Bi)

]
=

∫
B1×...×Bk

ρk(x1, . . . , xk)µ(dx1) · · ·µ(dxk),
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for any family of mutually disjoint bounded subsets B1, . . . , Bk of X, k ≥ 1.
The previous formula can be generalized as follows:

Proposition 2.1 Let B1, . . . , Bn be disjoint bounded Borel subsets of X. Let
k1, . . . , kn be integers such that

∑n
i=1 ki = N . Then,

E

[
n∏
i=1

η(Bi)!

(η(Bi)− ki)!

]
=

∫
B
k1
1 ×...×B

kn
n

ρ({x1, . . . , xN})µ(dx1) · · ·µ(dxN ).

We require in addition that ρn(x1, . . . , xn) = 0 whenever xi = xj for some
1 ≤ i 6= j ≤ n. Heuristically, ρ1 is the particle density with respect to µ, and

ρn(x1, . . . , xn)µ(dx1) · · ·µ(dxn)

is the probability of finding a particle in the vicinity of each xi, i = 1, . . . , n. For
any relatively compact subset Λ ⊆ X, the Janossy densities of η, w.r.t. a Radon
measure µ on X, are (if they exist) measurable functions jnΛ : Λn → [0,∞)
satisfying for all measurable functions f : Nσ(Λ)→ [0,∞),

E [f(ηΛ)] =
∑
n≥0

1

n!

∫
Λn
f({x1, . . . , xn}) jnΛ (x1, . . . , xn) µ(dx1) · · ·µ(dxn). (2.2)

Using the simplified notation jΛ(α) := jnΛ(x1, . . . , xn), for α = {x1, . . . , xn},
where n ≥ 1, by (2.2) it follows that jΛ is the density of PΛ with respect to LµΛ,
when PΛ � LµΛ. Now we list some properties of the Janossy densities.

• Symmetry:
jnΛ
(
xσ(1), . . . , xσ(n)

)
= jnΛ (x1, . . . , xn) ,

for every permutation σ of {1, . . . , n}.

• Normalization constraint: for each relatively compact subset Λ ⊆ X,

∞∑
n=0

1

n!

∫
Λn

jnΛ (x1, . . . , xn) µ(dx1) · · ·µ(dxn) = 1.

For n ≥ 1, the Janossy density jnΛ(x1, . . . , xn) is in fact the joint density (mul-
tiplied by a constant) of the n points given that the point process has exactly
n points. For n = 0, j0

Λ(∅) is the probability that there are no points in Λ.
We also recall that the Janossy densities can be recovered from the correlation
functions via the relation

jnΛ(x1, . . . , xn) =
∑
m≥0

(−1)m

m!

∫
Λm

ρn+m(x1, . . . , xn, y1, . . . , ym)µ(dy1) · · ·µ(dym),

and vice versa using the equality

ρn(x1, . . . , xn) =
∑
m≥0

1

m!

∫
Λm

jm+n
Λ (x1, . . . , xn, y1, . . . , ym)µ(dy1) · · ·µ(dym),

see [9, Theorem 5.4.II].
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Following [16], we now recall the definition of the so-called reduced and
reduced compound Campbell measures. The reduced Campbell measure of a
point process η is the measure Cη on the product space (X × Nσ,X ⊗ Nσ)
defined by

Cη(A×B) =

∫
Nσ

∑
x∈ξ

1A(x)1B(ξ \ x)P(dξ).

The reduced compound Campbell measure of a point process η is the measure
Ĉη on the product space (Nf

σ ×Nσ,N f
σ ⊗Nσ) defined by

Ĉη(A×B) =

∫
Nσ

∑
α⊂ξ, α∈Nf

σ

1A(α)1B(ξ \ α)P(dξ).

The integral versions of the equations above can be written respectively as∫
h(x, ξ)Cη(dx× dξ) =

∫ ∑
x∈ξ

h(x, ξ \ x)P(dξ), (2.3)

for all nonnegative measurable functions h : X×Nσ → R+, and∫
h(α, ξ) Ĉη(dα× dξ) =

∫ ∑
α⊂ξ, α∈Nf

σ

h(α, ξ \ α)P(dξ),

for all nonnegative measurable functions h : Nf
σ ×Nσ → R+. Comparing (2.3)

with the well-known Mecke formula (see (7) in [21]) leads us to introduce the
following condition:

(Σ): Cη � µ⊗ P.

The Radon-Nikodym derivative c of Cη w.r.t. µ⊗ P is called (a version of) the

Papangelou intensity of η. Assumption (Σ) implies that Ĉη � Lµ ⊗ P and we

denote the Radon-Nikodym derivative of Ĉη w.r.t. Lµ ⊗ P by ĉ, and call ĉ the
compound Papangelou intensity of η. One then has for any ξ ∈ Nσ, ĉ(∅, ξ) = 1,
as well as for all x ∈ X, ĉ(x, ξ) = c(x, ξ). The Papangelou intensity c has the
following interpretation:

c(x, ξ)µ(dx)

is the probability of finding a particle in the vicinity of x ∈ X conditional on
the configuration ξ.

The compound Papangelou intensity verifies the following commutation relation:

ĉ(ν, η ∪ ξ) ĉ(η, ξ) = ĉ(ν ∪ η, ξ), (2.4)

for all η, ν ∈ Nf
σ and ξ ∈ Nσ. The recursive application of the previous relation

also yields

ĉ({x1, . . . , xn}, ξ) =

n∏
k=1

c(xk, ξ ∪ x1 ∪ · · · ∪ xk−1),
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for all x1, . . . , xn ∈ X and ξ ∈ Nσ, where we have used the convention x0 := ∅.

The assumption (Σ), along with the definition of the reduced Campbell measure,
allows us to write the following identity, known as the Georgii-Nguyen-Zessin
identity: ∫

Nσ

∑
y∈ξ

u(y, ξ \ y)P(dξ) =

∫
Nσ

∫
X
u(z, ξ) c(z, ξ)µ(dz)P(dξ), (2.5)

for all measurable nonnegative functions u : X × Nσ → R+. We also have a
similar identity for the compound Papangelou intensity:∫

Nσ

∑
α⊂ξ, α∈Nf

σ

u(α, ξ \ α)P(dξ) =

∫
Nσ

∫
Nf
σ

u(α, ξ) ĉ(α, ξ)Lµ(dα)P(dξ), (2.6)

for all measurable functions u : Nf
σ ×Nσ → R+.

Note that equations (2.5) and (2.6) are generalizations of equations (7) and (8) of
[21]. Indeed, in the case of the Poisson point process, c(z, ξ) = 1 and c(α, ξ) = 1.

Combining relation (2.5) and the definition of the correlation functions, we find

E[c(x, η)] = ρ1(x),

for µ-a.e. x ∈ X. More generally, using (2.6), we also have

E[ĉ(α, η)] = ρ(α), (2.7)

for P-a.e. α ∈ Nf
σ.

Kernels and integral operators

As usual, we denote by X a locally compact second countable Hausdorff space
and by µ a Radon measure on X. For any compact set Λ ⊆ X, we denote by
L2(Λ, µ) the Hilbert space of complex-valued square integrable functions w.r.t.
the restriction of the Radon measure µ on Λ, equipped with the inner product

〈f, g〉L2(Λ,µ) :=

∫
Λ

f(x)g(x)µ(dx), f, g ∈ L2(Λ, µ),

where z denotes the complex conjugate of z ∈ C. By definition, an integral
operator K : L2(X, µ) → L2(X, µ) with kernel K : X2 → C is a bounded
operator defined by

Kf(x) :=

∫
X
K(x, y)f(y)µ(dy), for µ-almost all x ∈ X.

We denote by PΛ the projection operator from L2(X, µ) to L2(Λ, µ) and define
the operator KΛ = PΛKPΛ. We note that the kernel of KΛ is given by
KΛ(x, y) := 1Λ(x)K(x, y)1Λ(y), for x, y ∈ X. It can be shown that KΛ is a
compact operator.
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The operator K is said to be Hermitian or self-adjoint if its kernel verifies

K(x, y) = K(y, x), for µ⊗2-almost all (x, y) ∈ X2. (2.8)

Equivalently, this means that the integral operators KΛ are self-adjoint for any
compact set Λ ⊆ X. If KΛ is self-adjoint, by the spectral theorem for self-
adjoint and compact operators we have that L2(Λ, µ) has an orthonormal basis
{ϕΛ

j }j≥1 of eigenfunctions of KΛ. The corresponding eigenvalues {µΛ
j }j≥1 have

finite multiplicity (except possibly the zero eigenvalue) and the only possible
accumulation point of the eigenvalues is the zero eigenvalue. In that case, the
kernel KΛ of KΛ can be written as

KΛ(x, y) =
∑
n≥1

µΛ
nϕ

Λ
n(x)ϕΛ

n(y), (2.9)

for x, y ∈ Λ. We say that an operator K is positive (respectively nonnegative)
if its spectrum is included in (0,+∞) (respectively [0,+∞)). For two operators
K and I, we say that K > I (respectively K ≥ I) in the operator ordering if
K− I is a positive operator (respectively nonnegative operator).

We say that a self-adjoint integral operator KΛ is of trace class if∑
n≥1

|µΛ
n | <∞,

and define the trace of KΛ as TrKΛ =
∑
n≥1 µ

Λ
n . If KΛ is of trace class for

every compact subset Λ ⊆ X, then we say that K is locally of trace class. It
is easily seen that if a Hermitian integral operator K : L2(X, µ) → L2(X, µ)
is of trace class, then Kn is also of trace class for all n ≥ 2. Indeed,
Tr(Kn) ≤ ‖K‖n−1

op Tr(K), where ‖K‖op is the operator norm of K.

Let Id denote the identity operator on L2(X, µ) and let K be a trace class
operator on L2(X, µ). We define the Fredholm determinant of Id + K as

Det(Id + K) = exp

∑
n≥1

(−1)n−1

n
Tr(Kn)

 . (2.10)

It turns out that

Det(Id + K) =
∑
n≥0

1

n!

∫
Xn

det(K(xi, xj))1≤i,j≤n µ(dx1) · · ·µ(dxn), (2.11)

where K is the kernel of K and det(K(xi, xj))1≤i,j≤n is the determinant of the
n× n matrix (K(xi, xj))1≤i,j≤n. Equation (2.11) was obtained in Theorem 2.4
of [32], see also [7] for more details on the Fredholm determinant.

We end this section by recalling the following result from [16, Lemma A.4]:

Proposition 2.2 Let K be a nonnegative and locally of trace class integral op-
erator on L2(X, µ). Then one can choose its kernel K (defined everywhere) such
that the following properties hold:
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(i) K is nonnegative, in the sense that for any c1, . . . , cn ∈ C and µ-a.e.
x1, . . . , xn ∈ X, we have

∑n
i,j=1 c̄iK(xi, xj)cj ≥ 0.

(ii) K is a Carleman kernel, i.e. Kx = K(·, x) ∈ L2(X, µ) for µ-a.e. x ∈ X.

(iii) For any compact subset Λ ⊆ X, TrKΛ =
∫

Λ
K(x, x)µ(dx) and

Tr (PΛK
kPΛ) =

∫
Λ

〈Kx,K
k−2Kx〉L2(Λ,µ) µ(dx),

for k ≥ 2.

Henceforth, the kernel of a nonnegative and locally of trace class integral oper-
ator K will be chosen according to the previous proposition.

Determinantal point processes

A locally finite and simple point process η on X is called determinantal point
process if its correlation functions w.r.t. the Radon measure µ on (X,X ) exist
and are of the form

ρk(x1, . . . , xk) = det(K(xi, xj))1≤i,j≤k,

for any k ≥ 1 and x1, . . . , xk ∈ X, where K(·, ·) is a measurable function.
Throughout this paper we shall consider the following hypothesis:

(H1): The operator K is locally of trace class, satisfies (2.8), and its spectrum
is contained in [0, 1), i.e. 0 ≤ K < Id in the operator ordering. We denote by
K the kernel of K.

By the results in [27] and [34] (see also Lemma 4.2.6 and Theorem 4.5.5 in
[18]), it follows that under (H1), there exists a unique (in law) determinantal
point process with integral operator K. In this survey, we shall only consider
determinantal point processes with Hermitian kernel. However, we mention
that many important examples of determinantal point processes exhibit a non-
Hermitian kernel, see [2]-[6], [24] and [36].

Let us now recall the following result from e.g. [32] (see Theorem 3.6 therein)
that gives the Laplace transform of η.

Theorem 2.3 Let K be an operator satisfying (H1) and η the determinantal
point process with kernel K. Then η has Laplace transform

Lη(f) = Det (Id−Kϕ) ,

for each nonnegative f on X with compact support, where ϕ = 1− e−f and Kϕ

is the trace class integral operator with kernel

Kϕ(x, y) =
√
ϕ(x)K(x, y)

√
ϕ(y), x, y ∈ X.

Let K be an operator satisfying assumption (H1). We define the operators on
L2(X, µ):

J := (Id−K)−1K, (2.12)
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and
J[Λ] := (Id−KΛ)−1KΛ, (2.13)

where Λ is a compact subset of X. The operator J is called global interaction
operator and the operator J[Λ] is called local interaction operator. We emphasize
that, unlike KΛ, J[Λ] is not a projection operator, i.e. in general J[Λ] 6= PΛJPΛ.
In any case, J[Λ] has some notable properties, as proved in [16]. First, it is
easily seen that J[Λ] exists as a bounded operator and its spectrum is included
in [0,+∞). Second, J[Λ] is also an integral operator, and we denote by J [Λ] its
kernel (in fact, one can even show that J[Λ] is a Carleman operator, cfr. the
beginning of Section 3 in [16]). Third, J[Λ] is a trace class operator. Finally, by
(2.9) we have

J [Λ](x, y) =
∑
n≥1

µΛ
n

1− µΛ
n

ϕΛ
n(x)ϕΛ

n(y),

for x, y ∈ Λ.

For α = {x1, . . . , xk} ∈ Nσ(Λ), we denote by det J [Λ](α) the determinant
det (J [Λ](xi, xj))1≤i,j≤k. Note that for all k ∈ N∗, the function

(x1, . . . , xk) 7→ det J [Λ]({x1, . . . , xk})

is µ⊗k-a.e. nonnegative (thanks to Proposition 2.2) and symmetric in x1, . . . , xk
(see e.g. the appendix of [16]), and we simply write detJ [Λ]({x1, . . . , xk}) =
det J [Λ](x1, . . . , xk). The relevance of the local interaction operator becomes
clear when computing the Janossy densities of the determinantal point process.
More precisely, the following proposition holds.

Proposition 2.4 (Lemma 3.3 of [32]) Let K be an operator satisfying (H1)
and η the determinantal point process with kernel K. Then, for a compact subset
Λ ⊆ X and n ∈ N∗, the determinantal process η admits Janossy densities

jnΛ(x1, . . . , xn) = Det(Id−KΛ) detJ [Λ](x1, . . . , xk), (2.14)

for x1, . . . , xk ∈ Λ. The void probability is equal to j0
Λ(∅) = Det(Id−KΛ).

We emphasize that (2.14) still makes sense if ‖KΛ‖op = 1; indeed the zeros of
Det(Id − KΛ) are of the same order of the poles of det J [Λ](x1, . . . , xk), see
Lemma 3.4 of [32] for a more formal proof.

We now give some properties linking the rank of K, Rank(K), and the number
of points of the determinantal point process with integral operator K.

Proposition 2.5 (Theorem 4 in [34], see also [18]) Let K be an operator
satisfying (H1) and η the determinantal point process with kernel K. We have:

a) The probability of the event that the number of points is finite is either 0 or
1, depending on whether Tr(K) is finite or infinite. The number of points in
a compact subset Λ ⊆ X is finite since Tr(KΛ) <∞.

b) The number of points is less than or equal to n ∈ N∗ with probability 1 if and
only if K is a finite rank operator satisfying Rank(K) ≤ n.

9



c) The number of points is n ∈ N∗ with probability 1 if and only if K is an
orthogonal projection satisfying Rank(K) = n.

We now give the Papangelou intensity of determinantal point processes.

Theorem 2.6 (Theorem 3.1 of [16]) Let K be an operator satisfying (H1)
and η the determinantal point process with kernel K. Then, for each compact
set Λ ⊆ X, ηΛ satisfies condition (Σ) (with µΛ in place of µ). A version of its
compound Papangelou intensity ĉΛ is given by

ĉΛ(α, ξ) =
det J [Λ](α ∪ ξ)

det J [Λ](ξ)
, α ∈ Nf

σ, ξ ∈ Nσ,

where the ratio is defined to be zero whenever the denominator vanishes. This
version also satisfies the inequalities

ĉΛ(α, ξ) ≥ ĉΛ(α, ξ′), and 0 ≤ ĉΛ(α, ξ) ≤ det J [Λ](α) ≤
∏
x∈α

J [Λ](x, x),

(2.15)
whenever ξ ⊂ ξ′ ∈ Nσ(Λ) and α ∈ Nσ(Λ) \ ω.

Let K be an operator satisfying (H1) and let η be the determinantal point
process with kernel K. Let J be the operator defined in (2.12). As proved
in [16], J satisfies the following properties: it is locally of trace class and its
kernel (x, y) 7→ J(x, y) can be chosen to satisfy Proposition 2.2. Moreover,
η is stochastically dominated by a Poisson point process with mean measure
J(x, x)µ(dx) i.e., denoting by P̃ the law of the Poisson process,∫

f dP ≤
∫
f dP̃,

for all increasing measurable f . Here, we say that f is increasing if f(ξ) ≤ f(ξ′)
whenever ξ ⊂ ξ′ ∈ Nσ.

We finally report the following theorem.

Theorem 2.7 (Theorem 3.6 in [16]) Let K be an operator satisfying (H1)
and η the determinantal point process with kernel K. Then η satisfies condition
(Σ), and its compound Papangelou intensity is given by

ĉ(α, ξ) = lim
n→∞

ĉ∆n
(α, ξ∆n

), for Lµ ⊗ P - almost every (α, ξ), (2.16)

where (∆n)n∈N is an increasing sequence of compact sets in X converging to X.

In general (2.16) does not give a closed form for the compound Papangelou
intensity. In order to write ĉ in closed form, additional hypotheses have to be
assumed, see Proposition 3.9 in [16].

3 Integration by parts

Hereafter we assume that X is a subset of Rd, equipped with the Euclidean
distance, µ is a Radon measure on X and Λ ⊆ X is a fixed compact set. We
denote by x(i) the ith component of x ∈ Rd.
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Differential calculus

We denote by C∞c (Λ,Rd) the set of all C∞-vector fields v : Λ −→ Rd (with
compact support) and by C∞b (Λk) the set of all C∞-functions on Λk whose
derivatives are bounded.

Definition 1 A function F : Nσ(Λ)→ R is said to be in SΛ if

F (ξΛ) = f01{ξ(Λ)=0} +

n∑
k=1

1{ξ(Λ)=k}fk(ξΛ), (3.1)

for some integer n ≥ 1, where for k = 1, . . . , n, fk ∈ C∞b (Λk) is a symmetric
function and f0 ∈ R is a constant.

The gradient of F ∈ SΛ of the form (3.1) is defined by

∇Nσ
x F (ξΛ) :=

n∑
k=1

1{ξ(Λ)=k}
∑
y∈ξΛ

1{x=y}∇xfk(ξΛ), x ∈ Λ, (3.2)

where ∇x denotes the usual gradient on Rd with respect to the variable x ∈ Λ.

For v ∈ C∞c (Λ,Rd), we also let

∇Nσ
v F (ξΛ) :=

∑
y∈ξΛ

∇Nσ
y F (ξΛ) · v(y) =

n∑
k=1

1{ξ(Λ)=k}
∑
y∈ξΛ

∇yfk(ξΛ) · v(y), (3.3)

where · denotes the inner product on Rd.

Next, we recall some notation from [1], [11]. Let Diff0(X) be the set of
all diffeomorphisms from X into itself with compact support, i.e., for any
φ ∈ Diff0(X), there exists a compact set outside of which φ is the identity
map. In particular, note that Diff0(Λ) is the set of diffeomorphisms from Λ
into itself. In the following, µφ denotes the image measure of µ by φ.

Henceforth, we assume the following technical condition.

(H2) : The Radon measure µ is absolutely continuous w.r.t. the Lebesgue
measure ` on X, with Radon-Nikodym derivative ρ = dµ

d` which is strictly
positive and continuously differentiable on Λ.

Then for any φ ∈ Diff0(Λ), µφ is absolutely continuous with respect to µ with
density given by

pµφ(x) =
dµφ(x)

dµ(x)
=
ρ(φ−1(x))

ρ(x)
Jac(φ−1)(x), (3.4)

where Jac(φ−1)(x) is the Jacobian of φ−1 at point x ∈ X. We are now in a
position to give the quasi-invariance result, see [8], [11] and [36].

Proposition 3.1 Assume (H1) and (H2) and let η be the determinantal point
process with kernel K. Then, for any measurable nonnegative f on Λ and any
φ ∈ Diff0(Λ),

E
[
e−〈f◦φ, η〉

]
= E

[
e−〈f−ln(pµφ), η〉 det Jφ[Λ](η)

det J [Λ](η)

]
. (3.5)
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We point out that the right-hand side of (3.5) is well defined since detJ [Λ] > 0,
PΛ-a.e.

Integration by parts

Here we give an integration by parts formula on the set of test functionals SΛ

and an extension to closed gradients and divergence operators.

We start by introducing a further condition.

(H3) : For any n ≥ 1, the function

(x1, . . . , xn) 7−→ det J [Λ](x1, . . . , xn)

is continuously differentiable on Λn.

Assuming (H1) and (H3), we define the potential energy U : Nσ(Λ) −→ R

U [Λ](α) := − log detJ [Λ](α)

and its directional derivative along v ∈ C∞c (Λ,Rd)

∇Nσ
v U [Λ](ξΛ) := −

∞∑
k=1

1{ξ(Λ)=k}
∑
y∈ξΛ

∇ydet J [Λ](ξΛ)

det J [Λ](ξΛ)
· v(y)

=

∞∑
k=1

1{ξ(Λ)=k}
∑
y∈ξΛ

Uy,k(ξΛ) · v(y). (3.6)

The term Uy,k in the previous definition is given by

Uy,k(ξΛ) := −∇ydet J [Λ](ξΛ)

det J [Λ](ξΛ)
on {ξ(Λ) = k}.

Under Condition (H2) we define

βµ(x) :=
∇ρ(x)

ρ(x)
,

and
Bµv (ξΛ) :=

∑
y∈ξΛ

(−βµ(y) · v(y) + div v(y)), v ∈ C∞c (Λ,Rd),

where div denotes the adjoint of the gradient ∇ on Λ, i.e. div verifies∫
Λ

g(x) div∇f(x) dx =

∫
Λ

∇f(x) · ∇g(x) dx, f, g ∈ C∞(Λ).

The following integration by parts formula holds, see [11].

Lemma 3.2 Assume (H1), (H2) and (H3), and let η be the determinantal
point process with kernel K. Then, for any compact subset Λ ⊆ X, any F,G ∈
SΛ and vector field v ∈ C∞c (Λ,Rd), we have

E
[
G(ηΛ)∇Nσ

v F (ηΛ)
]

= E
[
F (ηΛ)divNσ

v G(ηΛ)
]
, (3.7)

where

divNσ
v G(ηΛ) := −∇Nσ

v G(ηΛ) +G(ηΛ)
(
−Bµv (ηΛ) +∇Nσ

v U [Λ](ηΛ)
)
.
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Next, we extend the integration by parts formula by closability to a larger class
of functionals. We refer to the appendix for the notion of closability. Let

L2
Λ := L2(Nσ(Λ),PΛ)

be the space of square-integrable functions with respect to PΛ. It may be
checked that SΛ is dense in L2

Λ.

For v ∈ C∞c (Λ,Rd), we consider the linear operators ∇Nσ
v : SΛ −→ L2

Λ and

divNσ
v : SΛ −→ L2

Λ defined, respectively, by F 7→ ∇Nσ
v F and F 7→ divNσ

v F .
The following theorem is proved in [11].

Theorem 3.3 Assume (H1), (H2), (H3) and

∫
Λn

∣∣∣∣∣∂x(h)
i

det J [Λ](x1, . . . , xn)∂
x

(k)
j

det J [Λ](x1, . . . , xn)

det J [Λ](x1, . . . , xn)

∣∣∣∣∣
1{det J[Λ](x1,...,xn)>0} µ(dx1) · · ·µ(dxn) <∞ (3.8)

for any n ≥ 1, 1 ≤ i, j ≤ n and 1 ≤ h, k ≤ d. Then

(i) For any vector field v ∈ C∞c (Λ,Rd), the linear operators ∇Nσ
v and divNσ

v

are well defined and closable. In particular, we have

∇Nσ
v (SΛ) ⊂ L2

Λ and divNσ
v (SΛ) ⊂ L2

Λ.

(ii) Denoting by ∇Nσ
v (respectively divNσ

v ) the minimal closed extension of
∇Nσ
v (respectively divNσ

v ), for any vector field v ∈ C∞c (Λ,Rd), we have

E
[
G(ηΛ)∇Nσ

v F (ηΛ)
]

= E
[
F (ηΛ)divNσ

v G(ηΛ)
]
,

for all F ∈ Dom
(
∇Nσ
v

)
, G ∈ Dom

(
divNσ

v

)
.

Note that under the assumptions (H1), (H2) and (H3), condition (3.8) is sat-
isfied if, for any n ≥ 1, the function

(x1, . . . , xn) 7−→ det J [Λ](x1, . . . , xn),

is strictly positive on the compact Λn.

4 Stochastic dynamics

Dirichlet forms

Assume (H1), and let η be the determinantal point process with kernel K. We
consider the bilinear map E defined on SΛ ×SΛ by

E(F,G) := E

[∑
y∈ηΛ

∇Nσ
y F (ηΛ) · ∇Nσ

y G(ηΛ)

]
. (4.1)
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For F ∈ SΛ of the form (3.1), i.e.

F (ξΛ) = f01{ξ(Λ)=0} +

n∑
k=1

1{ξ(Λ)=k}fk(ξΛ),

we also define the Laplacian H by

HF (ξΛ) =

n∑
k=1

1{ξ(Λ)=k}∑
y∈ξΛ

(−βµ(y) · ∇yfk(ξΛ)−∆yfk(ξΛ) + Uy,k(ξΛ) · ∇yfk(ξΛ)) ,

where ∆ = −div∇ denotes the Laplacian operator on Rd.

In the following, we consider the subspace S̃Λ of SΛ consisting of function
F ∈ SΛ of the form

F (ξΛ) = f (〈φ1, ξΛ〉, . . . , 〈φM , ξΛ〉) 1{ξ(Λ)≤K},

for some integers M,K ≥ 1, φ1, . . . , φM ∈ C∞(Λ), f ∈ C∞b (RM ). Note that S̃Λ

is dense in L2
Λ (see e.g. [25] p. 54).

Theorem 4.1 below is proved in [11]. We refer the reader to the appendix for
the required notions of Dirichlet forms theory.

Theorem 4.1 Under the assumptions of Theorem 3.3, we have
(i) The linear operator H : S̃Λ −→ L2

Λ is symmetric, nonnegative definite and

well defined, i.e. H(S̃Λ) ⊂ L2
Λ. In particular the operator square root H1/2 of

H exists.
(ii) The bilinear form E : S̃Λ × S̃Λ −→ R is symmetric, nonnegative definite
and well defined, i.e. E(S̃Λ × S̃Λ) ⊂ R.
(iii) H1/2 and E are closable and the following relation holds:

E(F,G) = E[H1/2 F (ηΛ)H1/2G(ηΛ)], ∀ F,G ∈ Dom(H1/2). (4.2)

(iv) The bilinear form (E,Dom(H1/2)) is a symmetric Dirichlet form.

Associated diffusion processes

We start recalling some notions, see Chapters IV and V in [25]. We call N
the space of N-valued Radon measures on X, as opposed to Nσ the space of
simple N-valued Radon measures on X. We denote by N(Λ) the space of N-
valued Radon measures supported on a compact Λ ⊆ X. We equip N with
the vague topology, and denote by N the corresponding Borel σ-algebra and
by N (Λ) the corresponding trace-σ-algebra. Given π in the set P(N(Λ)) of
the probability measures on (N(Λ), N (Λ)), we call a π-stochastic process with
state space N(Λ) the collection

MΛ,π = (Ω,A, (At)t≥0, (Mt)t≥0, (Pξ)ξ∈N(Λ),Pπ),
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where A :=
∨
t≥0 At is a σ-algebra on the set Ω, (At)t≥0 is the Pπ-completed

filtration generated by the process Mt : Ω −→ N(Λ), Pξ is a probability mea-
sure on (Ω,A) for all ξ ∈ N(Λ), and Pπ is the probability measure on (Ω,A)
defined by

Pπ(A) :=

∫
N(Λ)

Pξ(A)π(dξ), A ∈ A.

A collection (MΛ,π, (θt)t≥0) is called a π-time homogeneous Markov process with
state space N(Λ) if θt : Ω −→ Ω is a shift operator, i.e. Ms◦θt = Ms+t, s, t ≥ 0,
the map ξ 7→ Pξ(A) is measurable for all A ∈ A, and the time homogeneous
Markov property

Pξ(Mt ∈ A |As) = PMs
(Mt−s ∈ A), Pξ − a.s., A ∈ A, 0 ≤ s ≤ t, ξ ∈ N(Λ),

holds. Recall that a π-time homogeneous Markov process (MΛ,π, (θt)t≥0) with
state space N(Λ) is said to be π-tight on N(Λ) if (Mt)t≥0 is right-continuous
with left limits Pπ-almost surely; Pξ(M0 = ξ) = 1 ∀ξ ∈ N(Λ); the filtration
(At)t≥0 is right continuous; the following strong Markov property holds:

Pπ′(Mt+τ ∈ A |Aτ ) = PMτ
(Mt ∈ A)

Pπ′ -almost surely for all At-stopping time τ , π′ ∈ P(N(Λ)), A ∈ A and t ≥ 0,
cfr. Theorem IV.1.15 in [25]. In addition, a π-tight process on N(Λ) is said
to be a π-special standard process on N(Λ) if for any π′ ∈ P(N(Λ)) which is
equivalent to π and all At-stopping times τ , (τn)n≥1 such that τn ↑ τ we have
that Mτn converges to Mτ , Pπ′ -almost surely.

The following theorem is proved in [11]. Therein Eξ denotes the expectation
under Pξ, ξ ∈ N(Λ). Here again, we refer the reader to the appendix for the
required notions of Dirichlet forms theory.

Theorem 4.2 Assume the hypotheses of Theorem 3.3, let P be the law of a
determinantal point process η with kernel K, and E be the Dirichlet form con-
structed in Theorem 4.1. Then there exists a PΛ-tight special standard process
(MΛ,PΛ

, (θt)t≥0) on N(Λ) such that:

1. MΛ,PΛ is a diffusion, in the sense that:

Pξ({ω : t 7→Mt(ω) is continuous on [0,+∞)}) = 1, E-a.e. ξ ∈ N(Λ);
(4.3)

2. the transition semigroup of MΛ,PΛ is given by

ptF (ξ) := Eξ[F (Mt)], ξ ∈ N(Λ), F : N(Λ) −→ R square integrable,

and it is properly associated with the Dirichlet form (E,Dom(H1/2)), i.e.
ptF is an E-a.c., PΛ-version of exp(−tHgen

Λ )F , for all square integrable
F : N(Λ) −→ R and t > 0 (where H

gen
Λ is the generator of E);

3. MΛ,PΛ
is unique up to PΛ-equivalence (we refer the reader to Definition

6.3 page 140 in [26] for the meaning of this notion);
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4. MΛ,PΛ
is PΛ-symmetric, i.e.

E [G(ηΛ) ptF (ηΛ)] = E [F (ηΛ) ptG(ηΛ)] ,

for square integrable functions F and G on N(Λ);

5. MΛ,PΛ
has PΛ as invariant measure.

In dimension d ≥ 2, the diffusion constructed in the previous theorem is non-
colliding. Indeed, the following theorem holds.

Theorem 4.3 Assume d ≥ 2, and the hypotheses of Theorem 3.3. Then

Pξ({ω ∈ Ω : Mt(ω) ∈ Nσ(Λ), for any t ∈ [0,∞)}) = 1, E-a.e. ξ ∈ Nσ(Λ).

An illustrating example

Let Λ := B(0, R) ⊂ R2 be the closed ball centered at the origin with radius

R ∈ (0, 1), let {ϕ(R)
k }1≤k≤3, denote the orthonormal subset of L2(B(0, R), `)

defined by

ϕ
(R)
k (x) :=

1

R

√
k + 1

π

(
x(1)

R
+ i

x(2)

R

)k
, x = (x(1), x(2)) ∈ B(0, R), k = 1, 2, 3,

where µ = ` is the Lebesgue measure on R2 and i :=
√
−1 denotes the complex

unit. We consider the truncated Bergman kernel (see [18]) restricted to Λ

KBe(x, y) :=

3∑
k=1

R2(k+1)ϕ
(R)
k (x)ϕ

(R)
k (y), x, y ∈ B(0, R),

and denote by KBe the associated integral operator.
We now discuss the conditions of Theorem 4.2. First, KBe is readily seen to

be Hermitian and locally of trace class with nonzero eigenvalues κk := R2(k+1),
k = 1, 2, 3. As a consequence, the spectrum of KBe is contained in [0, 1) and the
triplet (KBe,KBe, `) satisfies assumption (H1). In addition, Condition (H2) is
trivially satisfied since µ = ` is the Lebesgue measure.

Denoting by ηΛ the determinantal point process with kernelKBe, the Janossy
densities of ηΛ are given by

j
(k)
Λ (x1, . . . , xk) = Det (Id−KBe)det J [Λ](x1, . . . , xk),

for k = 1, 2, 3, (x1, . . . , xk) ∈ Λk, and where the kernel J [Λ] of J[Λ] is given by

J [Λ](x, y) :=

3∑
h=1

R2(h+1)

1−R2(h+1)
ϕ

(R)
h (x)ϕ

(R)
h (y).

Moreover, ηΛ has at most 3 points according to Proposition 2.5, which means
that jkΛ = 0, for k ≥ 4. To prove condition (H3) it suffices to remark that the
function

(x1, . . . , xk)→ det(J [Λ](xp, xq))1≤p,q≤k
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is continuously differentiable on Λk, for k ≤ 3. Condition (3.8) is trivially
satisfied for k > 3 since as already observed in this case jkΛ = 0. Next, we check
that Condition (3.8) is verified for k = 3. To that end, note that

J [Λ](x1, x2, x3) = A(x1, x2, x3)A(x1, x2, x3)∗,

where the matrix A := (Aph)1≤p,h≤3 is given by

Aph :=
Rh+1

√
1−R2(h+1)

ϕ
(R)
h (xp)

and A(x1, x2, x3)∗ denotes the transpose conjugate of A(x1, x2, x3). Hence,

det J [Λ](x1, x2, x3) = |detA(x1, x2, x3)|2,

and since the previous determinant is a Vandermonde determinant, we have

detA(x1, x2, x3) =

3∏
p=1

√
1 + p

π(1−R2(p+1))

(
3∏
p=1

(x(1)
p + ix(2)

p )

)
∏

1≤p<q≤3

((x(1)
p − x(1)

q ) + i(x(2)
p − x(2)

q )).

So, Condition (3.8) with k = 3 reduces to

∫
B(0,R)3

∣∣∣∣∣∣
∂
x

(h)
i
|detA(x1, x2, x3)|2∂

x
(k)
j
|detA(x1, x2, x3)|2

|detA(x1, x2, x3)|2

∣∣∣∣∣∣ `(dx1)`(dx2)`(dx3) <∞,

for all 1 ≤ i, j ≤ 3 and 1 ≤ h, k ≤ 2, and for this it suffices to check∫
B(0,R)3

∣∣∣∣∣∂x(1)
1
|detA(x1, x2, x3)|2

|detA(x1, x2, x3)|2

∣∣∣∣∣ `(dx1)`(dx2)`(dx3) <∞.

This latter integral can be written as

∫
B(0,R)3

∣∣∣∣∣∣ 2x
(1)
1

(x
(1)
1 )2 + (x

(2)
1 )2

+ 2

3∑
j=2

x
(1)
1 − x

(1)
j

(x
(1)
1 − x

(1)
j )2 + (x

(2)
1 − x

(2)
j )2

∣∣∣∣∣∣ `(dx1)`(dx2)`(dx3),

which is indeed finite. Condition (3.8) may be verified also for k < 3 by taking
into account some properties of generalized Vandermonde determinants, we refer
the reader to [11] for the details. Consequently, by Theorem 4.2 we have the
existence of a diffusion process properly associated to the determinantal point
process with the Bergman-type kernel KBe.

5 Simulation

Standard simulation of determinantal point processes

In this section, we describe the standard algorithm to sample from the law of a
determinantal point process. The main results of this section can be found in
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the seminal work of [17], along with the improvements found in [12], [18], [22].
We recall the algorithm introduced there in order to insist on its advantages and
disadvantages compared to directly simulating according to the densities. The
standard algorithm first yields a way to simulate the number of points n ∈ N of
a determinantal point process on a given compact Λ ⊆ X. Second, it provides a
sample from the Janossy density jnΛ. Let us now discuss in detail these two steps.

Theorem 5.1 Let K be a trace class integral operator satisfying (H1) (we of-
ten take KΛ, which is indeed of trace class), {ϕn}n≥1 an orthonormal basis of
L2(X, µ) formed by eigenfunctions of K and {µn}n≥1 the corresponding sequence
of eigenvalues. We write

K(x, y) =
∑
n≥1

µnϕn(x)ϕn(y), x, y ∈ X. (5.1)

Let {Bn}n≥1 be a sequence of independent Bernoulli random variables of mean
E[Bn] = µn. The Bernoulli random variables are defined on a distinct probabil-
ity space, say (Ω,F). Then, define the (random) kernel

KB(x, y) =
∑
n≥1

Bnϕn(x)ϕn(y), x, y ∈ X.

Finally, define the point process η on (Nσ × Ω,Nσ ⊗ F) as the point process
obtained by first drawing the Bernoulli random variables, and then the point
process with kernel KB. We have that η is a determinantal point process on X
with kernel K.

For the remainder of this paragraph, we consider a general kernel K of the
form (5.1) and wish to generate a sample of the determinantal point process
with kernel K.

According to Theorem 5.1, the number of points on X is distributed as the
sum of independent Bernoulli random variables. More precisely,

|ξ(X)| ∼
∑
n≥1

Bn,

where Bn ∼ Be(µn), n ∈ N. Define T := sup{n ≥ 1 / Bn = 1}. Since∑
n≥1 µn =

∑
n≥1P(Bn = 1) <∞, by a direct application of the Borel-Cantelli

lemma, we have that T < ∞ almost surely. Hence the method is to simulate
first a realization of T , say t, and then t − 1 independent Bernoulli random
variables B1, . . . , Bt−1, each Bn with mean µn, n = 1, . . . , t − 1 Finally, set
Bt = 1.

The simulation of the random variable T can be obtained by the inversion
method, as we know its cumulative distribution function explicitly. Indeed, for
n ∈ N,

P(T = n) = µn

∞∏
i=n+1

(1− µi),

18



hence

F (r) = P(T ≤ r) =
∑
n≤r

µn

∞∏
i=n+1

(1− µi), ∀r ∈ N. (5.2)

To generate a random variable with law F requires the numerical computation
of the generalized inverse F−1(u) := inf{t ∈ N / F (t) ≥ u}. In many practical
cases, as in the case of the Ginibre point process, the numerical calculations
may augment the complexity of the algorithm and the CPU. This is the main
reason for which we shall propose an approximate simulation of the Ginibre
point process.

Assume we have simulated the number of points of the determinantal point
process on a compact Λ. For the clarity, we suppose T = n and B1 = 1, B2 =
1, . . . , Bn = 1. This assumption is equivalent to a simple reordering of the
eigenvectors (ϕn)n∈N. Then we have reduced the problem to that of simulating
the vector (X1, . . . , Xn) of joint density

p(x1, . . . , xn) =
1

n!
det
(
K̃(xi, xj)

)
1≤i,j≤n

,

where K̃(x, y) =
∑n
j=1 ψj(x)ψj(y), for x, y ∈ Λ, where here (ψj)j∈N is the

reordering of (ϕj)j∈N. The determinantal point process of kernel K̃ has n points
almost surely by Proposition 2.5, which means that it remains to simulate the
unordered vector (X1, . . . , Xn) of points of the point process. The idea of the
algorithm is to start by simulating X1, then X2|X1, until Xn|X1, . . . , Xn−1.
The key here is that in the determinantal case, the density of these conditional
probabilities takes a computable form. Let us start by observing that

det
(
K̃(xi, xj)

)
1≤i,j≤ni

= det (ψk(xl))1≤k,l≤ni det
(
ψl(xk)

)
1≤k,l≤n

,

so the density of X1 on Λ is

p1(x1) =

∫
. . .

∫
p(x1, . . . , xn)µ(dx2) · · ·µ(dxn)

=
1

n!

∑
τ,σ∈Sn

sgn(τ)sgn(σ)ψτ(1)(x1)ψσ(1)(x1)

n∏
k=2

∫
ψτ(k)(xk)ψσ(k)(xk)µ(dxk)

=
1

n!

∑
σ∈Sn

|ψσ(1)(x1)|2

=
1

n

n∑
k=1

|ψk(x1)|2,

where Sn is the n-th symmetric group and sgn(σ) is the sign of the permutation
σ ∈ Sn. By a similar computation, we may compute the distribution of X2|X1,
whose density with respect to µ is given by

pX2|X1
(x2) =

p2(X1, x2)

p1(X1)
=

1

(n− 1)!
∑
|ψj(X1)|2∑

σ∈Sn

(
|ψσ(1)(X1)|2|ψσ(2)(x2)|2 − ψσ(1)(X1)ψσ(2)(X1)ψσ(2)(x2)ψσ(1)(x2)

)
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=
1

n− 1

 n∑
i=1

|ψj(x2)|2 − |
n∑
j=1

ψj(X1)√∑
|ψj(X1)|2

ψj(x2)|2
 .

The previous formula can be generalized recursively, and has the advantage of
giving a natural interpretation of the conditional densities. Indeed, we may write
the conditional densities at each step in a way that makes the orthogonalization
procedure appear. This is presented in the final algorithm, which was explicitly
obtained in [22] (see also [17] for the proof). We define the vector v(x) :=
(ψ1(x), . . . , ψn(x))t, where t stands for the transpose operator, denote by ‖v(x)‖
its Euclidean norm, and given x ∈ Cn, we set x∗ := xt.

Algorithm 1 Simulation of the determinantal projection point process

sample Xn from the distribution with density pn(x) = ‖v(x)‖2/n, x ∈ Λ
e1 ← v(Xn)/‖v(Xn)‖
for j = n− 1→ 1 do

sample Xj from the distribution with density

pj(x) =
1

j

[
‖v(x)‖2 −

n−j∑
k=1

|e∗kv(x)|2
]

wj ← v(Xj)−
∑n−j
k=1 (e∗kv(Xj)) ek, en−j+1 ← wj/‖wj‖

end for
return (X1, . . . , Xn)

It is then known that Algorithm 1 yields a sample {X1, . . . , Xn} of a determi-

nantal point process with kernel K̃(x, y) =

n∑
j=1

ψj(x)ψj(y), x, y ∈ Λ.

Simulation using Markov chains

Exploiting the bound (2.15), an alternative algorithm to sample from the law
of a determinantal point process on a finite window is readily obtained by
specializing the general theory developed in [19], [20] and [23], which allow
to sample from the law of finite point processes with bounded Papangelou
intensity. Let us give a brief description.

In the remainder of this paragraph, we fix a compact set Λ ⊆ X, and turn our
attention to the simulation of a determinantal point process with kernel KΛ.
The following bound holds for the Papangelou conditional intensity cΛ:

∀x ∈ Λ, ∀ξ ∈ Nσ, cΛ(x, ξ) ≤ J [Λ](x, x) = J(x, x), (5.3)

where we have specialized the bound (2.15), and have noticed that J [Λ](x, x) =
J(x, x) for x ∈ Λ. We first simulate a Glauber process associated with the
measure J(x, x)dµ(x):

• Draw an initial configuration D0 according to the distribution of a Poisson
point process over Λ with mean measure J(x, x)dµ(x).

20



• Define a Poisson process on R+ of intensity M =
∫

Λ
J(x, x)dµ(x) and

denote by (Tn, n ≥ 1) its arrival times.

• At each time Tn, a particle appears at a position randomly located accord-
ing to the probability distribution M−1J(x, x)dµ(x) independently from
any other event.

• To each particle, we assign an exponentially distributed lifetime of mean
1, independently from any other event, i.e. each particle dies after an
exponential distributed time.

• The Glauber process D is formed by the random variables Dt denoting
the number of particles alive at time t.

Once this process is constructed, we can use the coupling from the past to
simulate the determinantal point process:

• Simulate a (dominating) Glauber process D corresponding to the mean
measure J(x, x)dµ(x) over Λ on a time horizon T , with initial configura-
tion D0 . Record all birth dates and locations along the sample-path.

• Define two configuration-valued Markov chains, L and U . L stands for
lower and U for upper since we will guarantee Lt ⊂ Ut ⊂ Dt at any time
t ≥ 0, L0 = ∅ and U0 = D0.

• Read the time-line of the process D.

1. When there is a death in the sample-path of D, then the correspond-
ing particle dies (in both U and L) provided it exists.

2. When there is a birth at x in D at time t, draw a uniform sample S
on [0, 1], independently from everything else. If S ≤ c(x, Ut−) then
x is added to Lt = Lt− ∪ x. If S ≤ c(x, Lt−), then Ut = Ut− ∪ {x}.

3. If at time T , UT = LT then UT is a sample of the determinantal point
process of Papangelou intensity c. If not, expand the sample-path of
D to [T, 2T ] and replay the same algorithm.

A crucial question is then how to choose T to avoid both a too long simulation
if T is large and the need to extend several times the sample-path of D if T is
too small. A very crude bound on the coalescence time, i.e. the time at which
U and L coincide, is the hitting time of the null configuration by D. Indeed,
since for any time t, Lt ⊂ Ut ⊂ Dt, if DT = ∅ then UT = ∅ and LT = ∅. It
turns out that the number of points of D follow the dynamics of an M/M/∞
queue. If the initial population of D0 is large then Proposition 6.8 of [30] entails
that T0 is of the order of log(|D0|). This means that the coalescence time of our
algorithm is an O

(
log
∫

Λ
J(x, x) dµ(x)

)
, but in practice, we are well below this

upper bound.
Finally, we present some samples of the coalescence time in a practical exam-

ple known as the Gaussian model (see [22]). More precisely, Figure 2(a) shows
the distributions of the coalescence time of Lt and Ut and the stopping time of
the algorithm for 500 samples of the Gaussian model DPP with ρ = 50.

The two simulation methods presented are conceptually quite different and
are therefore difficult to compare. To be more precise, in the standard algo-
rithm, there are two time-consuming steps: the simulation of the Bernoulli
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Figure 1: CFTP simulations for Gaussian model DPP with ρ = 50 and α = 0.04,
respectively at time Ti, the i-th jump time from time t = −n. Notations:
“ · ” := Dt, “∇” := Ut and “∆”(red) := Lt.
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(a) Coalescence time of Lt and Ut

Figure 2: Histogram of the coalescence time of Lt and Ut and the stopping time
on 500 samples of a Gaussian model with ρ = 50 and α = 0.04.

22



random variables and the simulation under the density pi for which we are a
priori required to proceed by rejection sampling. This requires an evaluation of
the supremum of pi on a grid which can be unboundedly big. In the algorithm
based on Markov chains, we avoid the previous problem by only evaluating
elaborate functionals (in our case, the Papangelou conditional intensity c) on
a specific configuration, and not on the whole grid. Additionally, the standard
algorithm relies on the knowledge of the eigenfunctions and the eigenvalues of
the kernel KΛ whereas the algorithm based on Markov chains works well with
any expression of J [Λ]. However, the time necessary to reach equilibrium can
be quite long, which is the main drawback of this algorithm. Thus, quantifying
the execution time of the MCMC algorithm is of practical interest. We roughly
discussed this question in this section, but a comparison with the standard algo-
rithm is in general quantitatively difficult since the better performing algorithm
depends on the kernel KΛ of the underlying determinantal point process.

Approximate simulation of the Ginibre point process

In this paragraph, we introduce a specific determinantal point process which is
fast to simulate in practice, well suited for applications, and converges weakly
to the Ginibre point process.

The Ginibre point process, see [15], is the determinantal point process on C
with kernel

KGin(z1, z2) :=

∞∑
n=0

φn(z1)φn(z2), z1, z2 ∈ C, (5.4)

where φn(z) := 1√
πn!

e−
1
2 |z|

2

zn for each n ≥ 0. Further details concerning the

Ginibre point process may be found in [18] and [31].

We introduce a new kernel, by setting

KN
Gin(z1, z2) :=

N−1∑
n=0

φ
√
N

n (z1)φ
√
N

n (z2), z1, z2 ∈ B(0,
√
N), (5.5)

where we define φ
√
N

n := 1√
πγ(n+1,N)

e−
1
2 |z|

2

zn1{z∈B(0,
√
N)}, for 0 ≤ n ≤ N − 1.

Here, γ(z, a) :=
∫ a

0
e−ttz−1 dt, a ≥ 0, z ∈ C is the lower incomplete Gamma

function. This kernel defines a determinantal point process named truncated
Ginibre point process conditioned on having N points, see [12] for details.
Clearly, this determinantal point process can be simulated as described by
Algorithm 1. Fixing the number N of points in the ball B(0,

√
N) ensures a

fast execution time.

As already noticed, Algorithm 1 yields a sample of the truncated Ginibre point
process conditioned on having N points on the ball B(0,

√
N). In order to simu-

late the process on B(0, a), a ≥ 0, we need to apply a homothetic transformation
to the N points, which translates to a homothety on the eigenfunctions. To sum-
marize, the simulation algorithm for the truncated Ginibre process conditioned
on having N points on the ball B(0, a) is done according to Algorithm 2.
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Algorithm 2 Simulation of the truncated Ginibre point process

define φk(z) = N
πa2γ(k+1,N)e

− N
2a2 |z|

2

(Nza2 )k, for z ∈ B(0,
√
N) and 0 ≤ k ≤

N − 1.
define v(z) := (φ0(z), . . . , φN−1(z)), for z ∈ B(0,

√
N).

sample XN from the distribution with density pN (z) = ‖v(z)‖2/N , z ∈
B(0,

√
N)

set e1 = v(XN )/‖v(XN )‖
for i = N − 1→ 1 do

sample Xi from the distribution with density

pi(x) =
1

i

[
‖v(x)‖2 −

N−i∑
j=1

|e∗jv(x)|2
]

set wi = v(Xi)−
∑N−i
j=1

(
e∗jv(Xi)

)
ej , eN−i+1 = wi/‖wi‖

end for
return (X1, . . . , XN )

The next theorem from [12] and the subsequent comment guarantee that the
above algorithm can be interpreted as an approximate simulation algorithm for
the Ginibre point process.

Theorem 5.2 The kernel KN
Gin converges to KGin, as N tends to infinity, uni-

formly on compacts.

As a consequence of Theorem 5.2 and Proposition 3.10 in [32], the truncated
Ginibre point process conditioned on having N points converges weakly to the
Ginibre point process.

6 Open questions

We mention here a few open questions.

• Let P be the law of a determinantal point process η on X, and φ a diffeo-
morphism of the whole space. Is the image of P by φ absolutely continu-
ous with respect to P? If yes, is it possible to compute the corresponding
Radon-Nikodym derivative?

• Is the diffusion constructed in Theorem 4.2 ergodic?

• Consider a sequence of diffusions defined by Theorem 4.2 and indexed
by compacts Λn increasing to Rd. Does MΛn,PΛn

converge weakly to
some limiting diffusion as n → ∞? If yes, may we compute the properly
associated Dirichlet form?

• Is it possible to approximate in distribution the diffusion constructed in
Theorem 4.2 by a continuous-time Markov process (such as a Glauber
dynamics)?

• What is the error committed by the approximate simulation algorithm to
sample from the target law, i.e. the law of the Ginibre point process?

24



• Let η be a determinantal point process with integral operator K. Can one
generalize the results presented in this chapter to include the case where
1 is an eigenvalue of K?

7 Appendix

First, we recall some results and properties on the closability of linear operators.
Given (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) two Banach spaces, and A : Dom(A) −→ Y
a linear operator defined on a subspace Dom(A) of X, the domain of A, the
operator A is said to be closed if, for any sequence (xn)n≥1 ⊂ Dom(A), such
that xn converges to x in X and Axn converges to y in Y we have x ∈ Dom(A)
and y = Ax, i.e. Dom(A) is closed (or equivalently complete) w.r.t. the graph
norm ‖ · ‖G := ‖ · ‖X + ‖A · ‖Y . A linear operator A : Dom(A) −→ Y is said
closable if, for any sequence (xn)n≥1 ⊂ Dom(A) such that xn converges to 0 in
X and Axn converges to y in Y it holds y = 0. In other words, A is closable
if, for any sequence (xn)n≥1 ⊂ Dom(A) such that xn converges to 0 in X and
(xn)n≥1 is Cauchy w.r.t. the graph norm ‖·‖G it holds Axn converges to 0 in Y .
The minimal closed extension of the closable operator A is the closed operator
A whose domain Dom(A) is the completion of Dom(A) w.r.t. ‖ · ‖G, i.e.

Dom(A) := {x ∈ X : ∃ (xn)n≥1 ⊂ Dom(A) : xn → x in X

and (Axn)n≥1 converges in Y }

and we define
Ax := lim

n→∞
Axn, x ∈ Dom(A),

where the limit is in Y and (xn)n≥1 is some sequence in Dom(A) such that xn
converges to x in X and (Axn)n≥1 converges in Y .

Next, we recall some notions of Dirichlet forms theory. We begin with some
definitions related to bilinear forms (see [25] for details). Let H be a Hilbert
space with inner product 〈·, ·〉 and A : Dom(A) × Dom(A) −→ R a bilinear
form defined on a dense subspace Dom(A) of H, the domain of A. The form
A is said to be symmetric if A(F,G) = A(G,F ), for any F,G ∈ Dom(A), and
nonnegative definite if A(F, F ) ≥ 0, for any F ∈ Dom(A). Let A be symmetric
and nonnegative definite, A is said closed if Dom(A) equipped with the norm

‖F‖A :=
√
A(F, F ) + 〈F, F 〉, F ∈ Dom(A),

is a Hilbert space. A symmetric and nonnegative definite bilinear form A is said
closable if, for any sequence (Fn)n≥1 ⊂ Dom(A) such that Fn goes to 0 in H
and (Fn)n≥1 is Cauchy w.r.t. ‖ · ‖A it holds that A(Fn, Fn) converges to 0 in R
as n goes to infinity. Let A be closable and denote by Dom(A) the completion
of Dom(A) w.r.t. the norm ‖ · ‖A. It turns out that A is uniquely extended to
Dom(A) by the closed, symmetric and nonnegative definite bilinear form

A(F,G) = lim
n→∞

A(Fn, Gn), (F,G) ∈ Dom(A)×Dom(A),

where {(Fn, Gn)}n≥1 is any sequence in Dom(A)×Dom(A) such that (Fn, Gn)
converges to (F,G) ∈ Dom(A)×Dom(A) w.r.t. the norm ‖·‖A+‖·‖A. Suppose
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H = L2(B,B, β) where (B,B, β) is a measure space. A symmetric, nonnegative
definite and closed form A is said to be a symmetric Dirichlet form if

A(F+ ∧ 1, F+ ∧ 1) ≤ A(F, F ), F ∈ Dom(A),

where F+ denotes the positive part of F . Suppose that B is a Hausdorff topolog-
ical space and let A be a symmetric Dirichlet form. An A-nest is an increasing
sequence (Cn)n≥1 of closed subsets of B such that⋃

n≥1

{F ∈ Dom(A): F = 0 β-a.e. on B \ Cn}

is dense in Dom(A) w.r.t. the norm ‖ · ‖A. We say that a subset B′ ⊂ B
is A-exceptional if there exists an A-nest (Cn)n≥1 with B′ ⊂ B \

⋃
n≥1 Cn.

Throughout this paper we say that a property holds A-almost everywhere
(A-a.e.) if it holds up to an A-exceptional set. Moreover, a function f : B → R

is called A-almost continuous (A-a.c.) if there exists an A-nest (Cn)n≥1 such
that the restriction f|Cn of f to Cn is continuous for each n ≥ 1.

Let B be again a Hausdorff topological space. A symmetric Dirichlet form
A on the Hilbert space L2(B,S (B), β) is called quasi-regular if

(i) There exists an A-nest (Cn)n≥1 consisting of compact sets.

(ii) There exists a ‖ · ‖A-dense subset of Dom(A) whose elements have A-a.c.
β-versions.

(iii) There exist Fk ∈ Dom(A), k ≥ 1, having A-a.c. β-versions F̃k, k ≥ 1,
such that (F̃k)k≥1 is a separating set for B \N (i.e. for any x, y ∈ B \N ,

x 6= y, there exists F̃k∗ such that F̃k∗(x) 6= F̃k∗(y)), where N is a subset
of B which is A-exceptional.
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