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Abstract

Concentration and deviation inequalities are obtained for functionals on
Wiener space, Poisson space or more generally for normal martingales and bino-
mial processes. The method used here is based on covariance identities obtained
via the chaotic representation property, and provides an alternative to the use
of logarithmic Sobolev inequalities. It allows to recover known concentration
and deviation inequalities on the Wiener and Poisson space (including the ones
given by sharp logarithmic Sobolev inequalities), and extends results available
in the discrete case, i.e. on the infinite cube {−1, 1}∞.
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1 Introduction

The purpose of the present paper is to further explore topics in concentration and

deviation inequalities, in particular in infinite dimensional settings. Deviation and

concentration have attracted a lot of attention in recent years well summarized in

[17, 18] where the reader will find up-to-date information, precise references and credit.

∗Research supported in part by the NSF Grant DMS 9803239.
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Among the various methods used to obtain these results one that we would like to

emphasize is based on covariance representations. In particular, it was used in the

Gaussian or more generally infinitely divisible cases in [4], [13]. Here we tackle the in-

finite dimensional case with a similar method, recovering the results recently obtained

in [2], [6], using (modified) logarithmic Sobolev inequalities, and also the stronger re-

sults of [30] obtained from sharp logarithmic Sobolev inequalities, cf. Corollaries 4.3

and 5.1. We also show that our method covers the discrete case and carries the concen-

tration inequalities of [6] to infinite dimensions, cf. Proposition 7.8 and Corollary 7.7.

The content of this paper is as follows. In the next section, we briefly review the

notion of normal martingale and recall elements of its structure theory. Section 3 is

devoted to concentration inequalities for normal martingales having the chaos rep-

resentation property. This is then specialized to “deterministic” structure equations

that simultaneously cover the Poisson and Wiener cases in Section 4. The general

case of Poisson random measure on a metric space is treated in Section 5, and the

gradient of [8] is also used in Section 6 for the Poisson process on R+. Section 7 is

devoted to the case of the binomial process, and it includes functionals on the infinite

discrete cube under non-symmetric Bernoulli measures.

2 Preliminaries: normal martingales

Let (Mt)t∈R+ be a normal martingale, i.e. (Mt)t∈R+ is a martingale with deterministic

angle bracket d〈Mt,Mt〉 = dt. Let (Ft)t∈R+ be the filtration generated by (Mt)t∈R+

and let F =
∨
t∈R+

Ft. The multiple stochastic integral In(fn) is then defined as

In(fn) = n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn , fn ∈ L2(R+)◦n, n ≥ 1,

where L2(R+)on is the set of symmetric square integrable functions on Rn
+, with

E[In(fn)Im(gm)] = n!1{n=m}〈fn, gm〉L2(R+)◦n . (2.1)

We assume that (Mt)t∈R+ has the chaos representation property, i.e. every F ∈
L2(Ω,F , P ) has a decomposition as F =

∑∞
n=0 In(fn). Let D : Dom(D) −→ L2(Ω ×
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R+, dP × dt) denote the closable gradient operator defined as

DtF =
∞∑
n=1

nIn−1(fn(∗, t)), dP × dt− a.e.,

with F =
∑∞

n=0 In(fn). The Clark formula is a consequence of the chaos represen-

tation property for (Mt)t∈R+ , and states that any F ∈ Dom(D) ⊂ L2(Ω,F , P ) has a

representation

F = E[F ] +

∫ ∞
0

E[DtF | Ft]dMt. (2.2)

It admits a simple proof via the chaos expansion of F :

F = E[F ] +
∞∑
n=1

n!

∫ ∞
0

∫ tn

0

· · ·
∫ t2

0

fn(t1, . . . , tn)dMt1 · · · dMtn

= E[F ] +
∞∑
n=1

n

∫ ∞
0

In−1(fn(∗, tn)1{∗<tn})dMtn = E[F ] +

∫ ∞
0

E[DtF | Ft]dMt.

Let (Pt)t∈R+ denote the Ornstein-Uhlenbeck semi-group, defined as

PtF =
∞∑
n=0

e−ntIn(fn),

with F =
∑∞

n=0 In(fn).

Proposition 2.1 Let F,G ∈ Dom(D). Then

Cov(F,G) = E

[∫ ∞
0

DtFE[DtG | Ft]dt
]
, (2.3)

and

Cov(F,G) = E

[∫ ∞
0

∫ ∞
0

e−sDuFPsDuGduds

]
. (2.4)

Proof. The first identity is a consequence of the Clark formula. By orthogonality

of multiple integrals of different orders and continuity of Ps on L2(Ω), it suffices to

prove the second identity for F = In(fn) and G = In(gn). But

E[In(fn)In(gn)] = n!〈fn, gn〉L2(Rn+) =
1

n
E

[∫ ∞
0

DuFDuGdu

]
= E

[∫ ∞
0

e−s
∫ ∞

0

DuFPsDuGduds

]
.

�
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Relation (2.4) implies the covariance inequality

|Cov(F,G)| ≤ ‖DF‖L∞(Ω,L2(R+)E[‖DG‖L2(R+)]. (2.5)

If (Mt)t∈R+ is in L4(Ω,F , P ) then the chaos representation property implies that there

exists a square-integrable predictable process (φt)t∈R+ such that

d[Mt,Mt] = dt+ φtdMt, t ∈ R+. (2.6)

This last equation is called a structure equation, cf. [11]. Let it = 1{φt=0} and jt =

1−it = 1{φt 6=0}, t ∈ R+. The continuous part of (Mt)t∈R+ is given by dM c
t = itdMt and

the eventual jump of (Mt)t∈R+ at time t ∈ R+ is given by ∆Mt = φt on {∆Mt 6= 0},
t ∈ R+, see [11], p. 70. The following are examples of normal martingales with the

chaos representation property, cf. [11].

a) (φt)t∈R+ is deterministic. Then (Mt)t∈R+ can be represented as

dMt = itdBt + φt(dNt − λtdt), t ∈ R+, M0 = 0, (2.7)

with λt = (1−it)/φ2
t , t ∈ R+, where (Bt)t∈R+ is a standard Brownian motion, and

(Nt)t∈R+ a Poisson process independent of (Bt)t∈R+ , with intensity νt =
∫ t

0
λsds,

t ∈ R+.

b) Azéma martingales where φt = βMt, β ∈ [−2, 0).

If (φt)t∈R+ is a deterministic function, then itDt is still a derivation operator, and we

have the product rule

Dt(FG) = FDtG+GDtF + φtDtFDtG, t ∈ R+, (2.8)

cf. Proposition 1.3 of [25]. In fact Dt can be written as

Dt =
jt
φt

∆φ
t + itDt, (2.9)

where ∆φ
t is the finite difference operator defined on random functionals by addition

at time t of a jump of height φt to (Mt)t∈R+ . If φt 6= 0, this implies

Dte
F =

eF

φt
(eφtDtF − 1), (2.10)
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and at the limit φt → 0, Dt becomes a derivation: Dte
F = eFDtF .

In the deterministic case, an Ornstein-Uhlenbeck process (Xt)t∈R+ can be associated

with the semi-group (Ps)s∈R+ , and this implies the continuity of Ps.

Lemma 2.2 Assume that (φt)t∈R+ is a deterministic function. For F ∈ Dom(D) we

have

‖PtDF‖L∞(Ω,L2(R+)) ≤ ‖DF‖L∞(Ω,L2(R+)), t ∈ R+. (2.11)

Proof. Let (Mt)t∈R+ be defined as in (2.7) on the product space Ω = Ω1 × Ω2 of in-

dependent Brownian motion (Bt)t∈R+ and Poisson process (Nt)t∈R+ . The exponential

vector

ε(f) =
∞∑
n=0

1

n!
In(f ◦n),

f ∈ L1(R+) ∩ L2(R+), has the probabilistic interpretation

ε(f) = exp

(∫ ∞
0

isf(s)dB(s) +

∫ ∞
0

js log(1 + φ(s)f(s))dN(s)

−1

2

∫ ∞
0

isf(s)ds−
∫ ∞

0

js
f(s)

φ(s)
ds

)
.

Let (X t
1)t∈R+ and (X t

2)t∈R+ be respectively the classical Ornstein-Uhlenbeck process

on Wiener space, and the Ornstein-Uhlenbeck process on Poisson space [29]. We have

E[ε(f)(X t
1, X

t
2) | (X0

1 , X
0
2 )]

= E

[
exp

(∫ ∞
0

isf(s)dX t
1(s) +

∫ ∞
0

js log(1 + φ(s)f(s))dX t
2(s)

−1

2

∫ ∞
0

isf(s)ds−
∫ ∞

0

js
f(s)

φ(s)
ds

)
| (X1(0), X2(0))

]
= exp

(∫ ∞
0

ise
−tf(s)dX0

1 (s) +

∫ ∞
0

js log(1 + e−tφ(s)f(s))dX0
2 (s)

−1

2

∫ ∞
0

ise
−tf(s)ds−

∫ ∞
0

jse
−tf(s)

φ(s)
ds

)
.

= ε(e−tf)(X0
1 , X

0
2 ) = Ptε(f).

This identity extends to linear combinations of exponential vectors by linearity, and

to L2(Ω) by density and continuity of Pt. This implies that

‖PtDF‖L∞(Ω,L2(R+)) ≤ ‖Pt|DF |L2(R+)‖L∞(Ω) ≤ ‖DF‖L∞(Ω,L2(R+)), t ∈ R+,

for all F ∈ Dom(D). �
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Before proceeding to general concentration inequalities for normal martingales with

the chaos representation property, we note that some infinite dimensional inequalities

can be obtained from their finite dimensional analogues. For example if (Mt)t∈R+

is a standard Brownian motion, then D is a derivation operator whose action on

cylindrical functionals of the form F = f(I1(e1), . . . , I1(en)), e1, . . . , en ∈ L2(R+), f

bounded and C1 on Rn, is given by

DtF =
i=n∑
i=1

ei(t)∂if(I1(e1), . . . , I1(en)), t ∈ R+.

We also have the relations

‖DF‖L2(R+) = |∇f |(I1(e1), . . . , I1(en)), a.s.,

and

‖DF‖L∞(Ω,L2(R+)) = ‖f‖Lip.

Applying the Gaussian isoperimetric inequality of Borell, Sudakov and Tsirel’son ([7],

[28]) to F = f(I1(e1), . . . , I1(en)) with ‖DF‖L∞(Ω,L2(R+)) ≤ 1, leads to concentration

inequalities. By density of the cylindrical functionals this result extends to Wiener

functionals F in the domain of D and satisfying the condition ‖DF‖L∞(Ω,L2(R+)) ≤ 1.

In a similar way, the Gaussian concentration inequalities obtained in [22], [18] or [4],

extend to infinite dimensions.

3 Concentration inequalities in the general case

In this section we work in the general framework of normal martingales with the chaos

representation property, to do so we extend some arguments of [13].

Lemma 3.1 Let F ∈ Dom(D) be such that E[et0|F |] < ∞, and esF ∈ Dom(D),

0 < s ≤ t0, for some t0 > 0. Then

E[et(F−E[F ])] ≤ exp

(∫ t

0

h(s)ds

)
, 0 ≤ t ≤ t0, (3.1)

where h is defined as

h(s) =

∫ ∞
0

‖DuF‖∞‖e−sFDue
sF‖∞du, s ∈ [0, t0]. (3.2)
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Proof. Let us first assume that E[F ] = 0. We have

E[FesF ] = E

[∫ ∞
0

E[DuF | Fu]E[Due
sF | Fu]du

]
= E

[∫ ∞
0

Due
sFE[DuF | Fu]du

]
≤ E[esF ]

∫ ∞
0

‖DuF‖∞‖e−sFDue
sF‖∞du, 0 ≤ s ≤ t0.

In the general case, letting L(s) = E[es(F−E[F ])], we have

log(E[et(F−E[F ])]) =

∫ t

0

L′(s)

L(s)
ds ≤

∫ t

0

E[(F − E[F ])es(F−E[F ])]

E[es(F−E[F ])]
ds,

0 ≤ t ≤ t0. �

Given F ∈ L2(Ω) we denote by ηF the process

ηF (t) = E[DtF | Ft], t ∈ R+,

i.e. we have

F = E[F ] +

∫ ∞
0

ηF (t)dMt.

A modification of the above proof as

E[FesF ] = E

[∫ ∞
0

Due
sFηF (u)du

]
≤ E

[
esF‖e−sFDesF‖L2(R+)‖ηF‖L2(R+)

]
≤ E

[
esF
]
‖e−sFDesF‖L∞(Ω,L2(R+))‖ηF‖L∞(Ω,L2(R+)),

also shows that (3.1) holds with

h(s) = ‖ηF‖L∞(Ω,L2(R+))‖e−sFDesF‖L∞(Ω,L2(R+)).

Various deviation inequalities can be obtained from this function, however it will not

be used any further since it does not directly involve the norm of DF .

In the next lemma we apply the semi-group correlation identity (2.4). We refer to [19]

for other applications of semi-groups, in particular to logarithmic Sobolev inequalities.

Lemma 3.2 Let (Pt)t∈R+ satisfy (2.11). Let F ∈ Dom(D) be such that E[et0|F |] <∞,

and esF ∈ Dom(D), 0 < s ≤ t0, for some t0 > 0. Then

E[et(F−E[F ])] ≤ exp

(∫ t

0

h(s)ds

)
, 0 ≤ t ≤ t0, (3.3)
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where h is any of the functions

h(s) = ‖DF‖L∞(Ω,L2(R+))‖e−sFDesF‖L∞(Ω,L2(R+)), s ∈ [0, t0], (3.4)

h(s) =

∥∥∥∥e−sFDesFDF

∥∥∥∥
∞
‖DF‖2

L∞(Ω,L2(R+)), s ∈ [0, t0]. (3.5)

Proof. Again assume first that E[F ] = 0. If the Ornstein-Uhlenbeck semi-group

satisfies (2.11), then

E[FesF ] = E

[∫ ∞
0

e−v
∫ ∞

0

Due
sFPvDuFdudv

]
≤ E

[
esF‖e−sFDesF‖L2(R+)

∫ ∞
0

e−v‖PvDF‖L2(R+)dv

]
≤ E

[
esF
]
‖e−sFDesF‖L∞(Ω,L2(R+))

∥∥∥∥∫ ∞
0

e−vPv‖DF‖L2(R+)dv

∥∥∥∥
∞

≤ E
[
esF
]
‖e−sFDesF‖L∞(Ω,L2(R+))

∫ ∞
0

e−v‖DF‖L∞(Ω,L2(R+))dv

≤ E
[
esF
]
‖e−sFDesF‖L∞(Ω,L2(R+))‖DF‖L∞(Ω,L2(R+)).

A similar argument shows that

E[FesF ] = E

[∫ ∞
0

e−v
∫ ∞

0

Due
sFPvDuFdudv

]
≤ E

[
esF
∥∥∥∥e−sFDesFDF

∥∥∥∥
∞

∫ ∞
0

e−v‖DFPvDF‖L1(R+)dv

]
≤ E

[
esF
∥∥∥∥e−sFDesFDF

∥∥∥∥
∞

∫ ∞
0

e−v‖DF‖L2(R+)‖PvDF‖L2(R+)dv

]
≤ E

[
esF
] ∥∥∥∥e−sFDesFDF

∥∥∥∥
∞
‖DF‖L∞(Ω,L2(R+))

∥∥∥∥∫ ∞
0

e−vPv‖DF‖L2(R+)dv

∥∥∥∥
∞

≤ E
[
esF
] ∥∥∥∥e−sFDesFDF

∥∥∥∥
∞
‖DF‖L∞(Ω,L2(R+))

∫ ∞
0

e−v‖DF‖L∞(Ω,L2(R+))dv

≤ E
[
esF
] ∥∥∥∥e−sFDesFDF

∥∥∥∥
∞
‖DF‖2

L∞(Ω,L2(R+)).

The remainder of the proof is as in Lemma 3.1. �

From these lemmas a general concentration inequality follows:

Proposition 3.3 Let F ∈ Dom(D) be such that E[et0|F |] < ∞, and esF ∈ Dom(D),

0 < s ≤ t0, for some t0 > 0. Let h be the function defined either in (3.2), or (if
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(φt)t∈R+ is deterministic) in (3.4) or in (3.5). Then

P (F − E[F ] ≥ x) ≤ exp

(
−
∫ x

0

h−1(s)ds

)
, 0 < x < h(t0),

where h−1 is the inverse of h.

Proof. From Lemma 3.1 we have for all x ∈ R+:

etxP (F − E[F ] ≥ x) ≤ E[et(F−E[F ])] ≤ eH(t), 0 ≤ t ≤ t0,

with

H(t) =

∫ t

0

h(s)ds, 0 ≤ t ≤ t0.

For any 0 < t < t0 we have d
dt

(H(t)− tx) = h(t)− x, hence

min
0<t<t0

(H(t)− tx) = H(h−1(x))− xh−1(x) =

∫ h−1(x)

0

h(s)ds− xh−1(x)

=

∫ x

0

sdh−1(s)− xh−1(x) = −
∫ x

0

h−1(s)ds.

�

4 Concentration and deviation inequalities for de-

terministic structure

In this section we work with (φt)t∈R+ a deterministic function, i.e. (Mt)t∈R+ is written

as in (2.7). This covers the Gaussian case for φ = 0, and also the general Poisson

case, as shown in Sect. 5.

Proposition 4.1 Let F ∈ Dom(D) be such that E[et0|F |] < ∞, for some t0 > 0.

Then

P (F − E[F ] ≥ x) ≤ exp

(
−
∫ x

0

h−1(s)ds

)
, 0 < x < h(t0),

where h−1 is the inverse of any of the following functions:

h(t) =

∫ ∞
0

ju
|φu|
‖DuF‖∞(et|φu|‖DuF‖∞ − 1)du+ t

∫ ∞
0

iu‖DuF‖2
∞du, (4.1)

h(t) = ‖DF‖L∞(Ω,L2(R+))‖φ−1(et|φDF | − 1)‖L∞(Ω,L2(R+)), (4.2)

h(t) =

∥∥∥∥ 1

φDF
(etφDF − 1)

∥∥∥∥
∞
‖DuF‖2

L∞(Ω,L2(R+)), t ∈ [0, t0]. (4.3)
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Proof. In the deterministic case, e−tFDetF ∈ L2(Ω× R+), with

e−tFDue
tF =

ju
φu

(
etφuDuF − 1

)
+ iutDuF, u ∈ R+, (4.4)

which can also be written as

e−tFDue
tF =

1

φu

(
etφuDuF − 1

)
, (4.5)

by replacing φ−1
u

(
etφuDuF − 1

)
with its limit as φu → 0, i.e. tDuF , if φu = 0. It

remains to apply Proposition 3.3. �

Note that the inequalities given by (4.1), (4.2) and (4.3) are not comparable. Using

the bound

|φ−1
u (etφuDuF − 1)| ≤ t|DuF |et|φuDuF |,

for all values of φu ∈ R, Proposition 4.1 also holds for the functions

h(t) = t

∫ ∞
0

‖DuF‖2
∞‖et|φuDuF |‖∞du,

and

h(t) = t‖DF‖L∞(Ω,L2(R+))‖et|φDF |DF‖L∞(Ω,L2(R+)), t ∈ [0, t0].

We will show in the rest of the paper many instances where we can estimate h and

h−1.

Proposition 4.2 Let F ∈ Dom(D) be such that E[et0|F |] <∞, for some t0 > 0, and

φuDuF ≤ K(u) a.s., u ∈ R+, for some function K : R+ → R. Then

P (F − E[F ] ≥ x) ≤ exp

(
−
∫ x

0

h−1(s)ds

)
, 0 < x < h(t0),

where h−1 is the inverse of

h(t) =

∥∥∥∥ 1

K(·)
(etK(·) − 1)

∥∥∥∥
∞
‖DF‖2

L∞(Ω,L2(R+)), t ∈ [0, t0].

Proof. Since the function x 7→ (ex − 1)/x is positive and increasing on R, we have

0 ≤ e−tFDue
tF

DuF
=

1

φuDuF

(
etφuDuF − 1

)
≤ 1

K(u)
(etK(u) − 1), u ∈ R+,

and ∣∣∣∣e−tFDue
tF

DuF

∣∣∣∣ ≤ 1

K(u)
(etK(u) − 1), u ∈ R+.

It remains to apply Proposition 3.3 and Lemma 3.2. �
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The following corollary is the main result of this section. It unifies the Poisson and

Brownian case, and allows in particular to recover the classical inequality (4.7) in the

case φ = 0, i.e. on Wiener space cf. [22], and Proposition 3.1 of [30] which is proved

from the sharp logarithmic Sobolev inequalities on Poisson space [6].

Corollary 4.3 Let F ∈ Dom(D) be such that φDF ≤ K a.s. for some K ≥ 0 and

‖DF‖L∞(Ω,L2(R+)) <∞. Then for x ≥ 0,

P (F − E[F ] ≥ x) ≤ exp

(
−
‖DF‖2

L∞(Ω,L2(R+))

K2
g

(
xK

‖DF‖2
L∞(Ω,L2(R+))

))

≤ exp

(
− x

2K
log

(
1 +

xK

‖DF‖2
L∞(Ω,L2(R+))

))
, (4.6)

with g(u) = (1 + u) log(1 + u)− u, u ≥ 0. If K = 0 (decreasing functionals) we have

P (F − E[F ] ≥ x) ≤ exp

(
− x2

2‖DF‖2
L∞(Ω,L2(R+))

)
. (4.7)

Proof. We first assume that F ∈ Dom(D) is a bounded random variable. The

function h defined in Proposition 4.2 satisfies

h(t) ≤ 1

K
(etK − 1)‖DF‖2

L∞(Ω,L2(R+)),

hence

−
∫ x

0

h−1(t)dt ≤ − 1

K

∫ x

0

log
(

1 + tK‖DF‖−2
L∞(Ω,L2(R+))

)
dt

= − 1

K

(
(x+

1

K
‖DF‖2

L∞(Ω,L2(R+))) log
(

1 + xK‖DF‖−2
L∞(Ω,L2(R+))

)
− x
)
,

and (4.6) holds for all x ≥ 0 since F is bounded. If K = 0, the above proof is still

valid by replacing all terms by their limits as K → 0. If F ∈ Dom(D) is not bounded

the conclusion holds for Fn = max(−n,min(F, n)) ∈ Dom(D), n ≥ 1, and (Fn)n∈N,

(DFn)n∈N, converge respectively to F and DF in L2(Ω), resp. L2(Ω × R+), with

‖DFn‖2
L∞(Ω,L2(R+)) ≤ ‖DF‖2

L∞(Ω,L2(R+)). �

The bounds (4.6) and (4.7) respectively imply E[eα|F | log+ |F |] < ∞, for some α > 0

and E[eαF
2
] <∞, for all α < (2‖DF‖2

L∞(Ω,L2(R+)))
−1.

11



In particular, if F is FT -measurable with DF ≤ K for some K ≥ 0, and if morevoer

φt = φ ∈ R+ is constant in t ∈ R+, then

P (F − E[F ] ≥ x) ≤ exp

(
− T
φ2
g

(
φx

KT

))
≤ exp

(
− x

2Kφ
log

(
1 +

φx

KT

))
,

since ‖DF‖L∞(Ω,L2(R+)) ≤ KT . This improves (as in [30]) the inequality

P (F − E[F ] ≥ x) ≤ exp

(
− x

4φK
log

(
1 +

φx

2KT

))
. (4.8)

obtained from Proposition 6.1 in [2] which relies on modified (and not sharp) loga-

rithmic Sobolev inequalities on Poisson space.

Corollary 4.4 Let φt = φ ∈ R+, t ∈ R+, be constant. Let F ∈ Dom(D) be such that

‖DF‖∞ ≤ K and ‖DF‖L1(R+,L∞(Ω)) <∞. Then

P (F − E[F ] ≥ x) ≤ exp

(
−
‖DF‖L1(R+,L∞(Ω))

φ2K
g

(
xφ

‖DF‖L1(R+,L∞(Ω))

))
≤ exp

(
− x

2φK
log

(
1 +

xφ

‖DF‖L1(R+,L∞(Ω))

))
,

with g(u) = (1 + u) log(1 + u)− u, u ≥ 0, and we have E[eλ|F | log+ |F |] < ∞ for some

λ > 0. If φt = 0, t ∈ R+, and F ∈ Dom(D) is such that ‖DF‖2
L(R+, L

∞(Ω)) < ∞,

then

P (F − E[F ] ≥ x) ≤ exp

(
− x2

2‖DF‖L2(R+,L∞(Ω))

)
. (4.9)

Proof. The function defined in (4.1) of Proposition 4.1 satisfies

h(t) ≤ φ−1(etφK − 1)‖DF‖L1(R+,L∞(Ω)),

which allows to follow the proof of Corollary 4.3. In the limiting case φ = 0, Re-

lation (4.1) gives h(t) = t‖DF‖L2(R+,L∞(Ω)), hence −h−1(t) = −t‖DF‖−2
L2(R+,L∞(Ω)).

Again we may first obtain (4.9) when F is bounded and treat the general case via an

approximation argument. �

Corollary 4.4 is weaker than Corollary 4.3, however it relies only on the Clark formula

(i.e. on (4.1) and Lemma 3.1), not on the use of semi-groups. For this reason it

can be stated for any derivation operator D which can be used in the Clark formula.

In particular it transfers immediately to the Poisson space for the operator D̃, see

Sect. 6.
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5 Difference operator on Poisson space

Let X be a σ-compact metric space and let ΩX denote the set of Radon measures

ΩX =

{
ω =

i=N∑
i=1

εti : (ti)
i=N
i=1 ⊂ X, ti 6= tj, ∀i 6= j, N ∈ N ∪ {∞}

}
,

where εt denotes the Dirac measure at t ∈ X. Given A ∈ B(X), let FA = σ(ω(B) :

B ∈ B(X), B ⊂ A). Let σ be a diffuse Radon measure on X, let P denote the

Poisson measure with intensity σ on ΩX and let also L2
σ(X) = L2(X, σ). The multiple

Poisson stochastic integral In(fn) is then defined as

In(fn)(ω) =

∫
∆n

fn(t1, . . . , tn)(ω(dt1)− σ(dt1)) · · · (ω(dtn)− σ(dtn)), fn ∈ L2
σ(X)◦n,

with ∆n = {(t1, . . . , tn) ∈ Xn : ti 6= tj, ∀i 6= j}, and the isometry formula

E[In(fn)Im(gm)] = n!1{n=m}〈fn, gm〉L2
σ(X)◦n ,

holds true (see [21]). Moreover every square-integrable random variable F ∈ L2(ΩX , P )

admits the Wiener-Poisson decomposition

F =
∞∑
n=0

In(fn),

in series of multiple stochastic integrals. The linear closable operator

D : L2(ΩX , P )→ L2(ΩX ×X,P ⊗ σ)

is defined via

DtIn(fn)(ω) = nIn−1(fn(∗, t))(ω), P (dω)⊗ σ(dt)− a.e., n ∈ N.

It is known, cf. [15] or Proposition 1 of [21], that

DtF (ω) = F (ω ∪ {t})− F (ω), dP × dt− a.e., F ∈ Dom(D),

where as a convention we identify ω ∈ ΩX with its support. Since there exists a

measurable map τ : X → R+, a.e. bijective, such that the Lebesgue measure is the

image of σ by τ (see e.g. [9], p. 192), Corollary 4.3 and Corollary 4.4 can be restated.

Again we recover Proposition 3.1 of [30] in the setting of Poisson random measures

on a metric space, without using (sharp) logarithmic Sobolev inequalities:
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Corollary 5.1 Let F ∈ Dom(D) be such that DF ≤ K, a.s., for some K ≥ 0, and

‖DF‖L∞(Ω,L2(X)) <∞. Then

P (F − E[F ] ≥ x) ≤ exp

(
−
‖DF‖2

L∞(Ω,L2(X))

K2
g

(
xK

‖DF‖2
L∞(Ω,L2(X))

))

≤ exp

(
− x

2K
log

(
1 +

xK

‖DF‖2
L∞(Ω,L2(X))

))
,

with g(u) = (1 + u) log(1 + u)− u, u ≥ 0. If K = 0 (decreasing functionals) we have

P (F − E[F ] ≥ x) ≤ exp

(
− x2

2‖DF‖2
L∞(Ω,L2(X))

)
. (5.1)

In particular if F =
∫
X
f(x)ω(dx), then ‖DF‖L∞(Ω,L2(X)) = ‖f‖L2(X) and if f ≤ K,

a.s., then

P

(∫
X

f(x)(ω(dx)− σ(dx)) ≥ x

)
≤ exp

(
−
∫
X
f 2(x)σ(dx)

K2
g

(
xK∫

X
f 2(x)σ(dx)

))
,

which covers Proposition 2 of [27]. If f ≤ 0, a.s., then

P

(∫
X

f(x)(ω(dx)− σ(dx)) ≥ x

)
≤ exp

(
− x2

2
∫
X
f 2(x)σ(dx)

)
.

If F =
∫
X
f(x)ω(dx), then ‖DF‖L1(X,L∞(Ω)) = ‖f‖L1(X), and we obtain

P

(∫
X

f(x)(ω(dx)− σ(dx)) ≥ x

)
≤ exp

(
−
∫
X
|f(x)|σ(dx)

‖f‖∞
g

(
x∫

X
|f(x)|σ(dx)

))
.

In case f ≥ 0 a.s., this can be written as

P

(∫
X

f(x)(ω(dx)− σ(dx)) ≥ x

)
≤ exp

(
− E[F ]

‖f‖∞
g

(
x

E[F ]

))
.

As an application we consider as in [27] a family (Ψa)a∈N ⊂ L2(X) of functions with

values in [0, K], with σ(X) <∞, and the functional

F = sup
a∈N

∫
X

Ψa(x)ω(dx).

Then

0 ≤ DxF = sup
a∈N

(∫
X

Ψa(x)ω(dx) + Ψa(x)

)
− sup

a∈N

∫
X

Ψa(x)ω(dx),
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hence

0 ≤ DxF ≤ sup
a∈N

Ψa(x) ≤ K,

and

P (F − E[F ] ≥ x) ≤ exp

(
−σ(X)g

(
x

Kσ(X)

))
.

Moreover,

E[F ] =
∞∑
n=1

e−σ(X)

n!

∫
Xn

sup
a∈N

(Ψa(x1) + · · ·+ Ψa(xn))σ(dx1) · · ·σ(dxn)

≥
∞∑
n=1

e−σ(X)

n!

∫
Xn

sup
a∈N

Ψa(x1)σ(dx1) · · · σ(dxn)

≥
∞∑
n=1

e−σ(X)

n!

∫
Xn

‖Dx1F‖∞σ(dx1) · · ·σ(dxn)

≥ ‖DF‖L1(X,L∞(Ω))

∞∑
n=1

e−σ(X)

n!
(σ(X))n−1

≥ 1

σ(X)
‖DF‖L1(X,L∞(Ω))(1− e−σ(X)).

Hence

‖DF‖L1(X,L∞(Ω)) ≤
σ(X)

1− e−σ(X)
E[F ],

and

P (F − E[F ] ≥ x) ≤ exp

(
− σ(X)

K(1− e−σ(X))
E[F ]g

(
x(1− e−σ(X))

σ(X)E[F ]

))
.

6 Local gradient on Poisson space

In the Poisson case, if X = R+ and σ is the Lebesgue measure, then a local gradient

can be introduced, cf. [8], [10], [23]. Let (Tk)k≥1 denote the jump times of the canonical

Poisson process (Nt)t∈R+ , and let τk = Tk − Tk−1, k ≥ 1, denote its interjump times,

with T0 = 0. Let S denote the set of smooth random functionals F of the form

F = f(τ1, . . . , τn), n ≥ 1,
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where f is of class C1 on Rn and has compact support. Let D̃ denote the closable

gradient defined as

D̃tF = −
k=n∑
k=1

1[Tk,Tk+1[(t)∂kf(τ1, . . . , τn), t ∈ R+, F ∈ S.

Then the relation E[DtF | Ft] = E[D̃tF | Ft] holds, t ∈ R+, and the Clark formula

can be written for F ∈ Dom(D̃) as:

F = E[F ] +

∫ ∞
0

E[D̃tF | Ft]d(Nt − t), (6.1)

cf. Theorem 1 of [23].

Corollary 6.1 Let F ∈ Dom(D̃). We have

P (F − E[F ] ≥ x) ≤ exp

(
− x2

2‖D̃F‖2
L2(R+,L∞(Ω))

)
, (6.2)

and

P (F − E[F ] ≥ x) ≤ exp

(
− x2

4‖D̃F‖2
L∞(Ω,L2(R+))

)
. (6.3)

Proof. For (6.2) we note that the Wiener space proof of Corollary 4.4 is valid on

Poisson space since D̃ satisfies the chain rule of derivation and the Clark formula

(6.1). Concerning (6.3), we construct the exponential random variables (τk)k≥1 as

half sums of squared independent Gaussian random variables. Let F = f(τ1, . . . , τn),

and consider the Wiener functional ΘF given as

ΘF = f

(
x2

1 + y2
1

2
, . . . ,

x2
n + y2

n

2

)
,

where x1, . . . , xn, y1, . . . , yn, denote two independent collections of normal random

variables that may be constructed as Brownian single stochastic integrals. Using the

fact that F and ΘF have same law, and the relation

2Θ|D̃F |2L2(R+) = |D̂ΘF |2L2(R+), (6.4)

see Lemma 1 of [24], the application on Wiener space of Corollary 4.3 to ΘF yields

(6.3). �
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The bounds (6.2) and (6.3) imply the exponential integrability E[eαF
2
] < ∞ for all

α < (2‖D̃F‖2
L2(R+,L∞(Ω)))

−1, resp. α < (4‖D̃F‖2
L∞(Ω,L2(R+)))

−1. The above results can

be obtained from logarithmic Sobolev inequalities, i.e. by application of Corollary 2.5

of [18] to Theorem 0.7 in [1] (or Relation (4.4) in [18] for a formulation in terms of

exponential random variables).

7 Discrete settings

The covariance representations (2.3) and (2.4) which lead to the concentration and

deviation inequalities of the previous sections have versions in discrete settings. Our

purpose is now to explore consequences of such representations. We consider the

discrete structure equation

Y 2
k = 1 + ϕkYk, k ∈ N, (7.1)

i.e. (ϕk)k∈N is a deterministic sequence of real numbers, and (Yk)k≥1 is a sequence of

centered independent random variables. Since (7.1) is a second order equation, there

is a family (Xk)k≥1 of independent Bernoulli {−1, 1}-valued random variables such

that

Yk =
ϕk +Xk

√
ϕ2
k + 4

2
, k ≥ 1.

The family (Xk)k∈N is constructed as a family of canonical projections on Ω =

{−1, 1}N, under the measure P determined from the condition (7.1) and the fact

that E[Yk] = 0 (which imply that E[Y 2
k ] = 1), i.e.

pk = P (Xk = 1) = P

(
Yk =

√
qk
pk

)
=

1

2
− ϕk

2
√
ϕ2
k + 4

, k ∈ N,

and

qk = P (Xk = −1) = P

(
Yk = −

√
pk
qk

)
=

1

2
+

ϕk

2
√
ϕ2
k + 4

k ∈ N.

Let Jn(fn) denote the multiple stochastic integral of fn ∈ `2(N)◦n (the space of square-

summable symmetric functions on Nn), defined as

Jn(fn) =
∑

(k1,...,kn)∈∆n

fn(k1, . . . , kn)Yk1 · · ·Ykn ,
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where

∆n = {(k1, . . . , kn) ∈ Nn : ki 6= kj, 1 ≤ i < j ≤ n},

with the isometry

E[Jn(fn)Jm(gm)] = n!1{n=m}〈1∆nfn, gm〉`2(N)⊗n .

We have

Jn(fn) = n!
∞∑

kn=0

∑
0≤kn−1<kn

· · ·
∑

0≤k1<k2

fn(k1, . . . , kn)Yk1 · · ·Ykn . (7.2)

Let Sn =
∑k=n

k=0 (Xk + 1)/2 be the random walk associated to (Xk)k≥0, cf. also [12],

[20]. If pk = p and qk = q, k ∈ N, then Jn(1[0,N ]n) is the Krawtchouk polynomial

Kn(SN ;N + 1, p) of order n, with parameter (N + 1, p), cf. [26]. The set P of

polynomials in X1, X2, X3, . . . is dense in L2(Ω, P ), hence any F ∈ L2(Ω, P ) can be

represented as a series of multiple stochastic integrals:

F =
∞∑
n=0

Jn(fn), fk ∈ `2(N)◦k, k ≥ 0, J0(f0) = E[F ].

Definition 7.1 We densely define the linear gradient operator D : L2(Ω) −→ L2(Ω×
N) as

DkJn(fn) = nJn−1(fn(∗, k)1∆n(∗, k)), fn ∈ `2(N)◦n, n ∈ N.

We have for (k1, . . . , kn) ∈ ∆n

Dk

(
i=n∏
i=1

Yki

)
= 1{l∈{k1,...,kn}}

i=n∏
i=1
ki 6=k

Yki ,

hence the probabilistic interpretation of Dk is

DkF (S·) =
√
pkqk

(
F (S· + 1{Xk=−1}1{k≤·})− F (S· − 1{Xk=1}1{k≤·})

)
.

When restricted to cylindrical functionals of the form

F = f(X1, . . . , Xn),
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the gradient D is the finite difference operator

DkF =
√
pkqk (f(X1, . . . , Xk−1,+1, Xk+1, . . . , Xn)− f(X1, . . . , Xk−1,−1, Xk+1, . . . , Xn)) ,

which (in the symmetric case pk = qk = 1/2, k ∈ N), is the operator considered in

[4]. The operator D does not satisfy the same product rules as in the continuous time

case (Relation (2.8)), instead we have:

Proposition 7.2 Let F,G : Ω→ R. Then,

Dk(FG) = FDkG+GDkF −
Xk√
pkqk

DkFDkG, k ≥ 0,

and

Dke
F = −Xk

√
pkqke

F

(
e
− Xk√

pkqk
DkF − 1

)
. (7.3)

Proof. Let F k
+ = F (S·+ 1{Xk=−1}1{k≤·}) and F−k = F (S·−1{Xk=1}1{k≤·}), k ≥ 0. We

have

Dk(FG) =
√
pkqk(F

+
k G

+
k − F

−
k G

−
k )

= 1{Xk=−1}
√
pkqk

(
F (G+

k −G) +G(F+
k − F ) + (F+

k − F )(G+
k −G)

)
+1{Xk=1}

√
pkqk

(
F (G−G−k ) +G(F − F−k )− (F − F−k )(G−G−k )

)
= 1{Xk=−1}

(
FDkG+GDkF +

1
√
pkqk

DkFDkG

)
+1{Xk=1}

(
FDkG+GDkF −

1
√
pkqk

DkFDkG

)
.

We have

Dke
F = 1{Xk=1}

√
pkqk(e

F − eF
−
k ) + 1{Xk=−1}

√
pkqk(e

F+
k − eF )

= 1{Xk=1}
√
pkqke

F (1− e−
1√
pkqk

DkF ) + 1{Xk=−1}
√
pkqke

F (e
1√
pkqk

DkF − 1)

= −Xk
√
pkqke

F

(
e
− Xk√

pkqk
DkF − 1

)
.

�

The next result is the predictable representation of the functionals of (Sn)n≥0. Let

FN = σ(X0, . . . , XN), N ∈ N.
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Proposition 7.3 We have the Clark formula

F = E[F ] +
∞∑
k=1

E[DkF | Fk−1]Yk, F ∈ L2(Ω).

Proof. For F = Jn(fn) we have, using (7.2) (see e.g. [26]):

F = Jn(fn) = n!Jn(fn1∆n) = n

∞∑
k=1

Jn−1(fn(·, k)1[1,k−1]n−1(·))Yk

=
∞∑
k=1

E[DkJn(fn) | Fk−1]Yk.

This identity also shows that F 7→ E[D·F | F·−1] has norm equal to one as an operator

from L2(Ω) into L2(Ω× N):

‖E[D·F | F·−1]‖2
L2(Ω×N) = ‖F − E[F ]‖2

L2(Ω) ≤ ‖F − E[F ]‖2
L2(Ω) + E[F ]2 ≤ ‖F‖2

L2(Ω),

hence the Clark formula extends to F ∈ L2(Ω). �

The Clark formula implies the covariance identity

Cov(F,G) = E

[
∞∑
k=1

DkFE [DkG | Fk−1]

]
, (7.4)

and we also have as in the continuous time case:

Cov(F,G) = E

[
∞∑
k=1

∫ ∞
0

e−sDkFPsDkGds

]
, (7.5)

where (Pt)t∈R+ denotes the semi-group

PtF =
∞∑
n=0

e−ntJn(fn), t ∈ R+,

F =
∑∞

n=0 Jn(fn). The next result shows that the semi-group (Pt)t∈R+ admits a

representation by a probability kernel and an Ornstein-Uhlenbeck type process which

(in the symmetric case pk = qk = 1/2, k ∈ N) is in fact the Brownian motion on

{−1, 1}N considered in [2].

Proposition 7.4 For F ∈ L2(Ω,FN),

PtF (ω′) =

∫
Ω

F (ω)qNt (ω, ω′)dP (ω), ω, ω′ ∈ Ω, (7.6)
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where qNt (ω, ω′) is the kernel

qNt (ω, ω′) =
i=N∏
i=1

(1 + e−tYi(ω)Yi(ω
′)), ω, ω′ ∈ Ω.

Proof. Since L2(Ω,FN) is finite (2N+1-)dimensional it suffices to consider the func-

tional Yk1 · · ·Ykn with (k1, . . . , kn) ∈ ∆n. We have for ω′ ∈ Ω, k ∈ N:

E
[
Yk(·)(1 + e−tYk(·)Yk(ω′))

]
= pk

√
qk
pk

(
1 + e−t

√
qk
pk
Yk(ω

′)

)
− qk

√
pk
qk

(
1− e−t

√
pk
qk
Yk(ω

′)

)
= e−tYk(ω

′),

which implies by independence of (Xk)k∈N:

Pt(Yk1 · · ·Ykn)(ω′) = e−ntYk1(ω
′) · · ·Ykn(ω′) = E[Yk1 · · ·YknqNt (·, ω′)], ω′ ∈ Ω.

�

The Ornstein-Uhlenbeck process ((X t
k)k∈N)t∈R+ associated to (Pt)t∈R+ satisfies

P (X t
k = 1 | X0

k = 1) = pk + e−tqk, P (X t
k = −1 | X0

k = 1) = qk(1− e−t),

P (X t
k = 1 | X0

k = −1) = pk(1− e−t) P (X t
k = −1 | X0

k = −1) = qk + e−tpk, k ∈ N.

In other terms, the hitting time τ1,−1 ∈ R+ ∪ {+∞} of −1 starting from +1, resp. of

+1 starting from −1, has distribution

P (τ1,−1 < t) = qk(1− e−t), t ∈ R+,

resp.

P (τ−1,1 < t) = pk(1− e−t), t ∈ R+.

The covariance identity (7.5) and the representation (7.6) imply the inequality

‖PsDF‖L∞(Ω,`2(N)) ≤ ‖Ps|DF |`2(N)‖L∞(Ω) ≤ ‖DF‖L∞(Ω,`2(N)), s ∈ R+,

for F ∈ Dom(D), hence the next proposition can be proved in a way similar to

Proposition 3.3.
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Proposition 7.5 Let F ∈ Dom(D). Then

E[et(F−E[F ])] ≤ exp

(∫ t

0

h(s)ds

)
, 0 ≤ t ≤ t0, (7.7)

where h is any of the following functions:

h(s) =
∞∑
k=0

‖DkF‖∞
∥∥e−sFDke

sF
∥∥
∞ , (7.8)

h(s) = ‖DF‖L∞(Ω,`2(N))

∥∥e−sFDesF∥∥
L∞(Ω,`2(N))

, (7.9)

h(s) =

∥∥∥∥e−sFDesFDF

∥∥∥∥
∞
‖DF‖2

L∞(Ω,`2(N)), s ∈ [0, t0]. (7.10)

Although D does not satisfy the same product rule as in the continuous case, from

(7.3) we still have the bound

|e−sFDke
sF | ≤ √pkqk(e

s√
pkqk

|DkF | − 1), k ∈ N, (7.11)

which gives the following corollary to Proposition 7.5.

Corollary 7.6 Let F ∈ Dom(D). Then

E[et(F−E[F ])] ≤ exp

(∫ t

0

h(s)ds

)
, 0 ≤ t ≤ t0, (7.12)

where h is any of the following functions:

h(s) =
∞∑
k=0

‖DkF‖∞
∥∥∥√pkqk(e s√

pkqk
|DkF | − 1)

∥∥∥
∞
, (7.13)

h(s) = ‖DF‖L∞(Ω,`2(N))

∥∥∥√p·q·(e s√
p·q·
|D·F | − 1)

∥∥∥
L∞(Ω,`2(N))

, (7.14)

h(s) =

∥∥∥∥√pkqk 1

DkF
(e

s√
pkqk

|DkF | − 1)

∥∥∥∥
∞
‖DF‖2

L∞(Ω,`2(N)), s ∈ [0, t0]. (7.15)

Again, the inequalities given by (7.13), (7.14) and (7.15) are not comparable. The

bound
√
pkqk(e

s√
pkqk

|DkF | − 1) ≤ s|DkF |e
s 1√

pkqk
|DkF |, k ∈ N, also shows that Corol-

lary 7.6 holds with

h(s) = s

∞∑
k=0

‖DkF‖2
∞

∥∥∥e s√
pkqk

|DkF |
∥∥∥
∞
,

and

h(s) = s‖DF‖L∞(Ω,`2(N))‖e
s√
p·q·
|D·F |D·F‖L∞(Ω,`2(N)), s ∈ [0, t0].

The following corollary is obtained with the same proof as on the Poisson space.
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Corollary 7.7 Let F ∈ Dom(D) be such that 1√
pkqk
|DkF | ≤ K, k ∈ N, for some

K ≥ 0, and ‖DF‖L∞(Ω,`2(N)) <∞. Then

P (F − E[F ] ≥ x) ≤ exp

(
−
‖DF‖2

L∞(Ω,`2(N))

K2
g

(
xK

‖DF‖2
L∞(Ω,`2(N))

))

≤ exp

(
− x

2K
log

(
1 +

xK

‖DF‖2
L∞(Ω,`2(N))

))
,

with g(u) = (1 + u) log(1 + u)− u, u ≥ 0.

Proof. Use the inequality

−s ≤ e−sFDke
sF

DkF
= −Xk

√
pkqk

1

DkF
(e
−s Xk√

pkqk
DkF − 1) ≤ esK − 1

K
,

and apply Corollary 7.6. �

In case pk = p and qk = q, for all k ∈ N, the conditions 1√
pq
|DkF | ≤ β, k ∈ N, and

‖DF‖2
L∞(Ω,`2(N)) ≤ α2, give

P (F − E[F ] ≥ x) ≤ exp

(
−α

2pq

β2
g

(
xβ

α2pq

))
≤ exp

(
− x

2β
log

(
1 +

xβ

α2pq

))
,

which is relation (13) obtained on {0, 1}n in [6]. In particular if F is FN -measurable,

then

P (F − E[F ] ≥ x) ≤ exp

(
−Ng

(
x

βN

))
≤ exp

(
−x
β

(
log

(
1 +

x

βN

)
− 1

))
.

Finally we show a Gaussian concentration inequality for functionals of (Sn)n∈N, using

the covariance identity (7.4). We refer to [5], [3], [14], [16], for other versions of this

inequality.

Proposition 7.8 Let F : Ω→ R be such that∥∥∥∥∥
∞∑
k=0

1

2(pk ∧ qk)
|DkF |‖DkF‖∞

∥∥∥∥∥
∞

≤ K2.

Then

P (F − E[F ] ≥ x) ≤ exp

(
− x2

2K2

)
, x ≥ 0.
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Proof. Using the inequality

|etx − ety| ≤ 1

2
t|x− y|(etx + ety), x, y ∈ R, (7.16)

we have

|Dke
tF | =

√
pkqk|etF

+
k − etF

−
k | ≤ 1

2

√
pkqkt|F+

k − F
−
k |(e

tF+
k + etF

−
k )

=
1

2
t|DkF |(etF

+
k + etF

−
k ) ≤ 1

2(pk ∧ qk)
t|DkF |E

[
etF | Xi, i 6= k

]
=

1

2(pk ∧ qk)
tE
[
etF |DkF | | Xi, i 6= k

]
,

and

E[FetF ] =
∞∑
k=0

E[E[DkF | Fk−1]Dke
tF ] ≤

∞∑
k=0

‖DkF‖∞E
[
|Dke

tF |
]

≤ t
∞∑
k=0

1

2(pk ∧ qk)
‖DkF‖∞E

[
E
[
etF |DkF | | Xi, i 6= k

]]
= tE

[
etF

∞∑
k=0

1

2(pk ∧ qk)
‖DkF‖∞|DkF |

]

≤ tE[etF ]

∥∥∥∥∥
∞∑
k=0

1

2(pk ∧ qk)
|DkF |‖DkF‖∞

∥∥∥∥∥
∞

.

We can conclude as in the proof of Corollary 4.4. �

In case pk = p ≤ 1/2 for all k ∈ N, we obtain

P (F − E[F ] ≥ x) ≤ exp

(
− px2

‖DF‖2
`2(N,L∞(Ω))

)
.
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