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Abstract

Accurate estimation of species divergence times from the analysis of genetic
sequences relies on probabilistic models of evolution of the rate of molecular
evolution. Importantly, while these models describe the sample paths of the
substitution rates along a phylogenetic tree, only the (random) average rate
can be estimated on each edge. For mathematical convenience, the stochastic
nature of these averages is generally ignored. In this article we derive the
probabilistic distribution of the average substitution rate assuming a geometric
Brownian motion for the sample paths, and we investigate the corresponding
error bounds via numerical simulations. In particular we confirm the validity
of the gamma approximation proposed in Guindon [5] for “small” values of the
autocorrelation parameter.
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1 Introduction

The comparison of homologous nucleotide or amino-acid sequences collected from

multiple species or populations serves as a basis to infer divergence times [26, 20, 16,
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9, 19, 22, 11]. In short, aligned homologous genetic sequences are used to estimate a

phylogenetic tree with the length of each branch corresponding to an expected num-

ber of substitutions that accumulated at individual sites of the alignment. Fossil data

and/or prior knowledge about the overall substitution rate help translate this number

of substitutions into calendar time units.

The hierarchical Bayesian estimation framework is well suited to the inference of

model parameters in this particular context. The objective is then to estimate the

joint posterior probability density of the model parameters, including the phyloge-

netic tree topology, the pathwise average rate of substitution along edges, the rate

of substitution at the nodes of the tree (or the midpoint of each edge, as in Rannala

and Yang [18]), the node ages, plus other parameters generally considered as nuisance

parameters. The posterior density of a particular combination of parameter values is

then proportional to the product of the likelihood, i.e., the probability of the sequence

alignment given the model parameters by the prior probability (density) of these val-

ues, cf. Felsenstein [3].

In a pioneering work, Thorne, Kishino and Painter [22] implemented such an approach,

assuming a simple model describing the variability of substitution rates during the

course of evolution. Specifically, in their model, the substitution rate follows a ge-

ometric Brownian process, i.e., the logarithm of the rate at the end of a branch is

normally distributed with mean set to the logarithm of the rate at the beginning of

the branch, and variance proportional to the time elapsed along that edge. Mean

reverting stochastic processes such as the Ornstein-Uhlenbeck process or the Cox-

Ingersoll-Ross (CIR) process were also used afterwards, cf. respectively Aris-Brosou

and Yang [2], and Lepage et al. [13].

While these models define priors on the rate trajectories, i.e., priors on the sample

paths of the rate process, only average rates can be estimated from the available data.

For instance, given the observed differences between two sequences and the time to

their common ancestor, one can only estimate the expected rate at which substitu-
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tions accumulated in the corresponding time period. Hence, while rate trajectories

lend themselves to statistical modeling, they are not identifiable from the available

data. For this reason, it is necessary to derive average rates conditional on the corre-

sponding trajectories.

The approach used to derive these averages is of course of central importance. Thorne,

Kishino and Painter [22] and subsequent studies used deterministic functions of the

rates at both extremities or on the mid-point of the corresponding branch. This sim-

plification therefore amounts to considering the average substitution rate conditional

on the rate at the branch extremities as a constant. However, in the general and more

realistic setting where finite time intervals are considered, the average substitution

rate is a random variable and should therefore be treated as such. Considering a

given branch, a random “trajectory” then describes the fluctuation of rates at any

individual site of the alignment. While the trajectories at different sites are distinct,

they are all governed by the same stochastic process with single drift and diffusion

parameters. Such a model thus authorizes a given branch to evolve rapidly at a first

site and slowly at a second, while another branch can evolve slowly at the first site

and then fast at the second, in a manner similar to that of the covarion model (Tuffley

and Steel [23]).

Lepage et al. [13] were the first to acknowledge and tackle this issue. Assuming a CIR

model for the rate trajectories, they derived analytical expressions for the transition

probabilities between character states along the phylogeny. Lepage et al. [12] have

given an application of the techniques of Lepage et al. [13], however they have ignored

the stochasticity of the pathwise average rate by equating it to its expectation under

the CIR model.

Guindon [5] suggested that average substitution rates are approximately gamma dis-

tributed when rate trajectories are governed by a geometric Brownian process. This

approximation is convenient from a computational perspective as it does not incur

any extra calculation in the derivation of the likelihood compared to the traditional
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“fixed-average” approach. The first and second moments of the gamma distribution

conditional on the rate at the branch extremities were approximated by a Taylor series

in order to calculate these values in practice.

In this paper, we give closed form integral expressions for the probability density of

the (random) average rates of substitution using Bessel functions. We compare those

expressions to the gamma distribution approximation of Guindon (2013) and show

that it is accurate in a broad range of biologically realistic conditions. We also provide

explicit formulas for the first two moments of the average rates and we use them as

an alternative to the Taylor series approximation applied in Guindon (2013).

We proceed as follows. After presenting the Bayesian estimation of divergence times

and the modeling of substitution rates in Section 2, we present closed form formulas

for the conditional distribution of pathwise averages of rates in Section 3. Section 4 is

devoted to the gamma approximation of these quantities. Section 5 contains the proofs

of our main results, including the computations of conditional mean and variance

needed for the approximations.

2 Bayesian estimation of divergence times

In this section, we present the phylogenetic model used to estimate divergence times

from the analysis of molecular and fossil data. We then describe how the posterior

probability of the parameters of interest can be estimated in a Bayesian framework.

Let τn be a reconstructed phylogenetic tree [15, 4] with n tips. It is a rooted, binary

tree with unique leaf labels and ultrametric edge lengths. Let R be a vector of 2n− 1

substitution rates at the vertices of τn and X the vector of 2n− 2 average rates along

the edges of the tree. Let T be the vector of n−1 (internal) node heights distinct from

the tips. For simplicity, we omit other (nuisance) parameters from the phylogenetic

model.

The data consist in an alignment of n homologous sequences. Each sequence in the
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alignment is of length l and Sij represents the character (i.e., a nucleotide, amino-acid

or unknown character) observed in the sequence corresponding to the i-th tip in τn

at the j-th column in the alignment. Let S denote the whole alignment. Calibration

information is usually incorporated in the analysis through fossil data. This source of

information is used to date some of the internal nodes, corresponding to the ancestor

of groups of species for which fossil information, denoted as F, is available.

Samples from the posterior probability density of the parameters of interest are ob-

tained using Markov Chain Monte Carlo. It is usually decomposed as follows:

p(τn,R,T|F,S) ∝
∫

Pr(S|X,T, τn)p(X|T,R)p(R|T, τn)p(T, τn|F)dX,

where Pr(S|X,T, τn) is the conditional probability of the alignment given the phy-

logeny, and is computed efficiently using Felsenstein’s [3] peeling algorithm. The

quantity p(R|T, τn) represents the rate trajectories, i.e., the joint probability density

of the rates at every node in the tree given the node heights, whereas p(T, τn|F) is

the joint density of node heights given the fossil information, which can be calculated

under a variety of models, the most popular ones being Kingman’s coalescent [8] and

the birth-death process [21]. The function p(X|T,R) represents the conditional den-

sity of the (random) average rates given the times elapsed along each branch of the

phylogeny and the substitution rates at each node. As indicated previously, the vector

X of substitution rates is usually considered deterministic by equating every value in

X to the arithmetic average of the pairs of values in R corresponding to each edge

extremities, and to zero otherwise.

In this paper we focus on the actual distribution of X|T,R and present an analytical

approach to the exact calculation of
∫

Pr(S|X,T, τn)p(X|T,R)dX, by assuming that

the distribution of the rate of evolution Rt at time t on a given edge given T, τn is

modeled by a geometric Brownian bridge. Precisely we take

logRt = log x+
t

T
log(y/x) + σUt = log x+

t

T
log(y/x) + σ(Wt − tWT/T ),
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conditioned to start at log x and to end at log y, where

Ut := Wt −
t

T
WT , t ∈ [0, T ],

is the standard Brownian bridge on [0, T ] with U0 = UT = 0, cf. [22], [10], and σ is

the rate autocorrelation parameter. The pathwise average substitution rate along a

branch of length T (in calendar time units) is given by ΛT/T , where

ΛT =

∫ T

0

Rsds. (2.1)

The character state Xt (typically a nucleotide or an amino-acid) at time t ∈ IR+, is

modeled as in [5] as the time-changed process

Xt = YΛt

where (Yt)t∈IR+ is a continuous-time Markov chain with finite state space {1, . . . , n}
and infinitesimal n× n generator matrix Q, and Λt is the random time change

Λt :=

∫ t

0

Rsds = R0

∫ t

0

eσWs−pσ2s/2ds, t ∈ IR+.

We note that the transition probabilities of (Xt)t∈IR+ are given by

P(XT = b | X0 = a, R0 = x, RT = y)

= E[1{XT=b} | X0 = a, R0 = x, RT = y]

= E[1{YΛT
=b} | X0 = a, R0 = x, RT = y]

= E[E[1{YΛT
=b} | Y0 = a, ΛT , R0 = x, RT = y] | Y0 = a, R0 = x, RT = y]

= E[[eΛTQ]a,b | Y0 = a, R0 = x, RT = y]

= E[[eΛTQ]a,b | R0 = x, RT = y]

= [hTx,y(−Q)]a,b, 1 ≤ a, b ≤ n,

where Pz := ezQ, z > 0, is the transition semigroup of the continuous-time chain

(Yt)t∈IR+ and hTx,y(λ) is the conditional Laplace transform

hTx,y(λ) := E
[
exp (−λΛT )

∣∣∣R0 = x, RT = y
]
, λ ≥ 0, x, y > 0. (2.2)
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By diagonalization of the symmetric matrix Q = M−1DM where D = diag(λ1, . . . , λn)

and λ1 = 0, λ2, . . . , λn are the eigenvalues of Q, this allows us to compute the transi-

tion probabilities of (Xt)t∈IR+ as

P(XT = b | X0 = a, R0 = x, RT = y) = [M−1D(x, y)M]a,b

where D(x, y) is the diagonal matrix

D(x, y) = diag(1, hTx,y(−λ2), . . . , hTx,y(−λn)).

Note that if Q has only non-zero entries then λ1 = 0 is an eigenvalue of Q with

eigenvector (1, . . . , 1), while all other eigenvalues λ2, . . . , λn are strictly negative, cf.

e.g. Theorem 2.1 in Chapter 10 of [7], and correspond to eigenvectors u(2), . . . , u(n) ∈
IRn which are orthogonal to the invariant distribution (π1, . . . , πn) of (Yt)t∈IR+ . The

matrices M and M−1 then take the form

M =


π1 · · · πn
M2,1 · · · M2,n

...
. . .

...
Mn,1 · · · Mn,n

 and M−1 =


1 u

(2)
1 · · · u

(n)
1

1 u
(2)
2 · · · u

(n)
2

...
...

. . .
...

1 u
(2)
n · · · u

(n)
n

 .
By (2.2) we have hTx,y(λ1) = hTx,y(0) = 1 and limT→∞ h

T
x,y(λk) = 0, k = 2, . . . , n, when

T tends to infinity, hence

lim
T→∞

[P(XT = b | X0 = a, R0 = x, RT = y)]1≤a,b≤n = [M−1D(x, y)M]1≤a,b≤n

=


1 u

(2)
1 · · · u

(n)
1

1 u
(2)
2 · · · u

(n)
2

...
...

. . .
...

1 u
(2)
n · · · u

(n)
n




1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0




π1 · · · πn
M2,1 · · · M2,n

...
. . .

...
Mn,1 · · · Mn,n



=


1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0




π1 · · · πn
M2,1 · · · M2,n

...
. . .

...
Mn,1 · · · Mn,n



=


π1 · · · πn
π1 · · · πn
...

. . .
...

π1 · · · πn

 ,
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which recovers the limiting distribution of (Yt)t∈IR+ .

Finally we note the scaling property

ΛT =

∫ T

0

eσWt−pσ2t/2dt
d
=

∫ T

0

eWσ2t−pσ
2t/2dt =

1

σ2

∫ σ2T

0

eWt−pt/2dt, T > 0, (2.3)

where
d
= denotes equality in distribution, which shows that the probability distribution

of the average rate ΛT/T depends only on the product σ2T .

3 Closed form expressions

In this section we show how the Laplace transform

hTx,y(λ) =

∫ ∞
0

e−zλdP(ΛT = z | R0 = x, RT = y), λ > 0, (3.1)

defined in (2.2) can be computed in closed integral form using Bessel functions, and

we provide closed form expressions for the conditional mean and variance of ΛT . The

proofs of the results of this section are deferred to Section 5.

In the next lemma we use the function

θ(v, τ) :=
veπ

2/(2τ)

√
2π3τ

∫ ∞
0

e−ξ
2/(2τ)e−v cosh ξ sinh(ξ) sin (πξ/τ) dξ, v, τ > 0, (3.2)

in order to evaluate the conditional distribution of ΛT given R0 = x and RT = y.

Lemma 3.1 For all x, y > 0 we have

P
(

ΛT ∈ du
∣∣∣R0 = x, RT = y

)
(3.3)

= σ

√
πT

2
exp

(
(log(y/x))2

2σ2T
− 2

x+ y

σ2u

)
θ

(
4
√
xy

σ2u
,
σ2T

4

)
du

u
, u > 0.

From Lemma 3.1 we will deduce a closed form integral expression for the condi-

tional Laplace transform hTx,y(λ) = E
[
exp (−λΛT )

∣∣∣R0 = x, RT = y
]

of ΛT . Note

that θ(v, τ) is difficult to evaluate numerically due to the oscillating behavior of its

integrand, cf. [6], [17] for several attempts to the numerical computation of the func-

tion θ(v, τ). As will be shown subsequently, the numerical evaluation of this integral
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expression (3.3) fails for small values of T due to the highly oscillating behavior of

its integrand, making the gamma approximation described in [5] preferable in this

parameter range.

In the next proposition we use the modified Bessel function of the second kind

Kζ(z) =
zζ

2ζ+1

∫ ∞
0

exp

(
−u− z2

4u

)
du

uζ+1
, ζ ∈ IR, z ∈ C, R(z2) > 0, (3.4)

cf. [24] page 183, to compute the Laplace transform (3.1). Note that the expression

(3.5) below is more complex than the closed-form expressions available for the CIR

model, compare for example with Relation (3.51) of [1] or Relations (23)-(24) of [12].

Proposition 3.2 For all x, y, λ > 0 we have

hTx,y(λ) = (3.5)

4x
√
λe−σ

2T/8

π3/2σ2p(y/x)
√
T

∫ ∞
0

e2(π2−ξ2)/(σ2T ) sin

(
4πξ

σ2T

)
sinh(ξ)

K1

(√
8λ
√
x+ 2

√
xy cosh ξ + y/σ

)
√
x+ 2

√
xy cosh ξ + y

dξ.

The numerical evaluation of (3.5) can be done by standard integral discretization

methods, however the integral is also oscillating due to the presence of the term

sin(4πξ/(σ2T )), making the numerical scheme unstable for small values of σ2T , as

observed above for θ(v, τ).

For the next proposition we will need the functions

aT (z) :=
1

σ2p(z)

(
Φ

(
log z√
σ2T

+
1

2

√
σ2T

)
− Φ

(
log z√
σ2T

− 1

2

√
σ2T

))
,

and

bT (z) :=
1

σ2q(z)

(
Φ

(
log z√
σ2T

+
√
σ2T

)
− Φ

(
log z√
σ2T

−
√
σ2T

))
,

where

p(z) =
1√

2πσ2T
e−(σ2T/2+log z)

2
/(2σ2T ), and q(z) =

1√
2πσ2T

e−(σ2T+log z)
2
/(2σ2T ),

z > 0, and

Φ(x) =
1√
2π

∫ x

−∞
e−y

2/2dy, x ∈ IR,
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is the standard Gaussian cumulative distribution function. In the next Proposition 3.3

we derive the closed form expressions of E[ΛT | R0 = x, RT = y] and Var[ΛT | R0 =

x, RT = y].

Proposition 3.3 We have

E[ΛT | R0 = x, RT = y] = xaT (y/x) (3.6)

=
x

σ2p(y/x)

(
Φ

(
log(y/x)√

σ2T
+

1

2

√
σ2T

)
− Φ

(
log(y/x)√

σ2T
− 1

2

√
σ2T

))
,

and

E[(ΛT )2 | R0 = x, RT = y] =
2x

σ2
(xbT (y/x)− (x+ y)aT (y/x)), x, y > 0. (3.7)

From Proposition 3.3 we also obtain the equivalences as T tends to infinity

E
[
ΛT

∣∣∣R0 = x, RT = y
]
' 1

σ

√
2πTxyeσ

2T/8, [T →∞], (3.8)

and

E
[
Λ2
T

∣∣∣R0 = x, RT = y
]
' 2

σ3
xy
√

2πTeσ
2T/2, [T →∞], (3.9)

hence both quantities tend to infinity as T goes to infinity.

In addition we can also use the short time asymptotics for E[ΛT | R0 = x, RT = y]

and Var[ΛT | R0 = x, RT = y] of Proposition 5.1 in Section 5 to derive the Laplace

transform approximation

hTx,y(λ) = E
[
exp (−λΛT )

∣∣∣R0 = x, RT = y
]

' 1− λE[ΛT | R0 = x, RT = y] +
λ2

2
E[(ΛT )2 | R0 = x, RT = y]

' 1− λT (y − x)

log(y/x)
− λσ2T 2

(
x+ y

2(log(y/x))2
− y − x

(log(y/x))3

)
+
T 2λ2

2

(y − x)2

(log(y/x))2
+ o(T 2),

(3.10)

in small time T .
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4 Gamma approximation

In order to approximate the distribution of ΛT we will use the gamma probability

density function

f(x) =
1

ηβΓ(β)
xβ−1e−x/η, x > 0, (4.1)

with mean and variance

E[X] = βη, Var[X] = βη2,

where Γ(a) =

∫ ∞
0

ta−1e−tdt, a > 0, is the gamma function. The shape parameter

β > 0 and the scale parameter η > 0 can be estimated from the mean and variance

of X as

η =
Var[X]

E[X]
, β =

(E[X])2

Var[X]
=
E[X]

η
. (4.2)

The next proposition is a consequence of (4.2) and Proposition 3.3.

Proposition 4.1 For any x, y > 0, the gamma random variable with scale parameter

ηT (x, y) :=
2

σ2

(
x
bT (y/x)

aT (y/x)
− x− y

)
− xaT (y/x), (4.3)

and shape parameter

βT (x, y) := x
aT (y/x)

ηT (x, y)
(4.4)

has same first and second moments as ΛT given {R0 = x, RT = y}.

Based on Proposition 4.1 we will use the approximation

P
(

ΛT ∈ du
∣∣∣R0 = x, RT = y

)
' e−u/ηT (x,y)

ηT (x, y)

(u/ηT (x, y))−1+βT (x,y)

Γ (βT (x, y))
du, u > 0.

(4.5)

Note that from (3.8)-(3.9) we have the equivalences

ηT (x, y) ' 2

σ2

√
xye3σ2T/8, [T →∞], (4.6)

and

βT (x, y) '
√
πσ2T

2
e−σ

2T/4, [T →∞], (4.7)
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as T becomes large. On the other hand, by Proposition 5.1 in Section 5 and (4.2) we

also have the short time limits

lim
T→0

ηT (x, y) = 0 and lim
T→0

βT (x, y) = +∞. (4.8)

Figure 1 represents ηT (x, y) as a function of T , together with its large time approxi-

mation (4.6) when σ = 1 and x = 0.0001, y = 0.001.
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Figure 1: Graph of T 7→ ηT (x, y) in (4.3) and its large time approximation (4.6).

In Figure 2 we plot βT (x, y) as a function of T , together with its large time approxi-

mation (4.7) with σ = 1.
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Figure 2: Graph of T 7→ βT (x, y) in (4.4) and its large time approximation (4.7).

Figure 2 shows in particular that we should require σ2T ≤ 6 in order to have

βT (x, y) > 1 so that the approximating gamma probability density with parameter
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βT (x, y) does not tend to infinity at 0, as observed in the graphs of actual densities

in Figures 4 to 6 below. Similarly, the condition βT (x, y) > 2, i.e. σ2T ≤ 4, would

be required in order for the derivative of the gamma probability density to vanish at

the origin. Note also that in order to have P(RT/R0 ≥ 2) in the interval [10−3, 0.25]

we need to choose σ2T within [0.05, 1.05]. For this range of parameter values, the

expected value of the (random) average rate as approximated using the gamma distri-

bution is reasonably close to the corresponding exact values. Based on these remarks,

when T = 1 we will retain the range [0, 2] for the values of σ within the domain of

validity of the gamma approximation in the numerical simulations described in the

following sections.

In Figures 3-6 we compare the density approximation (4.5) with the closed form

expression (3.3) for T = 1 with x = 0.0001, y = 0.001 and σ = 0.57, σ = 1 and σ = 2,

respectively. It turns out that the numerical implementation of the integral expression

(3.6) fails for values of σ2T < 0.5 due to instabilities in the oscillating integral (3.2)

of θ(v, τ), while the performance of the gamma approximation (4.5) is better for σ

lower than 1.
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Figure 3: The integral expression (3.3) vs its gamma approximation (4.5) with σ = 0.57 and
β1
x,y = 38.84.

The graph of Figure 6 confirms that the gamma approximation can no longer be used

to fit the actual probability density when β1
x,y < 1.
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Figure 4: The integral expression (3.3) vs its gamma approximation (4.5) with σ = 1 and β1
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11.80.
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Figure 5: The integral expression (3.3) vs its gamma approximation (4.5) with σ = 2 and β1
x,y =

2.144.
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Figure 6: The integral expression (3.3) vs its gamma approximation (4.5) with σ = 4 and β1
x,y =

0.1014.
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Transition probabilities

From Proposition 4.1 the Laplace transform of ΛT also admits the gamma approxi-

mation

hTx,y(λ) = E
[
exp (−λΛT )

∣∣∣R0 = x, RT = y
]
' (1 + ληT (x, y))−βT (x,y) , (4.9)

λ ≥ 0, x, y > 0, hence the transition probability approximation

[P(XT = b | X0 = a, R0 = x, RT = y)]1≤a,b≤n 'M−1D(x, y)M

where D(x, y) is the diagonal matrix

D(x, y) = diag
(

1, (1 + λ2ηT (x, y))−βT (x,y) , . . . , (1 + λnηT (x, y))−βT (x,y)
)
.

From (4.6)-(4.7) we find that

hTx,y(λ) = E
[
exp (−λΛT )

∣∣∣R0 = x, RT = y
]

'
(

1 +
2λ

σ2

√
xye3σ2T/8

)−σ√πT/2e−σ
2T/4

' exp

(
−σ
√
πT

2
e−σ

2T/4 log

(
1 +

2λ

σ2

√
xye3σ2T/8

))

' exp

(
−3

8
(σ2T )3/2

√
π

2
e−σ

2T/4

)
,

which shows that the gamma approximation (4.9) tends to 1 as T tends to infinity,

although the exact value of hTx,y(λ) in (3.5) tends to 0 when λ > 0, as can be checked

in Figure 7.

For numerical simulations of the transition probabilities P(Xt = b | X0 = a, R0 =

x, RT = y) we consider the Jukes-Cantor model

Q =


−1 + 1/n 1/n · · · 1/n

1/n −1 + 1/n · · · 1/n
...

. . .
. . .

...
...

. . .
. . .

...
1/n 1/n · · · −1 + 1/n
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with limiting distribution (π1, . . . , πn) = (1/n, . . . , 1/n) and

M =


1/n 1/n 1/n · · · 1/n
−1/n −1/n −1/n · · · 1− 1/n
...

...
... . .

. ...
−1/n −1/n 1− 1/n · · · −1/n
−1/n 1− 1/n −1/n · · · −1/n

 and M−1 =


1 −1 −1 · · · −1
1 1 0 · · · 0
...

...
. . .

. . .
...

1 0
. . .

. . . 0
1 0 0 · · · 1

 ,

with eigenvalues (λ1, λ2, . . . , λn) = (0,−1, . . . ,−1), which yields

[P(Xt = b | X0 = a, R0 = x, RT = y)]1≤a,b≤n

=


1/n+ (1− 1/n)hTx,y(1) (1− hTx,y(1))/n · · · (1− hTx,y(1))/n

(1− hTx,y(1))/n 1/n+ (1− 1/n)hTx,y(1)
. . . (1− hTx,y(1))/n

...
...

. . .
...

(1− hTx,y(1))/n (1− hTx,y(1))/n · · · 1/n+ (1− 1/n)hTx,y(1)

 .
Figure 7 compares the gamma approximation (4.9) in the Jukes-Cantor model with

n = 4 with the integral expression (3.5) evaluated by a standard discretization.

We check in Figure 7 that the numerical evaluation of (3.5) fails with divergent in-

finities for “small” values of σ2T ≤ 0.5, due to the oscillating behavior of the integral,

while the gamma approximation performs well until T ' 50, i.e. σ2T ' 0.52 × 50 =

12.5 or σ ' 3.5 when T = 1. A Monte Carlo simulation of hTx,y(λ) is plotted together

with the other estimates for verification, including the small time estimate (3.10).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0  20  40  60  80  100

(1
-h

x,y
(1

))/
4

t

Monte Carlo
gamma approximation

integral expression
small time approximation

Figure 7: The integral expression (3.5) vs the gamma approximation (4.9) with σ = 0.5.
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In Figure 8, which is plotted in large time and also includes the small time estimate

(3.10), we note that the integral expression (3.5) yields the expected convergence of

(1− hTx,y(λ))/4 to the limiting probability 1/4 (when n = 4) as T tends to infinity.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4  5  6  7  8

(1
-h

x,y
(1

))/
4

t

Monte Carlo
gamma approximation

integral expression
small time approximation

Figure 8: The integral expression (3.5) vs the gamma approximation (4.9) in logarithmic time scale
with σ = 0.5.

5 Proofs

Proof of Lemma 3.1. By [25], Proposition 2, the joint probability density distribution

of (∫ T

0

R0e
σWs−pσ2s/2ds, WT − pσT/2

)
can be written as

P
(∫ T

0

eσWs−pσ2s/2ds ∈ du,WT − pσT/2 ∈ dy
)

=
σ

2
e−pσy/2−p

2σ2T/8 exp

(
−2

1 + eσy

σ2u

)
θ

(
4eσy/2

σ2u
,
σ2T

4

)
du

u
dy

= e−pσy/2−p
2σ2T/8P

(∫ T

0

eσWsds ∈ du,WT ∈ dy
)
,

y ∈ IR, u, T > 0, cf. also [14] for a review of related results, and [1] for extensions to

certain diffusion processes. The conclusion follows from the relation

P
(∫ T

0

eσWs−pσ2s/2ds ∈ du, eσWT−pσ2T/2 ∈ dy
)
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=
1

2
e−p

2σ2T/8y−1−p/2 exp

(
−2

1 + y

σ2u

)
θ

(
4
√
y

σ2u
,
σ2T

4

)
du

u
dy,

u > 0, T > 0, combined with the lognormal distribution

dP(eσWT−pσ2T/2 = y) =
1

y
√

2πσ2T
e−(pσ2T/2+log y)2/(2σ2T ).

�

Proof of Proposition 3.2. By scaling it suffices to do the proof for x = 1 and σ = 1.

By the Fubini theorem we have∫ ∞
0

e−uλ exp

(
−2

1 + y

u

)
θ

(
4
√
y

u
,
T

4

)
du

u
(5.1)

=
4e2π2/T√y√

π3T/2

∫ ∞
0

e−2ξ2/T sin

(
4πξ

T

)
sinh(ξ)

∫ ∞
0

exp

(
−λu− 2

1 + 2
√
y cosh ξ + y

u

)
du

u2
dξ,

since the above integrand belongs to L1(IR2
+) as it is bounded by

(ξ, u) 7→ e2(π2−ξ2)/T sinh(ξ) exp

(
−λu− 2

1 + y

u

)
.

Next we have∫ ∞
0

exp

(
−λu− 2

1 + 2
√
y cosh ξ + y

u

)
du

u2
=
√

2λ
K1

(√
8λ
√

1 + 2
√
y cosh ξ + y

)
√

1 + 2
√
y cosh ξ + y

,

where we used the identity (3.4) above. Hence we find

E
[
exp (−λΛT )

∣∣∣ RT = y
]

=

∫ ∞
0

e−uλP
(

ΛT ∈ du
∣∣∣RT = y

)
=

√
πT

2
e(log y)2/(2T )

∫ ∞
0

e−uλ exp

(
−2

1 + y

u

)
θ

(
4
√
y

u
, T/4

)
du

u
dy

=
4
√

2λy

π
e(log y)2/(2T )+2π2/T

∫ ∞
0

e−2ξ2/T sin

(
4πξ

T

)
sinh(ξ)

K1

(√
8λ
√

1 + 2
√
y cosh ξ + y

)
√

1 + 2
√
y cosh ξ + y

dξ.

When σ 6= 1 we conclude the proof by the scaling argument

E
[
exp (−λΛT )

∣∣∣R0 = x, RT = y
]

= E

[
exp

(
− λ

σ2

∫ σ2T

0

eWt−pt/2dt

) ∣∣∣R0 = x, RT = y

]
,

y > 0, that follows from (2.3). �
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Next we prove Proposition 3.3 which contains the closed form expressions of E[ΛT |
RT = z] and Var[ΛT | RT = z].

Proof of Proposition 3.3. By scaling it suffices to do the proof for σ = 1. Under

conditioning we write

Rt = eσ(Wt−tWT /T )+t(log z)/T , t ∈ [0, T ],

hence

E[ΛT | RT = z] =

∫ T

0

E[Rt | RT = z]dt

=

∫ T

0

et(log z)/T+t(T−t)/(2T )dt

=

∫ T

0

et((log z)/T+1/2)−t2/(2T )dt

= e(T/2+log z)2/(2T )

∫ T

0

e−(t−T/2−log z)2/(2T )dt

= e(T/2+log z)2/(2T )

∫ T/2−log z

−T/2−log z

e−x
2/(2T )dx

=
√
Te(T/2+log z)2/(2T )

∫ −(log z)/
√
T+
√
T/2

−(log z)/
√
T−
√
T/2

e−y
2/2dy

=
√

2πTe(T/2+log z)2/(2T )

(
Φ

(
− log z√

T
+

1

2

√
T

)
− Φ

(
− log z√

T
− 1

2

√
T

))
,

from which we conclude by (2.3). Next we have

E[(ΛT )2 | RT = z] = E

[(∫ t

0

eWt−tWT /T+t(log z)/Tdt

)2
]

= 2

∫ T

0

∫ t

0

e(s+t)(log z)/TE[eWs−sWT /T+Wt−tWT /T ]dsdt

= 2

∫ T

0

∫ t

0

e(s+t)(log z)/T+(t(T−t)+s(T−s)+2s(T−t))/(2T )dsdt,

= 2e(3T/2+log z)2/(2T )

∫ T

0

e−t
∫ t

0

e−(3T/2−s−t+log z)2/(2T )dsdt

= 2e(3T/2+log z)2/(2T )
√
T

∫ T

0

e−t
∫ −(log z)/

√
T− 3

2

√
T+2t/

√
T

−(log z)/
√
T− 3

2

√
T+t/

√
T

e−y
2/2dydt

= 2
√

2πTe(3T/2+log z)2/(2T )

∫ T

0

e−tΦ

(
− log z√

T
− 3

2

√
T +

2t√
T

)
dt
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−2
√

2πTe(3T/2+log z)2/(2T )

∫ T

0

e−tΦ

(
− log z√

T
− 3

2

√
T +

t√
T

)
dt.

By integration by parts we have∫ T

0

e−tΦ

(
− log z√

T
− 3

2

√
T +

2t√
T

)
dt =

√
2

πT

∫ T

0

e−t−(3T/2−2t+log z)2/(2T )dt

+Φ

(
− log z√

T
− 3

2

√
T

)
− e−TΦ

(
− log z√

T
+

1

2

√
T

)
=

√
2

πT

∫ T

0

e−(2t−T−log z)2/(2T )−(3T/2+log z)2/(2T )+(T+log z)2/(2T )dt

+Φ

(
− log z√

T
− 3

2

√
T

)
− e−TΦ

(
− log z√

T
+

1

2

√
T

)
= −e−TΦ

(
− log z√

T
+

1

2

√
T

)
+ Φ

(
− log z√

T
− 3

2

√
T

)
+
e−5T/8

√
z

(
Φ

(
− log z√

T
+
√
T

)
− Φ

(
− log z√

T
−
√
T

))
,

and similarly,∫ T

0

e−tΦ

(
− log z√

T
− 3

2

√
T +

t√
T

)
dt

= −e−TΦ

(
− log z√

T
− 1

2

√
T

)
+ Φ

(
− log z√

T
− 3

2

√
T

)
+

1√
2πT

∫ T

0

e−t−(3T/2−t+log z)2/(2T )dt

= −e−TΦ

(
− log z√

T
− 1

2

√
T

)
+ Φ

(
− log z√

T
− 3

2

√
T

)
+
e−T

z

(
Φ

(
− log z√

T
+

1

2

√
T

)
− Φ

(
− log z√

T
− 1

2

√
T

))
.

Consequently we have

E[(ΛT )2] = 2
√

2πT

(
Φ

(
log z√
T

+
√
T

)
− Φ

(
log z√
T
−
√
T

))
e(3T/2+log z)2/(2T )−5T/8−(log z)/2

−2
√

2πT

(
Φ

(
log z√
T

+
1

2

√
T

)
− Φ

(
log z√
T
− 1

2

√
T

))(
e(3T/2+log z)2/(2T )−T + e(T/2+log z)2/(2T )

)
= 2

√
2πT

(
Φ

(
log z√
T

+
√
T

)
− Φ

(
log z√
T
−
√
T

))
e(T+log z)2/(2T )

−2(1 + z)
√

2πTe(T/2+log z)2/(2T )

(
Φ

(
log z√
T

+
1

2

√
T

)
− Φ

(
log z√
T
− 1

2

√
T

))
,

which yields (3.7) by (2.3). �
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We close this section with the proof of the small time equivalents on the conditional

mean and variance of ΛT used for (4.8) above. Note that the Taylor series mean and

variance approximations of [5] can also serve as alternative estimates of E[ΛT | R0 =

x, RT = y] and Var[ΛT | R0 = x, RT = y] in small time.

Proposition 5.1 As T tends to zero we have

E[ΛT | R0 = x, RT = y] = T
y − x

log(y/x)
+ σ2T 2

(
x+ y

2(log(y/x))2
− y − x

(log(y/x))3

)
+ o(T 2),

(5.2)

and Var[ΛT | R0 = x, RT = y] = o(T 2).

Proof. By a scaling argument it suffices to take x = 1. We have

aT (z) =

√
T

σ
e(
√
σ2T/2+(log z)/

√
σ2T )2/2

∫ (log z)/
√
σ2T+

√
σ2T/2

(log z)/
√
σ2T−

√
σ2T/2

e−y
2/2dy

=
T

2
e(
√
σ2T/2+(log z)/

√
σ2T )2/2

∫ 1

−1

e
−( log z√

σ2T
+ y

2

√
σ2T )2/2

dy

=
T

2

∫ 1

−1

eσ
2T/8+(log z)/2−y2σ2T/8−(y log z)/2dy

=
T
√
z

2
eσ

2T/8

∫ 1

−1

e−y
2σ2T/8−(y log z)/2dy

' T
√
z

2

(
1 + σ2T/8

) ∫ 1

−1

e−(y log z)/2
(
1− y2σ2T/8

)
dy + o(T 2)

=
T
√
z

2

(
1 + σ2T/8

) ∫ 1

−1

e−(y log z)/2dy − σ2T 2

16
e(log z)/2

∫ 1

−1

e−(y log z)/2y2dy + o(T 2)

= T
√
z
(
1 + σ2T/8

) e(log z)/2 − e−(log z)/2

log z
− σ2T 2

16

√
z

∫ 1

−1

e−(y log z)/2y2dy + o(T 2)

= T
√
z
(
1 + σ2T/8

) √z − 1/
√
z

log z
− σ2T 2

16

√
z

∫ 1

−1

e−(y log z)/2y2dy + o(T 2)

=
(
T + σ2T 2/8

) z − 1

log z
− σ2T 2

16

√
z

∫ 1

−1

e−(y log z)/2y2dy + o(T 2).

Now we have

√
z

∫ 1

−1

e−(y log z)/2y2dy =
√
z

(∫ 1

0

e−(y log z)/2y2dy +

∫ 0

−1

e−(y log z)/2y2dy

)
=
√
z

(∫ 1

0

e−(y log z)/2y2dy +

∫ 1

0

e−(y log z−1)/2y2dy

)
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=
√
z

(
8

(log z)3

∫ (log z)/2

0

e−yy2dy − 8

(log z)3

∫ −(log z)/2

0

e−yy2dy

)

=
8

(log z)3

√
z

(∫ (log z)/2

0

e−yy2dy −
∫ −(log z)/2

0

e−yy2dy

)

=
8
√
z

(log z)3

(
2− z−1/2(((log z)/2)2 + log z + 2)− (2− z1/2(((log z)/2)2 − log z + 2))

)
= − 8

(log z)3

(
((log z)/2)2 + log z + 2− z((log z)/2)2 + z log z − 2z

)
= − 8

(log z)3

(
(1− z)((log z)/2)2 + (1 + z) log z + 2(1− z)

)
,

which also shows that

z

∫ 1

−1

e−y log zy2dy = − 1

(log z)3

(
(1− z2)(log z)2 + 2(1 + z2) log z + 2(1− z2)

)
.

Hence

aT (z) =
(
T + σ2T 2/8

) z − 1

log z
− σ2T 2

16

√
z

∫ 1

−1

e−(y log z)/2y2dy + o(T 2)

= T
z − 1

log z
+

σ2T 2

2(log z)3
((1 + z) log z + 2(1− z)) + o(T 2),

which yields (5.2). Next we have

bT (z) =

√
T

σ
e(
√
σ2T+(log z)/

√
σ2T)

2
/2

∫ (log z)/
√
σ2T+

√
σ2T

(log z)/
√
σ2T−

√
σ2T

e−y
2/2dy

= Te(
√
σ2T+(log z)/

√
σ2T)

2
/2

∫ 1

−1

e−((log z)/
√
σ2T+y

√
σ2T)

2
/2dy

= zTeσ
2T/2

∫ 1

−1

e−y
2σ2T/2−y log zdy

' zT

(
1 +

σ2T

2

)∫ 1

−1

(1− y2σ2T/2)e−y log zdy + o(T 2)

= zT

(
1 +

σ2T

2

)∫ 1

−1

e−y log zdy − σ2T 2z

2

∫ 1

−1

y2e−y log zdy + o(T 2)

= T

(
1 +

σ2T

2

)
z2 − 1

log z
− σ2T 2z

2

∫ 1

−1

y2e−y log zdy + o(T 2)

= T

(
1 +

σ2T

2

)
z2 − 1

log z
+

σ2T 2

2(log z)3

(
(1− z2)(log z)2 + 2(1 + z2) log z + 2(1− z2)

)
+ o(T 2)

= T
z2 − 1

log z
+

σ2T 2

(log z)3

(
(1 + z2) log z + 1− z2

)
+ o(T 2),
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hence

E[(ΛT )2 | R0 = x, RT = y] =
2x

σ2
(xbT (y/x)−(x+y)aT (y/x)) ' T 2 (y − x)2

(log(y/x))2
+o(T 2),

x, y > 0. �

Note that (5.2) above can be recovered intuitively at the first order as

E[ΛT | R0 = x, RT = y] = x

∫ T

0

e(t/T ) log(y/x)dt+ o(T ) = T
y − x
log z

+ o(T ).

Conclusion

In this article we give closed form integral expressions for the probability distribution

of the pathwise average of evolutionary rates, assuming a bridged geometric Brown-

ian model with diffusion parameter σ governing the time-dependent fluctuation of the

rate itself. The average substitution rate along a branch of a phylogeny whose length

corresponds to T calendar time units is then obtained by integrating over the Brown-

ian trajectories conditional on the rates at times 0 and T . Using these expressions we

have assessed the validity of the gamma approximation of the average rate distribu-

tion using a distribution fit based on closed form expressions of the first two moments.

Due to the oscillating behaviour of the function (3.2) involved in the expressions of the

exact probability density (3.3) and its Laplace transform (3.5), we observe numerical

precision issues when rate fluctuations are mild and/or the time intervals considered

are short (σ2T < 0.5 for both the conditional density (3.3) and the Laplace trans-

form (3.5)). In this situation, our results indicate that the distribution of the average

rate is well approximated by a gamma distribution, which is not hampered by numeri-

cal precision issues and therefore provides a relevant alternative to the exact approach.

When σ2T > 4, corresponding to stronger rate fluctuations and/or longer periods of

time, the gamma approximation is no longer accurate, as can be seen in Figure 6. In

such situations, the approximating distribution of the average rate along a branch is

gamma with a small shape parameter, i.e. with a large proportion of small average
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rates and few very large values, which is far from the actual density function. As a

result the limiting distribution of the transition probabilities between character states

(i.e., nucleotide, amino-acids or codons) in large time does not match the expected

limiting distribution, which is clearly not satisfactory, as illustrated in Figures 7 and 8.

Our experience with the analysis of real data sets suggests that σ2T is generally

smaller than 4. The gamma approximation is therefore likely to perform well in prac-

tice. To the best of our knowledge, the software PhyTime, part of the PhyML package

(see http://code.google.com/p/phyml) is the only one implementing the gamma ap-

proximation studied here. It is relatively straightforward to verify that the condition

σ2T < 4 is met from the output generated by this computer program. Future release

of this software will also implement the exact Laplace transform derived in Equa-

tion (3.5) as an alternative to the gamma approximation for large values of σ2T .

Acknowledgements

We thank two anynomous referees for useful comments.

References

[1] C. Albanese and S. Lawi. Laplace transforms for integrals of Markov processes. Markov Process.

Related Fields, 11(4):677–724, 2005.

[2] S. Aris-Brosou and Z. Yang. Effects of models of rate evolution on estimation of divergence dates

with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst. Biol., 51:703–714,

2002.

[3] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum likelihood approach. J.

Mol. Evol., 17:368–376, 1981.

[4] T. Gernhard. The conditioned reconstructed process. J. Theor. Biol., 253(4):769–778, 2008.

[5] S. Guindon. From trajectories to averages: an improved description of the heterogeneity of

substitution rates along lineages. Syst. Biol., 62(1):22–34, 2013.

[6] K. Ishiyama. Methods for evaluating density functions of exponential functionals represented as

integrals of geometric Brownian motion. Methodol. Comput. Appl. Probab., 7(3):271–283, 2005.

[7] S. Karlin and H.M Taylor. A Second Course in Stochastic Processes. Academic Press Inc., New

York, 1981.

[8] J. F. C. Kingman. The coalescent. Stochastic Process. Appl., 13:235–248, 1982.

24



[9] H. Kishino and M. Hasegawa. Converting distance to time: application to human evolution.

Meth. Enzymol., 183:550–570, 1989.

[10] H. Kishino, J.L. Thorne, and W.J. Bruno. Performance of a divergence time estimation method

under a probabilistic model of rate evolution. Mol. Biol. Evol., 18(3):352–361, 2001.

[11] S. Kumar. Molecular clocks: four decades of evolution. Nat. Rev. Genet., 6(8):654–662, 2005.

[12] T. Lepage, D. Bryant, H. Philippe, and N. Lartillot. A general comparison of relaxed molecular

clock models. Mol. Biol. Evol., 24:2669–2680, 2007.

[13] T. Lepage, S. Lawi, P. Tupper, and D. Bryant. Continuous and tractable models for the variation

of evolutionary rates. Math. Biosci., 199:216–233, 2006.

[14] H. Matsumoto and M. Yor. Exponential functionals of Brownian motion. I. Probability laws at

fixed time. Probab. Surv., 2:312–347 (electronic), 2005.

[15] S. Nee, R. May, and P. Harvey. The reconstructed evolutionary process. Phil. Trans. R. Soc.

B, 344(1309):305–311, 1994.

[16] T. Ohta and M. Kimura. On the constancy of the evolutionary rate of cistrons. J. Mol. Evol.,

1(1):18–25, 1971.

[17] N. Privault and W.T. Uy. Monte Carlo computation of the Laplace transform of exponential

Brownian functionals. Methodol. Comput. Appl. Probab., 15(3):511–524, 2013.

[18] B. Rannala and Z. Yang. Inferring speciation times under an episodic molecular clock. Syst.

Biol., 56:453–466, Jun 2007.

[19] M. Sanderson. A nonparametric approach to estimating divergence times in the absence of rate

constancy. Mol. Biol. Evol., 14:1218–1231, 1997.

[20] V. Sarich and A. Wilson. Immunological time scale for hominid evolution. Science, 158:1200–

1203, 1967.

[21] E. A. Thompson. Human evolutionary trees. CUP Archive, 1975.

[22] J. Thorne, H. Kishino, and I. Painter. Estimating the rate of evolution of the rate of molecular

evolution. Mol. Biol. Evol., 15:1647–1657, 1998.

[23] C. Tuffley and M. Steel. Modeling the covarion hypothesis of nucleotide substitution. Math.

Biosci., 147(1):63–91, 1998.

[24] G. N. Watson. A treatise on the theory of Bessel functions. Cambridge University Press,

Cambridge, 1995. Reprint of the second (1944) edition.

[25] M. Yor. On some exponential functionals of Brownian motion. Adv. in Appl. Probab., 24(3):509–

531, 1992.

[26] E. Zuckerkandl and L. Pauling. Molecular disease, evolution, and genic heterogeneity. In

M. Kasha and B. Pullman, editors, Horizons in Biochemistry, pages 189–225. Elsevier, Ams-

terdam, 1962.

25



6 Addendum - error bounds in the Wasserstein

distance

In this section we present some bounds for the error generated by the gamma approxi-

mation, based on the Malliavin calculus and the Stein method. Although no numerical

estimates are deduced, this provides a link with recent research on Wasserstein type

distance estimates between probability distributions based on the Malliavin calculus,

cf. [NP09], [PT13] and references therein. Recall that letting

I1(f) =

∫ T

0

f(t)dWt

denote the first order integral of f ∈ L2([0, T ]) with respect to Brownian motion, the

Malliavin gradient is the operator Dt defined as

DtF =
n∑
k=1

fk(t)
∂g

∂xk
(I1(f1), . . . , I1(fn)), t ∈ [0, T ],

where the random variable F has the form F = g(I1(f1), . . . , I1(fn)), the function

g is in the space C1([0, T ]n) of continuously differentiable functions on [0, T ]n, and

f1, . . . , fn ∈ L2([0, T ]), n ≥ 1. We denote by (Ft)t∈[0,T ] the filtration generated by the

Brownian motion (Wt)t∈[0,T ] built on the Wiener space W as the coordinate process

Wt(ω) = ω(t), ω ∈ W , cf. Chapter 1 of [Üst95]. Recall also that the inverse (−L)−1

of the Ornstein-Uhlenbeck operator −L can be defined as

(−L)−1(F (ω)− E[F ]) =

∫ 1

0

E[F (aω +
√

1− a2ω̃) | ω]da

for F ∈ L2(Ω) with E[F ] = 0, where ω̃ denotes an independent copy of the ω on the

Wiener space, cf. § 1.2 of [Üst95], [NP09], and § 5.3 of [Pri09] for details.

We consider the Wasserstein type distance

d(X, Y ) := sup
h∈H
|E[h(X)]− E[h(Y )]|, (6.1)

where

H := {h ∈ C2
b (IR) : max{‖h‖∞, ‖h′‖∞, ‖h′′‖∞} ≤ 1}.
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From Theorem 3.1 of [NP09] the distance between the law of ΛT and the gamma-

(β(z), η(z)) distribution Γβ,η can be bounded as

d(ΛT ,Γz) ≤ K
√
E[(2η(z)ΛT − 〈DΛT , D(−L)−1(ΛT − E[ΛT ])〉)2],

for K > 0 a constant, while by Corollary 3.4 of [PT13] we have

d(ΛT ,Γz) ≤ K
√
E[(2η(z)ΛT − 〈D·ΛT , E[D·ΛT | F·]〉)2]. (6.2)

Next, in Propositions 6.1 and 6.2 below we show how the quantities

〈DΛT ,−DL−1(ΛT − E[ΛT ])〉 = −
∫ T

0

DtΛTDtL
−1(ΛT − E[ΛT ])dt

and

〈D·ΛT , E[D·ΛT | F·]〉 =

∫ T

0

DtΛTE[DtΛT | Ft]dt

appearing in (6.2) can be computed.

Proposition 6.1 For all T > 0 we have

〈D·ΛT , E[D·ΛT | F·]〉 =

∫ T

0

∫ T

0

eσWs−pσ2(s+t)/2

∫ s∧t

0

eσWu+σ2(T−u)/2dudsdt. (6.3)

Proof. We have

Dte
I1(f) = f(t)eI1(f),

and

E[Dte
I1(g) | Ft] = g(t)E[eI1(g) | Ft]

= g(t)e
∫ T
0 g2(s)ds/2E[eI1(g)−

∫ T
0 g2(s)ds/2 | Ft]

= g(t)e
∫ T
0 g2(s)ds/2e

∫ t
0 g(s)dWs−

∫ t
0 g

2(s)ds/2

= g(t)e
∫ t
0 g(s)dWs+

∫ T
t g2(s)ds/2.

This yields

〈D·eI1(f), E[D·e
I1(g) | F·]〉 = eI1(f)

∫ T

0

f(u)g(u)e
∫ u
0 g(s)dWs+

∫ T
u g2(s)ds/2du, (6.4)

which yields (6.3) by taking f = σ1[0,s] and g = σ1[0,u]. �
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Under conditioning we write

Rt = x(y/x)t/T eσUt = x(y/x)t/T eσ(Wt−tWT /T ),

where

Ut := Wt −
t

T
WT , t ∈ [0, T ],

is a standard Brownian bridge with U0 = UT = 0. For a ≤ b we have

Cov(Ua, Ub) =
a (t− b)

t
, (6.5)

which yields

E[Vs] = v0 +
(vt − v0)

t
s,

and

Var[Vs] =
σ2s (t− s)

t
,

where Vs := logRs. Taking

f = σ
(
(1− s/T )1[0,s] − (s/T )1[s,T ]

)
and g = σ

(
(1− t/T )1[0,t] − (t/T )1[t,T ]

)
in (6.4) yields

〈D·eσ(Ws−(s/T )WT ), E[D·e
σ(Wt−tWT /T ) | F·]〉

= eσ(Ws−(s/T )WT )

∫ T

0

f(u)g(u)e
∫ u
0 g(s)dWs+

∫ T
u g2(s)ds/2du

= eσ(Ws−(s/T )WT )

∫ T

0

((
1− s

T

)
1[0,s](u)− (s/T )1[s,T ](u)

)
×
((

1− t

T

)
1[0,t](u)− t

T
1[t,T ](u)

)
e
∫ u
0 g(s)dWs+

∫ T
u g2(s)ds/2du

= eσ(Ws−(s/T )WT )(1− s/T )(1− t/T )

∫ s∧t

0

e(1−t/T )Wu+(1−t/T )2(t−u)/2+(T−t)(t/T )2/2du

+eσ(Ws−(s/T )WT )(s/T )(t/T )

∫ T

s∨t
e(t/T )(WT−Wu)+(t/T )2(T−u)/2du

−1{s<t}eσ(Ws−(s/T )WT )(1− s/T )(t/T )

∫ t

s

e(1−t/T )Wu+(1−t/T )2(t−u)/2du

−1{s>t}eσ(Ws−(s/T )WT )(1− t/T )(s/T )

∫ s

t

e(t/T )Wu+(t/T )2(T−u)/2du.

As for (6.2) we have the following result in the unconditional case.
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Proposition 6.2 For all T > 0 we have

〈D·ΛT , E[D·ΛT | F·]〉 =

∫ T

0

∫ T

0

s ∧ t
t
e−p(s+t)σ

2/2eσWs+σ2t/2

×

(
1− eσWt−σ2t/2 +

√
2π

t
Wte

W 2
t /(2t)

(
Φ
(
Wt/
√
t
)
− Φ

(
Wt/
√
t− σ

√
t
)))

dsdt.

Proof. Letting g ∈ L2([0, T ]) and ν2 =
∫ T

0
g2(s)ds > 0, we find

(−L)−1(eI1(g) − E[eI1(g)]) =

∫ 1

0

E[eaI1(g)+
√

1−a2I′1(g) | I1(g)]da

=

∫ 1

0

eaI1(g)+(1−a2)ν2/2da

= eν
2/2

∫ 1

0

eaI1(g)−a2ν2/2da

= eν
2/2e(I1(g))2/ν2/2

∫ 1

0

e−(I1(g)/ν−aν)2/2da

=
1

ν
eν

2/2e(I1(g))2/ν2/2

∫ ν−I1(g)/ν

−I1(g)/ν

e−a
2/2da

=

√
2π

ν
eν

2/2e(I1(g))2/ν2/2 (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν)) ,

and

Dt(−L)−1(eI1(g) − E[eI1(g)]) =

√
2π

ν
eν

2/2Dt

(
e(I1(g))2/ν2/2 (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν))

)
=

√
2π

ν
eν

2/2e(I1(g))2/ν2/2Dt (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν))

+

√
2π

ν
eν

2/2 (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν))Dte
(I1(g))2/ν2/2

=
1

ν2
g(t)eν

2/2e(I1(g))2/ν2/2
(
e−(I1(g)/ν)2/2 − e−(I1(g)/ν−ν)2/2

)
+

√
2π

ν3
eν

2/2e(I1(g))2/ν2/2 (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν)) g(t)I1(g)

=
1

ν2
g(t)eν

2/2
(

1− eI1(g)−ν2/2
)

+

√
2π

ν3
eν

2/2g(t)I1(g)e(I1(g))2/ν2/2 (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν))

=
g(t)

ν2

(
eν

2/2 − eI1(g)
)

+

√
2π

ν3
eν

2/2g(t)I1(g)e(I1(g))2/ν2/2 (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν)) .
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Hence, for any f ∈ L2([0, T ]) we have

〈DeI1(f), D(−L)−1(eI1(g) − E[eI1(g)])〉

= eI1(f)+ν2/2 〈f, g〉
ν2

(
1− eI1(g)−ν2/2 +

√
2π
I1(g)

ν
e(I1(g))2/(2ν2) (Φ (I1(g)/ν)− Φ (I1(g)/ν − ν))

)
,

which, taking f = σ1[0,s], g = σ1[0,u], and ν2 =
∫ T

0
g2(s)ds = σ2t, gives

〈DeσWs−pσ2s/2, D(−L)−1(eσWt−pσ2t/2 − E[eσWt−pσ2t/2])〉 (6.6)

=
s ∧ t
t
e−p(s+t)σ

2/2eσWs+σ2t/2

×

(
1− eσWt−σ2t/2 +

√
2π

t
Wte

W 2
t /(2t)

(
Φ
(
Wt/
√
t
)
− Φ

(
Wt/
√
t− σ

√
t
)))

,

and yields (6.6) by integration in (s, t) ∈ [0, T ]× [0, T ]. �
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