# Stein approximation for Itô and Skorohod integrals by Edgeworth type expansions 

Nicolas Privault<br>Division of Mathematical Sciences<br>School of Physical and Mathematical Sciences<br>Nanyang Technological University<br>21 Nanyang Link<br>Singapore 637371<br>nprivault@ntu.edu.sg

January 23, 2019


#### Abstract

We derive Edgeworth-type expansions for Skorohod and Itô integrals with respect to Brownian motion, based on cumulant operators defined by the Malliavin calculus. As a consequence we obtain Stein approximation bounds for stochastic integrals, which apply to SDE solutions and to multiple stochastic integrals.


Key words: Stein method; cumulants; Malliavin calculus; Wiener space; Edgeworth expansions; Itô integral; Skorohod integral.
Mathematics Subject Classification: 60H07, 62E17, 60G15, 60H05.

## 1 Introduction

Classical Edgeworth series around the Gaussian cumulative distribution function $\Phi(x)$ take the form

$$
\Phi(x)+c_{1} \phi(x) H_{1}(x)+\cdots+c_{m} \phi(x) H_{m}(x)+\cdots,
$$

where $\phi(x), x \in \mathbb{R}$, is the standard Gaussian density, $H_{k}(x)$ is the Hermite polynomial of degree $k \geq 1$, and $c_{k}$ is a coefficient depending on the sequence of cumulants
$\left(\kappa_{n}\right)_{n \geq 1}$ of a random variable $F$, cf. Chapter 5 of [6] and $\S$ A. 4 of [11]. Edgeworth expansions are used in particular as asymptotic expansions for the cumulative distribution function $P(F \leq x)$ (or, in more general forms, as asymptotic expansions for expectations of the type $E[h(F)]$, where $h$ is some test function - see [6]), when $F$ is centered with unit variance $E\left[F^{2}\right]=1$, for example when $F$ is a renormalized sum of independent random variables that can be approximated by the central limit theorem, cf. Chapter 2 of [5].

In [1], Edgeworth type expansions of the form

$$
E\left[F f(F)-f^{\prime}(F)\right]=\sum_{l=2}^{\infty} \frac{\kappa_{l+1}}{l!} E\left[f^{(l)}(F)\right], \quad f \in \mathcal{C}^{\infty}(\mathbb{R})
$$

have been derived and connected to classical Edgeworth series for $E[h(F)]$ by the Stein equation

$$
h(F)=E[h(\mathcal{N})]+F f(F)-f^{\prime}(F)
$$

where $h$ is some adequate test function and $\mathcal{N} \simeq \mathcal{N}(0,1)$ is a standard Gaussian random variable. Recently, Edgeworth type expansions with exact remainder term of the form

$$
\begin{equation*}
E\left[F f(F)-f^{\prime}(F)\right]=\sum_{l=2}^{n} \frac{\kappa_{l+1}}{l!} E\left[f^{(l)}(F)\right]+E\left[f^{(n+1)}(F) \Gamma_{n+1} F\right] \tag{1.1}
\end{equation*}
$$

have been obtained by the Malliavin calculus in [8], [2], [3], written here for $F$ a centered random variable with unit variance, where $\Gamma_{n+1}$ is a cumulant type operator on the Wiener space satisfying the relation $n!E\left[\Gamma_{n} F\right]=\kappa_{n+1}, n \in \mathbb{N}$, cf. [10]. This approach refines and extends the application of the Malliavin calculus to Stein approximation, Berry-Esseen bounds and the fourth moment theorem initiated in [9], see also [12], and [7] for a review.

The approaches of [2], [8], [9] and the cumulant operators of [10] rely on covariance identities based on the number (or Ornstein-Uhlenbeck) operator $L$ and its inverse on the Wiener space, and they are particularly well suited to the study of multiple
stochastic integrals.

In this paper we derive a Edgeworth type expansions for random variables represented as the Itô or Skorohod integral $F=\delta(u)$ of a process $u$ on the Wiener space. Our expansions rely on properties of the operator $\delta$, which coincides with the Itô stochastic integral with respect to $d$-dimensional Brownian motion on the square-integrable adapted processes, and are applied to Stein approximation bounds. Although this approach does not rely on the operator $L$, it nevertheless also covers the case of multiple stochastic integrals.

In Section 2 we derive expansions of the form (1.1) for $E\left[\delta(u) f(\delta(u))-f^{\prime}(\delta(u))\right]$, based on a family of cumulant operators that are associated to the process $u$ and specially defined for the Skorohod integral operator $\delta$. In Section 3 we derive Stein type approximation bounds for stochastic integrals, and we apply them to the solutions of stochastic differential equations. In Section 4 we also provide an alternative approach to the results of [9] on multiple stochastic integrals.

## Notation and cumulant operators for the Skorohod integral

Consider a standard $d$-dimensional Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$generating the filtration $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$on the Wiener space $\Omega$. Letting $H=L^{2}\left(\mathbb{R}_{+} ; \mathbb{R}^{d}\right)$, we consider the standard Sobolev spaces of real-valued, resp. $H$-valued, functionals $\mathbb{D}_{p, k}$, resp. $\mathbb{D}_{p, k}(H), p, k \geq$ 1, for the Malliavin gradient $D$ on the Wiener space, cf. [13] for definitions. Recall that the Skorohod operator $\delta$ is the adjoint of the gradient $D$ through the duality relation

$$
\begin{equation*}
E[F \delta(v)]=E\left[\langle D F, v\rangle_{H}\right], \quad F \in \operatorname{Dom}(D), \quad v \in \operatorname{Dom}(\delta) \tag{1.2}
\end{equation*}
$$

and we have the commutation relation

$$
\begin{equation*}
D_{t} \delta(u)=u(t)+\delta\left(D_{t} u\right), \quad t \in \mathbb{R}_{+} \tag{1.3}
\end{equation*}
$$

provided $u \in \mathbb{D}_{2,1}(H)$ and $D_{t} u \in \operatorname{Dom}(\delta)$, dt-a.e., cf. Proposition 1.3.2 of [13].

Next we define an operator composition $(D u)^{k}$ and its adjoint $D^{*}$ in the sense of matrix powers with continuous indices. Namely, given $u \in \mathbb{D}_{2,1}(H)$ and $k \geq 1$, we let $(D u)^{k}$ denote the random operator on $H$ almost surely defined by

$$
\begin{equation*}
(D u)^{k} h_{s}=\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left(D_{t_{k}} u_{s} D_{t_{k-1}} u_{t_{k}} \cdots D_{t_{1}} u_{t_{2}}\right) h_{t_{1}} d t_{1} \cdots d t_{k}, \quad s \in \mathbb{R}_{+}, \quad h \in H, \tag{1.4}
\end{equation*}
$$

cf. e.g. $\S 7$ of [17], [16], [15] for details. In the sequel we will simply denote $\langle\cdot, \cdot\rangle=$ $\langle\cdot, \cdot\rangle_{H}$. The adjoint $D^{*} u$ of $D u$ on $H$ satisfies

$$
\langle(D u) v, h\rangle=\left\langle v,\left(D^{*} u\right) h\right\rangle, \quad h, v \in H,
$$

and is given by

$$
\left(D^{*} u\right) v_{s}=\int_{0}^{\infty}\left(D_{s} u_{t}\right) v_{t} d t, \quad s \in \mathbb{R}_{+}, \quad v \in L^{2}(W ; H)
$$

Given $u \in \mathbb{D}_{k, 2}(H)$, our results will be based on a family of cumulant operators

$$
\Gamma_{k}^{u}: \mathbb{D}_{2,1} \longrightarrow L^{2}(\Omega), \quad k \geq 1
$$

defined by $\Gamma_{1}^{u} F:=\langle u, D F\rangle$ and

$$
\Gamma_{k}^{u} F:=F\left\langle(D u)^{k-2} u, u\right\rangle+F\left\langle D^{*} u, D\left((D u)^{k-2} u\right)\right\rangle+\left\langle(D u)^{k-1} u, D F\right\rangle, \quad k \geq 2 .
$$

Note that the operator $\Gamma^{u}$ is directly relevant to the integrand $u$ in the stochastic integral representation $\delta(u)$ and as such it differs from the $\Gamma$ operator of [10] appearing in (1.1), in addition, those operators are not directly related to the Bakry-Émery-Ledoux $\Gamma$ and $\Gamma_{2}$ operators.

Recall that by the proof of Lemma 3.1 in [14] we have

$$
\begin{equation*}
\left\langle D^{*} u, D\left((D u)^{k} v\right)\right\rangle_{H \otimes H}=\operatorname{trace}\left((D u)^{k+1} D v\right)+\sum_{i=2}^{k+1} \frac{1}{i}\left\langle(D u)^{k+1-i} v, D \operatorname{trace}(D u)^{i}\right\rangle, \tag{1.5}
\end{equation*}
$$

$u \in \mathbb{D}_{2,2}(H), v \in \mathbb{D}_{2,1}(H), k \in \mathbb{N}$, hence by the relation

$$
\begin{equation*}
\left\langle(D u)^{k} h, u\right\rangle=\left\langle\left(D^{*} u\right)^{k} u, h\right\rangle=\frac{1}{2}\left\langle\left(D^{*} u\right)^{k-1} D\langle u, u\rangle, h\right\rangle=\frac{1}{2}\left\langle(D u)^{k-1} h, D\langle u, u\rangle\right\rangle, \tag{1.6}
\end{equation*}
$$

$h \in H, k \geq 1, u \in \mathbb{D}_{2,1}(H)$, which follows from $D\langle u, u\rangle=2\left(D^{*} u\right) u$, for any $u \in$ $\mathbb{D}_{2,2}(H)$ we have

$$
\begin{equation*}
\Gamma_{k}^{u} \mathbf{1}=\frac{1}{2}\left\langle(D u)^{k-3} u, D\langle u, u\rangle\right\rangle+\operatorname{trace}(D u)^{k}+\sum_{i=2}^{k-1} \frac{1}{i}\left\langle(D u)^{k-1-i} u, D \operatorname{trace}(D u)^{i}\right\rangle, \tag{1.7}
\end{equation*}
$$

for all $k \geq 3$.

## 2 Edgeworth type expansions

The duality (1.2) and the commutation relation (1.3) show that

$$
\begin{equation*}
E\left[f^{\prime}(\delta(u))\langle u, u\rangle-\delta(u) f(\delta(u))\right]=-E\left[f^{\prime}(\delta(u))\langle u, \delta(D u)\rangle\right] \tag{2.1}
\end{equation*}
$$

for $u \in \mathbb{D}_{1,2}(H), F \in \mathbb{D}_{2,1}$ and $f \in \mathcal{C}_{b}^{1}(\mathbb{R})$. Applying the above relation (2.1) with $d=1$ to the solution $f_{x}$ of the Stein equation

$$
\begin{equation*}
\mathbf{1}_{(-\infty, x]}(z)-\Phi(x)=f_{x}^{\prime}(z)-z f_{x}(z), \quad z \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

satisfying the bounds $\left\|f_{x}\right\|_{\infty} \leq \sqrt{2 \pi} / 4$ and $\left\|f_{x}^{\prime}\right\|_{\infty} \leq 1$, cf. Lemma 2.2-(v) of [4], yields the expansion

$$
P(\delta(u) \leq x)-\Phi(x)=E\left[(1-\langle u, u\rangle) f_{x}^{\prime}(\delta(u))\right]-E\left[\langle u, \delta(D u)\rangle f_{x}^{\prime}(\delta(u))\right], \quad x \in \mathbb{R}
$$

around the Gaussian cumulative distribution function $\Phi(x)$, with $u \in \mathbb{D}_{1,2}(H)$. In the next proposition we extend (2.1) into an expansion of all orders that will be applied to Stein approximation in the next section. By comparison with Proposition 3.11 of [2], the last term in the expansion (2.3) below is not given by a cumulant operator.

Proposition 2.1 Let $n \geq 1$ and assume that $u \in \mathbb{D}_{k, 2}(H)$ for all $k=1, \ldots, n+2$. Then for all $f \in \mathcal{C}_{b}^{n+1}(\mathbb{R})$ and $F \in \mathbb{D}_{2,1}$ we have

$$
\begin{align*}
& E[F \delta(u) f(\delta(u))]=\sum_{k=0}^{n} E\left[f^{(k)}(\delta(u)) \Gamma_{k+1}^{u} F\right]  \tag{2.3}\\
& \quad+\frac{1}{2} E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n-1} u, D\langle u, u\rangle\right\rangle\right]+E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right] .
\end{align*}
$$

Proof. By the duality (1.2) between $D$ and $\delta$, the chain rule of derivation for $D$ and the commutation relation (1.3), for $F \in \mathbb{D}_{2,1}, u \in \mathbb{D}_{n+1,2}(H)$, and all $k \in \mathbb{N}$ we have

$$
\begin{aligned}
& E\left[F f(\delta(u))\left\langle(D u)^{k} u, \delta\left(D^{*} u\right)\right\rangle\right]-E\left[F f^{\prime}(\delta(u))\left\langle\left(D^{*} u\right)^{k+1} u, \delta\left(D^{*} u\right)\right\rangle\right] \\
&= E\left[\left\langle D^{*} u, D\left(F f(\delta(u))(D u)^{k} u\right)\right\rangle\right]-E\left[F f^{\prime}(\delta(u))\left\langle\left(D^{*} u\right)^{k+1} u, \delta\left(D^{*} u\right)\right\rangle\right] \\
&= E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, D \delta(u)\right\rangle\right] \\
&-E\left[F f^{\prime}(\delta(u))\left\langle\left(D^{*} u\right)^{k+1} u, \delta\left(D^{*} u\right)\right\rangle\right]+E\left[f(\delta(u))\left\langle D^{*} u, D\left(F(D u)^{k} u\right)\right\rangle\right] \\
&= E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, u\right\rangle\right]+E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, \delta\left(D^{*} u\right)\right\rangle\right] \\
&-E\left[F f^{\prime}(\delta(u))\left\langle\left(D^{*} u\right)^{k+1} u, \delta\left(D^{*} u\right)\right\rangle\right]+E\left[f(\delta(u))\left\langle D^{*} u, D\left(F(D u)^{k} u\right)\right\rangle\right] \\
&= E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, u\right\rangle\right]+E\left[f(\delta(u))\left\langle D^{*} u, D\left(F(D u)^{k} u\right)\right\rangle\right] \\
&= E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, u\right\rangle\right]+E\left[f(\delta(u))\left\langle(D u)^{k+1} u, D F\right\rangle\right] \\
&+E\left[F f(\delta(u))\left\langle D^{*} u, D\left((D u)^{k} u\right)\right\rangle\right]
\end{aligned}
$$

which shows that

$$
\begin{align*}
& E\left[F f(\delta(u))\left\langle(D u)^{k} u, \delta\left(D^{*} u\right)\right\rangle\right]-E\left[F f^{\prime}(\delta(u))\left\langle\left(D^{*} u\right)^{k+1} u, \delta\left(D^{*} u\right)\right\rangle\right]  \tag{2.4}\\
& =\quad E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, u\right\rangle\right]+E\left[F f(\delta(u))\left\langle D^{*} u, D\left((D u)^{k} u\right)\right\rangle\right] \\
& \quad+E\left[f(\delta(u))\left\langle(D u)^{k+1} u, D F\right\rangle\right] .
\end{align*}
$$

Consequently, since $(D u)^{k-1} u \in \mathbb{D}_{(n+1) / k, 1}(H)$ we have $\delta(u) \in \mathbb{D}_{(n+1) /(n-k+1), 1}$, and by (2.4) we get

$$
\begin{aligned}
& E\left[F f(\delta(u))\left\langle(D u)^{k} u, D \delta(u)\right\rangle\right]-E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, D \delta(u)\right\rangle\right] \\
&= E\left[F f(\delta(u))\left\langle(D u)^{k} u, u\right\rangle\right]+E\left[F f(\delta(u))\left\langle(D u)^{k} u, \delta\left(D^{*} u\right)\right\rangle\right] \\
&-E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, u\right\rangle\right]-E\left[F f^{\prime}(\delta(u))\left\langle(D u)^{k+1} u, \delta\left(D^{*} u\right)\right\rangle\right] \\
&= E\left[F f(\delta(u))\left\langle(D u)^{k} u, u\right\rangle\right]+E\left[F f(\delta(u))\left\langle D^{*} u, D\left((D u)^{k} u\right)\right\rangle\right]+E\left[f(\delta(u))\left\langle(D u)^{k+1} u, D F\right\rangle\right] \\
&= E\left[f(\delta(u)) \Gamma_{k+2}^{u} F\right],
\end{aligned}
$$

and therefore

$$
\begin{gathered}
E[F \delta(u) f(\delta(u))]=E\left[F f^{\prime}(\delta(u))\langle u, D \delta(u)\rangle\right]+E[f(\delta(u))\langle u, D F\rangle] \\
=E[f(\delta(u))\langle u, D F\rangle]+E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, D \delta(u)\right\rangle\right]
\end{gathered}
$$

$$
\begin{aligned}
& +\sum_{k=0}^{n-1}\left(E\left[F f^{(k+1)}(\delta(u))\left\langle(D u)^{k} u, D \delta(u)\right\rangle\right]-E\left[F f^{(k+2)}(\delta(u))\left\langle(D u)^{k+1} u, D \delta(u)\right\rangle\right]\right) \\
= & E[f(\delta(u))\langle u, D F\rangle]+\sum_{k=1}^{n} E\left[f^{(k)}(\delta(u)) \Gamma_{k+1}^{u} F\right]+E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, D \delta(u)\right\rangle\right] \\
= & \sum_{k=0}^{n} E\left[f^{(k)}(\delta(u)) \Gamma_{k+1}^{u} F\right]+E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, D \delta(u)\right\rangle\right] \\
= & E[f(\delta(u))\langle u, D F\rangle]+\sum_{k=1}^{n} E\left[f^{(k)}(\delta(u)) \Gamma_{k+1}^{u} F\right]+E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, D \delta(u)\right\rangle\right] \\
= & \sum_{k=0}^{n} E\left[f^{(k)}(\delta(u)) \Gamma_{k+1}^{u} F\right]+E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, u\right\rangle\right] \\
& +E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right] \\
= & \sum_{k=0}^{n} E\left[f^{(k)}(\delta(u)) \Gamma_{k+1}^{u} F\right]+\frac{1}{2} E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n-1} u, D\langle u, u\rangle\right\rangle\right] \\
& +E\left[F f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right]
\end{aligned}
$$

where we used the relation (1.6).
Based on Proposition 2.1 we make the following remarks for random isometries and quasi-nilpotent processes satisfying trace $(D u)^{k}=0, k \geq 2$. Recall that the setting of quasi-nilpotent processes includes the particular case where $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$ adapted process, cf. e.g. Lemma 3.5 of [15] and references therein, in which case $\delta(u)$ coincides with the Itô integral of $u$, cf. Proposition 1.3.11 of [13].
(i) Quasi-nilpotent processes. When trace $(D u)^{k}=0$ for all $k=2, \ldots, n+1$ we have

$$
\begin{aligned}
E[\delta(u) f(\delta(u))]= & E\left[\langle u, u\rangle f^{\prime}(\delta(u))\right]+\frac{1}{2} \sum_{k=2}^{n+1} E\left[\left\langle(D u)^{k-2} u, D\langle u, u\rangle\right\rangle f^{(k)}(\delta(u))\right] \\
& +E\left[f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right], \quad n \geq 0
\end{aligned}
$$

(ii) Random isometries. When $\langle u, u\rangle$ is deterministic we find

$$
\begin{aligned}
E[\delta(u) f(\delta(u))]= & \langle u, u\rangle E\left[f^{\prime}(\delta(u))\right]+\sum_{k=1}^{n} E\left[\left\langle D^{*} u, D\left((D u)^{k-1} u\right)\right\rangle_{H \otimes H} f^{(k)}(\delta(u))\right] \\
& +E\left[f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right], \quad n \geq 0
\end{aligned}
$$

(iii) Multiple stochastic integral processes. Taking $u_{t}=I_{n}\left(f_{n+1}(*, t)\right)$ where $n \in \mathbb{N}$ and $f_{n+1}$ is a symmetric square-integrable function on $\mathbb{R}_{+}^{n+1}$, we have $\delta(u)=$ $I_{n+1}\left(f_{n+1}\right)$ and

$$
\begin{equation*}
\delta\left(D_{t} u\right)=n I_{n}\left(f_{n+1}(*, t)\right)=n u_{t}, \quad t \in \mathbb{R}_{+} . \tag{2.5}
\end{equation*}
$$

Hence, applying again Proposition 2.1 and (1.6) to $u_{t}=I_{n-1}\left(f_{n}(*, t)\right), n \geq 1$, we get

$$
\begin{aligned}
E & {\left[F I_{n}\left(f_{n}\right) f\left(I_{n}\left(f_{n}\right)\right)\right] } \\
& =\sum_{k=0}^{n} E\left[f^{(k)}\left(I_{n}\left(f_{n}\right)\right) \Gamma_{k+1}^{u} F\right]+\frac{n}{2} E\left[F f^{(n+1)}\left(I_{n}\left(f_{n}\right)\right)\left\langle(D u)^{n-1} u, D\langle u, u\rangle\right\rangle\right] .
\end{aligned}
$$

In the case of random and quasi-nilpotent isometries we get

$$
E[\delta(u) f(\delta(u))]=\langle u, u\rangle E\left[f^{\prime}(\delta(u))\right]+E\left[f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right]
$$

which shows that $E\left[f^{(n+1)}(\delta(u))\left\langle(D u)^{n} u, \delta(D u)\right\rangle\right]=0, n \in \mathbb{N}$, and recovers the standard Gaussian integration by parts $E[\delta(u) f(\delta(u))]=\langle u, u\rangle E\left[f^{\prime}(\delta(u))\right]$, cf. [18].

## 3 Stein approximation

From now on we work with $d=1$ and a one-dimensional Brownian motion $\left(B_{t}\right)_{t \in \mathbb{R}_{+}}$, and we let $\mathcal{N} \simeq \mathcal{N}(0,1)$ denote a standard Gaussian random variable. In comparison with the results of [2], our bounds apply to a different stochastic integral representation.

Given $h: \mathbb{R} \rightarrow \mathbb{R}$ an absolutely continuous function with bounded derivative, the functional equation

$$
\begin{equation*}
h(z)-\mathrm{E}[h(\mathcal{N})]=f^{\prime}(z)-z f(z), \quad z \in \mathbb{R} \tag{3.1}
\end{equation*}
$$

has a solution $f_{h} \in \mathcal{C}_{b}^{1}(\mathbb{R})$ which is twice differentiable and satisfies the bounds

$$
\left\|f_{h}^{\prime}\right\|_{\infty} \leq\left\|h^{\prime}\right\|_{\infty} \quad \text { and } \quad\left\|f_{h}^{\prime \prime}\right\|_{\infty} \leq 2\left\|h^{\prime}\right\|_{\infty}, \quad x \in \mathbb{R}
$$

cf. Lemma 1.2-(v) of [9] and references therein. Let

$$
d(F, G)=\sup _{h \in \mathcal{L}}|\mathrm{E}[h(F)]-\mathrm{E}[h(G)]|
$$

denote the Wasserstein distance between the laws of $F$ and $G$, where $\mathcal{L}$ denotes the class of 1-Lipschitz functions. In the sequel we let $\|u\|_{2}=\|u\|_{L^{2}\left(\Omega \times \mathbb{R}_{+}\right)}$.
Proposition 3.1 Let $u \in \bigcap_{k=1}^{3} \mathbb{D}_{k, 2}(H)$. We have
$d(\delta(u), \mathcal{N}) \leq E\left[\left|1-\langle u, u\rangle-\operatorname{trace}(D u)^{2}\right|\right]+\|u\|_{2}\|D\langle u, u\rangle\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|]$.

Proof. For $n=1$ and $F=1$, Proposition 2.1 shows that

$$
\begin{aligned}
E[\delta(u) f(\delta(u))]= & E\left[f^{\prime}(\delta(u)) \Gamma_{2}^{u} \mathbf{1}\right] \\
& +\frac{1}{2} E\left[f^{\prime \prime}(\delta(u))\langle u, D\langle u, u\rangle\rangle\right]+E\left[f^{\prime \prime}(\delta(u))\langle(D u) u, \delta(D u)\rangle\right],
\end{aligned}
$$

hence for any continuous function $h: \mathbb{R} \rightarrow[0,1]$, denoting by $f_{h}$ the solution to (3.1) we have

$$
\begin{aligned}
& E[h(\delta(u))]-E[h(\mathcal{N})]=E\left[\delta(u) f_{h}(\delta(u))-f_{h}^{\prime}(\delta(u))\right] \\
& \quad=E\left[f_{h}^{\prime}(\delta(u))\left(\Gamma_{2}^{u} \mathbf{1}-1\right)\right]+\frac{1}{2} E\left[f_{h}^{\prime \prime}(\delta(u))\langle u, D\langle u, u\rangle\rangle\right]+2 E\left[f_{h}^{\prime \prime}(\delta(u))\langle(D u) u, \delta(D u)\rangle\right]
\end{aligned}
$$

hence

$$
\begin{aligned}
& |E[h(\delta(u))]-E[h(\mathcal{N})]| \\
& \quad \leq\left\|h^{\prime}\right\|_{\infty} E\left[\left|1-\Gamma_{2}^{u} \mathbf{1}\right|\right]+\left\|h^{\prime}\right\|_{\infty} E[|\langle u, D\langle u, u\rangle\rangle|]+2\left\|h^{\prime}\right\|_{\infty} E[|\langle(D u) u, \delta(D u)\rangle|]
\end{aligned}
$$

which yields (3.2) by the relation

$$
\begin{equation*}
\Gamma_{2}^{u} \mathbf{1}=\langle u, u\rangle+\left\langle D^{*} u, D u\right\rangle_{H \otimes H}=\langle u, u\rangle+\operatorname{trace}(D u)^{2} . \tag{3.3}
\end{equation*}
$$

By (3.2) and (3.3) we find
$d(\delta(u), \mathcal{N}) \leq\|1-\langle u, u\rangle\|_{2}+\left\|\operatorname{trace}(D u)^{2}\right\|_{2}+\|u\|_{2}\|D\langle u, u\rangle\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|]$, which, as in Section 2, yields the following remarks.
(i) Quasi-nilpotent processes. When trace $(D u)^{2}=0$, and in particular when $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is an $\left(\mathcal{F}_{t}\right)_{t \in \mathbb{R}_{+}}$-adapted process, we have

$$
\begin{equation*}
d(\delta(u), \mathcal{N}) \leq E[|1-\langle u, u\rangle|]+\|u\|_{2}\|D\langle u, u\rangle\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|] . \tag{3.4}
\end{equation*}
$$

(ii) Random isometries. When $\langle u, u\rangle$ is deterministic we find

$$
d(\delta(u), \mathcal{N}) \leq|1-\langle u, u\rangle|+\left\|\operatorname{trace}(D u)^{2}\right\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|]
$$

As another consequence of Proposition 3.1 and of the Skorohod isometry

$$
\operatorname{Var}[\delta(u)]=E\left[\delta(u)^{2}\right]=E[\langle u, u\rangle]+E\left[\operatorname{trace}(D u)^{2}\right]
$$

we also find the bound

$$
\begin{align*}
d(\delta(u), \mathcal{N}) \leq & |1-\operatorname{Var}[\delta(u)]|+\sqrt{\operatorname{Var}\left[\|u\|_{H}^{2}+\operatorname{trace}(D u)^{2}\right]} \\
& +\|u\|_{2}\|D\langle u, u\rangle\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|] \tag{3.5}
\end{align*}
$$

for $u \in \bigcap_{k=1}^{3} \mathbb{D}_{k, 2}(H)$, which will be applied below to multiple stochastic integrals. In particular we have the following.
(i) Quasi-nilpotent processes. When trace $(D u)^{2}=0$ the bound (3.5) yields
$d(\delta(u), \mathcal{N}) \leq|1-\operatorname{Var}[\delta(u)]|+\sqrt{\operatorname{Var}\left[\|u\|_{H}^{2}\right]}+\|u\|_{2}\|D\langle u, u\rangle\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|]$.
(ii) Unit variance. In case $\operatorname{Var}[\delta(u)]=1$, (3.5) shows that
$d(\delta(u), \mathcal{N}) \leq \sqrt{\mathbb{E}\left[\left(\|u\|_{H}^{2}+\operatorname{trace}(D u)^{2}\right)^{2}\right]-1}+\|u\|_{2}\|D\langle u, u\rangle\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|]$.
(iii) Multiple stochastic integral processes. Taking $u_{t}=I_{n-1}\left(f_{n}(*, t)\right)$ where $f_{n}$ is a symmetric square-integrable function on $\mathbb{R}_{+}^{n}$, and applying again (1.6) and (2.5), by (3.5) we get

$$
\begin{equation*}
d\left(I_{n}\left(f_{n}\right), \mathcal{N}\right) \leq\left|1-n!\left\|f_{n}\right\|_{2}^{2}\right|+\sqrt{\operatorname{Var}\left[\|u\|_{H}^{2}+\operatorname{trace}(D u)^{2}\right]}+n\|u\|_{2}\|D\langle u, u\rangle\|_{2} \tag{3.6}
\end{equation*}
$$

The above bound (3.6) will be computed in terms of the kernel function $f_{n}$ in the next section.

When $\delta(u)$ has unit variance and in addition trace $(D u)^{2}=0$ or $\left(u_{t}\right)_{t \in \mathbb{R}_{+}}$is an adapted process, we find

$$
d(\delta(u), \mathcal{N}) \leq \sqrt{\mathbb{E}\left[\|u\|_{H}^{4}\right]-1}+\|u\|_{2}\|D\langle u, u\rangle\|_{2}+2 E[|\langle(D u) u, \delta(D u)\rangle|]
$$

## 4 Applications

## a) Stochastic differential equations

Consider the stochastic differential equation

$$
d X_{t}=\sigma\left(X_{t}\right) d W_{t}, \quad X_{0}=x_{0}
$$

where $\sigma \in \mathcal{C}_{b}^{1}(\mathbb{R})$. From Theorem 2.2.1 and Exercise 2.2.1 of [13], we have $X_{t} \in$ $\operatorname{Dom}(D), t \in[0, T]$, and

$$
\begin{equation*}
D_{s} X_{r}=\mathbf{1}_{[0, r]}(s) \sigma\left(X_{s}\right) e^{\int_{s}^{r} \sigma^{\prime}\left(X_{u}\right) d W_{u}-\int_{s}^{r}\left|\sigma^{\prime}\left(X_{u}\right)\right|^{2} d u / 2}, \quad 0 \leq s \leq r \tag{4.1}
\end{equation*}
$$

Since $X_{T}=\delta\left(\mathbf{1}_{[0, T]} \sigma(X)\right)$, and taking $H=L^{2}([0, T])$, from (3.4) we get

$$
\begin{align*}
d\left(X_{T}, \mathcal{N}\right) \leq & E[|1-\langle\sigma(X), \sigma(X)\rangle|]+\|\sigma(X)\|_{2}\|D\langle\sigma(X), \sigma(X)\rangle\|_{2} \\
& +2 E[|\langle(D \sigma(X)) \sigma(X), \delta(D \sigma(X))\rangle|] \tag{4.2}
\end{align*}
$$

where $\langle(D \sigma(X)) \sigma(X), \delta(D \sigma(X))\rangle$ is given by

$$
D_{r}\langle\sigma(X), \sigma(X)\rangle=2 \sigma\left(X_{r}\right) \int_{r}^{T} \sigma\left(X_{s}\right) \sigma^{\prime}\left(X_{s}\right) e^{\int_{r}^{s} \sigma^{\prime}\left(X_{u}\right) d W_{u}-\int_{r}^{s}\left|\sigma^{\prime}\left(X_{u}\right)\right|^{2} d u / 2} d s, \quad r \in \mathbb{R}_{+}
$$

In order to bound the last term in (4.2) we note that

$$
\delta\left(D_{r} \sigma\left(X_{.}\right)\right)=\sigma\left(X_{r}\right) \int_{r}^{T} \sigma^{\prime}\left(X_{t}\right) e^{\int_{r}^{t} \sigma^{\prime}\left(X_{u}\right) d W_{u}-\int_{r}^{t}\left|\sigma^{\prime}\left(X_{u}\right)\right|^{2} d u / 2} d W_{t}, \quad 0 \leq r \leq T
$$

and by (4.1) we have

$$
\langle(D \sigma(X)) \sigma(X), \delta(D \sigma(X))\rangle
$$

$$
\begin{aligned}
& =\int_{0}^{T} \int_{0}^{T} \sigma\left(X_{s}\right) D_{s} \sigma\left(X_{r}\right) d s \delta\left(D_{r} \sigma(X .)\right) d r \\
& =\int_{0}^{T} \sigma^{\prime}\left(X_{t}\right) \int_{0}^{t}\left|\sigma\left(X_{s}\right)\right|^{2} \int_{s}^{t} \sigma\left(X_{r}\right) \sigma^{\prime}\left(X_{r}\right) e^{\int_{r}^{t} \sigma^{\prime}\left(X_{u}\right) d W_{u}-\int_{r}^{t}\left|\sigma^{\prime}\left(X_{u}\right)\right|^{2} d u / 2} d r d s d W_{t},
\end{aligned}
$$

hence the last term in (4.2) can be bounded as

$$
\begin{aligned}
& E[|\langle(D \sigma(X)) \sigma(X), \delta(D \sigma(X))\rangle|] \\
& \left.\left.\leq \sqrt{E\left[\int _ { 0 } ^ { T } | \sigma ^ { \prime } ( X _ { t } ) | ^ { 2 } \left(\int_{0}^{t}\left|\sigma\left(X_{s}\right)\right|^{2} \int_{s}^{t} \sigma\left(X_{r}\right) \sigma^{\prime}\left(X_{r}\right) e_{r}^{t} \sigma^{\prime}\left(X_{u}\right) d W_{u}-\int_{r}^{t}\left|\sigma^{\prime}\left(X_{u}\right)\right|^{2} d u / 2\right.\right.} d r d s\right)^{2} d t\right] \\
& \leq \sqrt{E\left[\int_{0}^{s} t\left|\sigma^{\prime}\left(X_{t}\right)\right|^{2} \int_{0}^{t}\left|\sigma\left(X_{s}\right)\right|^{4}(t-s) \int_{s}^{t}\left|\sigma\left(X_{r}\right) \sigma^{\prime}\left(X_{r}\right)\right|^{2} e^{2 \int_{r}^{t} \sigma^{\prime}\left(X_{u}\right) d W_{u}-\int_{r}^{t}\left|\sigma^{\prime}\left(X_{u}\right)\right|^{2} d u} d r d s d t\right]} \\
& \leq \frac{T^{5 / 2}}{\sqrt{15}}\|\sigma\|_{\infty}^{3}\left\|\sigma^{\prime}\right\|_{\infty}^{2} e^{T\left\|\sigma^{\prime}\right\| \infty / 2},
\end{aligned}
$$

hence (4.2) provides an asymptotic bound on the distance $d\left(X_{T}, \mathcal{N}\right)$ as $\left\|\sigma^{\prime}\right\|_{\infty}$ tends to 0 .

## b) Multiple stochastic integrals

We now show that (3.5) can be used to recover the results [9] on multiple stochastic integrals. The bound (3.6) reads

$$
d\left(I_{n}\left(f_{n}\right), \mathcal{N}\right) \leq\left|1-n!\left\|f_{n}\right\|_{2}^{2}\right|+\sqrt{\operatorname{Var}\left[\|u\|_{H}^{2}+\operatorname{trace}(D u)^{2}\right]}+n\|u\|_{2}\|D\langle u, u\rangle\|_{2}
$$

By the multiplication formula for multiple stochastic integrals, cf. e.g. Relation (2.29) in [9] we have

$$
\langle u, u\rangle=\int_{0}^{\infty}\left(I_{n-1}\left(f_{n}(*, t)\right)\right)^{2} d t=\sum_{k=1}^{n}(k-1)!\binom{n-1}{k-1}^{2} I_{2 n-2 k}\left(f_{n} \otimes_{k} f_{n}\right)
$$

and, since $D_{s} u(t)=(n-1) I_{n-2}\left(f_{n}(*, s, t)\right)$,

$$
\begin{aligned}
& \operatorname{trace}(D u)^{2}=(n-1)^{2} \int_{0}^{\infty} \int_{0}^{\infty} I_{n-2}\left(f_{n}(*, s, t)\right) I_{n-2}\left(f_{n}(*, t, s)\right) d s d t \\
& \quad=(n-1)^{2} \sum_{k=0}^{n-2} k!\binom{n-2}{k}^{2} \int_{0}^{\infty} \int_{0}^{\infty} I_{2 n-4-2 k}\left(f_{n}(*, s, t) \otimes_{k} f_{n}(*, s, t)\right) d s d t \\
& =(n-1)^{2} \sum_{k=2}^{n}(k-2)!\binom{n-2}{k-2}^{2} I_{2 n-2 k}\left(f_{n} \otimes_{k} f_{n}\right)
\end{aligned}
$$

hence

$$
\begin{aligned}
\Gamma_{2}^{u} \mathbf{1}= & I_{2 n-2}\left(f_{n} \otimes_{1} f_{n}\right) \\
& +\sum_{k=2}^{n}\left((n-1)^{2}(k-2)!\binom{n-2}{k-2}^{2}+(k-1)!\binom{n-1}{k-1}^{2}\right) I_{2 n-2 k}\left(f_{n} \otimes_{k} f_{n}\right) \\
= & \sum_{k=1}^{n} k!\binom{n-1}{k-1}^{2} I_{2 n-2 k}\left(f_{n} \otimes_{k} f_{n}\right),
\end{aligned}
$$

and

$$
\operatorname{Var}\left[\Gamma_{2}^{u} \mathbf{1}\right]=\sum_{k=1}^{n-1} k!^{2}\binom{n-1}{k-1}^{4}\left\|f_{n} \otimes_{k} f_{n}\right\|_{2}^{2}
$$

We also have

$$
D_{r}\langle u, u\rangle=2 \sum_{k=1}^{n-1}(n-k)(k-1)!\binom{n-1}{k-1}^{2} I_{2 n-2 k-1}\left(\left(f_{n} \otimes_{k} f_{n}\right)(*, r)\right),
$$

hence

$$
\begin{aligned}
E\left[\int_{0}^{\infty}\left|D_{r}\langle u, u\rangle\right|^{2} d r\right] & =4 \sum_{k=1}^{n-1}((n-k)(k-1)!)^{2}\binom{n-1}{k-1}^{4} \int_{0}^{\infty}\left\|\left(f_{n} \otimes_{k} f_{n}\right)(*, r)\right\|_{2}^{2} d r \\
& =4 \sum_{k=1}^{n-1}((n-k)(k-1)!)^{2}\binom{n-1}{k-1}^{4}\left\|\left(f_{n} \otimes_{k} f_{n}\right)\right\|_{2}^{2}
\end{aligned}
$$

Finally we get

$$
\begin{aligned}
& d\left(I_{n}\left(f_{n}\right), \mathcal{N}\right) \leq\left|1-n!\left\|f_{n}\right\|_{2}^{2}\right|+\sqrt{\sum_{k=1}^{n-1} k!^{2}\binom{n-1}{k-1}^{4}\left\|f_{n} \otimes_{k} f_{n}\right\|_{2}^{2}} \\
& \quad+2(n-1) \sqrt{(n-1)!}\left\|f_{n}\right\|_{2} \sqrt{\sum_{k=1}^{n-1}((n-k)(k-1)!)^{2}\binom{n-1}{k-1}^{4}\left\|f_{n} \otimes_{k} f_{n}\right\|_{2}^{2}}
\end{aligned}
$$

which recovers Proposition 3.2 of [9], with different constants.

## References

[1] A.D. Barbour. Asymptotic expansions based on smooth functions in the central limit theorem. Probab. Theory Relat. Fields, 72(2):289-303, 1986.
[2] H. Biermé, A. Bonami, I. Nourdin, and G. Peccati. Optimal Berry-Esseen rates on the Wiener space: the barrier of third and fourth cumulants. ALEA Lat. Am. J. Probab. Math. Stat., 9(2):473-500, 2012.
[3] S. Campese. Optimal convergence rates and one-term Edgeworth expansions for multidimensional functionals of Gaussian fields. ALEA Lat. Am. J. Probab. Math. Stat., 10(2):881-919, 2013.
[4] L.H.Y. Chen, L. Goldstein, and Q.-M. Shao. Normal approximation by Stein's method. Probability and its Applications (New York). Springer, Heidelberg, 2011.
[5] P. Hall. The bootstrap and Edgeworth expansion. Springer Series in Statistics. Springer-Verlag, New York, 1992.
[6] P. McCullagh. Tensor methods in statistics. Monographs on Statistics and Applied Probability. Chapman \& Hall, London, 1987.
[7] I. Nourdin. Lectures on Gaussian approximations with Malliavin calculus. In Séminaire de Probabilités XLV, volume 2078 of Lecture Notes in Math., pages 3-89. Springer, 2013.
[8] I. Nourdin and G. Peccati. Stein's method and exact Berry-Esseen asymptotics for functionals of Gaussian fields. Ann. Probab., 37(6):2231-2261, 2009.
[9] I. Nourdin and G. Peccati. Stein's method on Wiener chaos. Probab. Theory Related Fields, 145(1-2):75-118, 2009.
[10] I. Nourdin and G. Peccati. Cumulants on the Wiener space. J. Funct. Anal., 258(11):3775-3791, 2010.
[11] I. Nourdin and G. Peccati. Normal approximations with Malliavin calculus, volume 192 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2012.
[12] I. Nourdin and G. Peccati. The optimal fourth moment theorem. Proc. Amer. Math. Soc., 143:3123-3133, 2015.
[13] D. Nualart. The Malliavin calculus and related topics. Probability and its Applications. SpringerVerlag, Berlin, second edition, 2006.
[14] N. Privault. Moment identities for Skorohod integrals on the Wiener space and applications. Electron. Commun. Probab., 14:116-121 (electronic), 2009.
[15] N. Privault. Laplace transform identities and measure-preserving transformations on the Lie-Wiener-Poisson spaces. J. Funct. Anal., 263:2993-3023, 2012.
[16] N. Privault. Cumulant operators and moments of the Itô and Skorohod integrals. C. R. Math. Acad. Sci. Paris, 351(9-10):397-400, 2013.
[17] N. Privault. Cumulant operators for Lie-Wiener-Itô-Poisson stochastic integrals. J. Theoret. Probab., 28(1):269-298, 2015.
[18] A.S. Üstünel and M. Zakai. Random rotations of the Wiener path. Probab. Theory Relat. Fields, 103(3):409-429, 1995.

