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Abstract

Using heat kernel estimates obtained in [18] and the Feynman-Kac formula,
we investigate finite-time blow-up and stability of semilinear partial differential
equations of the form ∂wt

∂t (x) = ∆wt(x)−V (x)wt(x)+vt(x)G(wt(x)), w0(x) ≥ 0,
x ∈ Rd, where v and G are positive measurable functions subject to certain
growth conditions, and V is a positive bounded potential. We recover the
results of [19] and [14] by probabilistic arguments and in the quadratic decay
case V (x) ∼+∞ a(1+ |x|2)−1, a > 0, we find two critical exponents β∗(a), β∗(a)
with 0 < β∗(a) ≤ β∗(a) < 2/d, such that any nontrivial positive solution blows
up in finite time if 0 < β < β∗(a), whereas if β∗(a) < β, then nontrivial positive
global solutions may exist.
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1 Introduction

Consider a semilinear Cauchy problem of the form

∂ut
∂t

(x) = Aut(x) + u1+βt (x), u0(x) = ϕ(x), x ∈ Rd, (1.1)

where β > 0 is constant, ϕ ≥ 0 is bounded and measurable, and A is the generator of a

strong Markov process in Rd. It is well known that, for any non-trivial initial value ϕ,

there exists a number Tϕ ∈ (0,∞] such that (1.1) has a unique mild solution u which

is bounded on [0, T ]×Rd for any 0 < T < Tϕ, and if Tϕ <∞, then ‖ut(·)‖∞ →∞ as

t ↑ Tϕ. When Tϕ = ∞ the function u is called a global solution of (1.1), and when

Tϕ <∞ one says that u blows up in finite time or that u is nonglobal.

The blow-up behaviors of semilinear equations of the above type have been in-

tensely studied mainly in the analytic literature; see [1, 3, 7, 12, 13] for surveys. In
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the case of the fractional power A = −(−∆)α/2 of the Laplacian, 0 < α ≤ 2, it has

been proved that, for d ≤ α/β, any nontrivial positive solution of (1.1) is nonglobal,

whereas if d > α/β, then the solution of (1.1) is global provided the initial value

satisfies ϕ ≤ γGα
r for some r > 0 and some sufficiently small constant γ > 0, where

Gα
r , r > 0, are the transition densities of the stable motion with generator −(−∆)α/2,

see [2, 4, 10, 11, 15].

Critical exponents for blow-up of the semilinear equation

∂ut
∂t

(x) = ∆ut(x)− V (x)ut(x) + u1+βt (x), u0(x) = ϕ(x), x ∈ Rd, (1.2)

where ϕ ≥ 0 and V is a bounded potential, have been studied in [14, 18, 19], where

it is proved that if d ≥ 3 and

0 ≤ V (x) ≤ a

1 + |x|b
, x ∈ Rd, (1.3)

for some a > 0 and b ∈ [2,∞), then b > 2 implies finite time blow-up of (1.2) for

all 0 < β < 2/d, whereas if b = 2, then there exists β∗(a) < 2/d such that blow-up

occurs if 0 < β < β∗(a). It is also proved that if

V (x) ≥ a

1 + |x|b
, x ∈ Rd, (1.4)

for some a > 0 and 0 ≤ b < 2, then (1.2) admits a global solution for all β > 0 and

all non-negative initial values satisfying ϕ(x) ≤ c/(1 + |x|σ) for a sufficiently small

constant c > 0 and all σ obeying σ ≥ b/β.

In this note we give conditions for finite time blow-up and for existence of non-

trivial global solutions of the semilinear problem

∂ut
∂t

(x) = ∆ut(x)− V (x)ut(x) + vt(x)G(ut(x)), u0(x) = ϕ(x), x ∈ Rd, (1.5)

where V , ϕ are as above, and v, G are positive measurable function subject to certain

growth conditions. Using heat kernel estimates obtained in [18] and the Feynman-

Kac representation of (1.5) we prove that, for dimensions d ≥ 3, condition (1.3) with

b > 2 entails finite time blow-up of any nontrivial positive solution of (1.5) provided

G(z) ≥ κz1+β, z > 0 and vt(x) ≥ tζ1B
t1/2

(x), (x, t) ∈ Rd × R+,

where κ > 0 and β, ζ are positive constants satisfying 0 < β < 2(1 + ζ)/d. (Here and

in the sequel, Br(x) denotes the open ball of radius r centered at x).
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We also prove that Eq. (1.5) admits nontrivial global solutions if (1.4) holds with

b < 2 and vt(x)G(z) ≤ κtζz1+β, t ≥ 0, z ≥ 0, for some positive constants κ, ζ and β.

As to the critical value b = 2, we investigate Equation (1.2) with a potential

satisfying either (1.3) or (1.4), and with more general nonlinearities. We prove that,

in dimensions d ≥ 3, there exist critical exponents β∗(a), β∗(a), both decreasing in

a > 0, given by

0 < β∗(a) :=
2(1 + ζ)− 4ac

d+ 2ac
≤ β∗(a) :=

2(1 + ζ)

d+ min(1, a(d+ 4)−2/64)
<

2(1 + ζ)

d
,

where c > 0 is independent of a, and such that

a) If 0 ≤ V (x) ≤ a

1 + |x|2
, then (1.2) blows up in finite time provided 0 < β < β∗(a).

b) If V (x) ≥ a

1 + |x|2
, then (1.2) admits a global solution for all β > β∗(a).

We remark that the blow-up behavior of (1.2) with potentials of the class we are

considering here remains unknown when β∗(a) ≤ β ≤ β∗(a), but notice that in the

(unbounded) case V (x) = a|x|−2, it can be deduced from [1], [8] and [5] that (1.2)

admits a unique critical exponent β(a) < 2/d, given by

β(a) =
2

1 + d/2 +
√
a+ (d− 2)2/4

.

Namely, if V (x) = a|x|−2, then no global nontrivial solution of (1.2) exists if β < β(a),

whereas global solutions exist if β(a) < β. However, the approaches of the papers

quoted above are specially suitable for the potential V (x) = a|x|−2 and do not apply

to our potentials, which are bounded on Rd in the subcritical case.

In the case of the one-dimensional equation

∂ut
∂t

(x) = −(−∆)α/2ut(x)−V (x)ut(x)+κtζG(ut(x)), u0(x) = ϕ(x), x ∈ R, (1.6)

where G(z) satisfies a suitable growth condition with respect to z1+β, we show that,

for every α ∈ (1, 2] and ζ ≥ 0, any nontrivial solution of (1.6) blows up in finite

time whenever 0 < β < 1 + αζ and V : R → R+ is integrable. The same happens

when β = 1 + αζ and the L1-norm of V is sufficiently small. We were not able to

investigate here the blow-up properties of (1.6) in the general case d ≥ 1. From the

perspective of our present methods, such investigation requires to derive sharp heat

kernel estimates for the operator ∆α − V , which is a topic of current research.
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Let us remark that the heat kernel bounds from [18] play a major role in our

arguments. In Section 2 we briefly recall such estimates, and derive some other ones

that we will need in the sequel. These estimates are used to obtain semigroup bounds

in Section 3. In Section 4 we investigate finite time blow-up of solutions using the

Feynman-Kac approach developed in [2] (see also [9]). Section 5 is devoted to proving

results on existence of global solutions.

We end this section by introducing some notations and basic facts we shall need.

Let ∆α = −(−∆)α/2 denote the fractional power of the d-dimensional Laplacian,

0 < α ≤ 2. We write (Sαt )t≥0 for the semigroup generated by ∆α − V , i.e.

Sαt ϕ(y) =

∫
Rd
ϕ(x)pαt (x, y)dx = ft(y),

where ft denotes the solution of

∂ft
∂t

(x) = ∆αft(x)− V (x)ft(x), f0(x) = ϕ(x),

and pαt (x, y), t > 0, are the transition densities of the Markov process in Rd having

∆α − V as its generator. Recall that from the Feynman-Kac formula we have

pαt (x, y) = Gα
t (x− y)Ex

[
exp

(
−
∫ t

0

V (Wα
s ) ds

) ∣∣∣Wα
t = y

]
, (1.7)

where (Wα
s )s∈R+ is a symmetric α-stable motion, and Gα

t , t > 0 are the corresponding

α-stable transition densities. In case α = 2 we will omit the index α and write

Gt(x) =
1

(4πt)d/2
e−
|x|2
4t , x ∈ Rd, t > 0,

for the standard Gaussian kernel, and

pt(x, y) = Gt(x− y)Ex

[
exp

(
−
∫ t

0

V (Ws) ds

) ∣∣∣Wt = y

]
, t > 0,

where (Ws)s∈R+ is a Brownian motion.

2 Heat kernel bounds of ∆− V

Recall that from Theorem 1.1 in [18] we have:

Theorem 2.1 Let d ≥ 3, b ≥ 0, a > 0, and assume that

V (x) ≥ a

1 + |x|b
, x ∈ Rd.
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There exist constants c1, c2, c3 > 0, and α1(a) > 0, such that for all x, y ∈ Rd and

t > 0 there holds

pt(x, y) ≤



c2Gt(c3(x− y)) exp

(
−c1

(
t1/2

1+|x|b/2

)1−b/2
− c1

(
t1/2

1+|y|b/2

)1−b/2)
if b < 2,

c2Gt(c3(x− y)) max
(

t1/2

1+|x| , 1
)−α1(a)

max
(
t1/2

1+|y| , 1
)−α1(a)

if b = 2,

c2Gt(c3(x− y)) if b > 2.

We also recall the following estimates, cf. Theorem 1.2 in [18].

Theorem 2.2 Let d ≥ 3 and assume that, for some b ≥ 0 and a > 0,

0 ≤ V (x) ≤ a

1 + |x|b
, x ∈ Rd. (2.1)

There exist constants c4, c5, c6 > 0, and α2(a) > 0, such that for all t > 0 and

x, y ∈ Rd there holds

pt(x, y) ≥


c6e
−2c5tGt(c4(x− y)) if b < 2,

c6t
−α2(a)Gt(c4(x− y)) if b = 2,

c6Gt(c4(x− y)) if b > 2.

Remark 2.3 Notice that from Proposition 2.1 of [17] we have

α1(a) = min(1, a(d+ 4)−2/64), a > 0.

Moreover, from the arguments in [18], pp. 391-392, it follows that α2 = ca for some

c > 0 independent of a.

Let Br ⊂ Rd denote the open ball of radius r > 0, centered at the origin. Notice that,

under (2.1), Lemma 4.5 and Lemma 5.1 of [18] imply the more precise statement: for

t ≥ 1 and x, y ∈ Rd,

pt(x, y) ≥


c6e
−2c5t1B

a1t
1/2

(x)1B
a1t

1/2
(y), if 0 ≤ b < 2,

c6t
−α2(a)−d/21B

a2t
1/2

(x)1B
a2t

1/2
(y), if b = 2,

where c5, c6, a1, a2 are positive constants and α2(a) = ca is a linear function of a.

We complete the above results with the following estimate, which yields an exten-

sion of Theorem 2.2 to the case α ∈ (1, 2], though only in dimension d = 1.
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Theorem 2.4 Let d = 1 and α ∈ (1, 2], and assume that V (x) is integrable on R.

Then, for all x, y ∈ R,

pαt (x, y) ≥ e−Ct
1−1/α

Gα
t (x− y)1B

t1/α
(x)1B

t1/α
(y), t > 0, (2.2)

where C > 0 is a constant.

Proof. Using (1.7) and Jensen’s inequality we have

pαt (x, y) ≥ Gα
t (x− y) exp

(
−Ex

[∫ t

0

V (Wα
s ) ds

∣∣∣Wα
t = y

])
.

From the scaling property of stable densities we obtain, for y ∈ Bt1/α and x ∈ Bt1/α ,

Gα
s (z − x)Gα

t−s(z − y)

Gα
t (y − x)

=
s−1/α(t− s)−1/αGα

1 (s−1/α(z − x))Gα
1 ((t− s)−1/α(z − y))

t−1/αGα
1 (t−1/α(y − x))

≤ Cα
s−1/α(t− s)−1/α

t−1/α
, 0 < s < t,

for some Cα > 0. Hence

Ex

[∫ t

0

V (Wα
s ) ds

∣∣∣Wα
t = y

]
=

∫
R

∫ t

0

V (z)
Gα
s (z − x)Gα

t−s(z − y)

Gα
t (y − x)

dz ds

≤ Cα

∫
R
V (z) dz

∫ t

0

s−1/α(t− s)−1/α

t−1/α
ds

= Cαt
1−1/α

∫
R
V (z) dz

∫ 1

0

s−1/α(1− s)−1/α ds. (2.3)

�

3 Semigroup bounds

In this section we establish some bounds for the semigroup (St)t∈R+ of generator

∆− V . The following proposition will be used in the proof of Theorem 5.2.

Proposition 3.1 Let a1, a2, σ > 0 and 0 ≤ b ≤ 2, and assume that

V (x) ≥ a1
1 + |x|b

and 0 ≤ ϕ(x) ≤ a2
1 + |x|σ

, x ∈ Rd.

i) If b < 2 then for all ε ∈ (0, 1) we have

‖Stϕ‖∞ ≤ cεt
−σ(1−ε)/b, t > 0,

for some cε > 0.
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ii) If b = 2 then for all ε ∈ (0, 1) there exists cε > 0 such that

‖Stϕ‖∞ ≤ cεt
−(1−ε)α1(a1)−d/2, t > 0,

provided σ > d.

Proof. i) If b < 2, applying Theorem 2.1 we obtain

Stϕ(y) =

∫
Rd
ϕ(x)pt(x, y)dx

≤ c2

∫
Rd
ϕ(x) exp

(
−c1

(
t1/2

1 + |x|b/2

)1−b/2)
Gt(c3(x− y))dx

≤ c2 exp

(
−c1

(
t1/2

1 + t(1−ε)/2

)1−b/2)∫
{|x|≤t(1−ε)/b}

ϕ(x)Gt(c3(x− y))dx

+c2

∫
{|x|>t(1−ε)/b}

ϕ(x)Gt(c3(x− y))dx,

hence

Stϕ(y) ≤ a2 exp

(
−c1

(
t1/2

1 + t(1−ε)/2

)1−b/2)
+

a2c2
1 + t(1−ε)σ/b

.

ii) Let now b = 2 and ε ∈ (0, 1). From Theorem 2.1 we know that

Stϕ(y) ≤ c2

∫
ϕ(x) max

(
t1/2

1 + |x|
, 1

)−α1(a1)

max

(
t1/2

1 + |y|
, 1

)−α1(a1)

Gt(c3(x− y))dx

≤ c2

∫
{|x|<tε/2}

ϕ(x) max

(
t1/2

1 + |x|
, 1

)−α1(a1)

Gt(c3(x− y))dx

+c2

∫
{|x|>tε/2}

ϕ(x) max

(
t1/2

1 + |x|
, 1

)−α1(a1)

Gt(c3(x− y))dx

≤ c2

∫
{|x|<tε/2}

ϕ(x)

(
t1/2

1 + tε/2

)−α1(a1)

Gt(c3(x− y))dx+ c2

∫
{|x|>tε/2}

ϕ(x)Gt(c3(x− y))dx

≤ c2t
−(1−ε)α1(a1)/2

∫
{|x|<tε/2}

ϕ(x)Gt(c3(x− y))dx+
c2

(4π)d/2
t−d/2

∫
{|x|>tε/2}

ϕ(x)dx

≤ c2
(4π)d/2

t−(1−ε)α1(a1)/2−d/2
∫
{|x|<tε/2}

ϕ(x)dx+ c7t
−(σ−d)ε/2−d/2.

Hence for some cε > 0 we have

Stϕ(y) ≤ cεt
−(1−ε)α1(a1)/2−d/2, y ∈ Rd, t > 1,

provided (1− ε)α1(a1) ≤ (σ − d)ε. �
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The following lemma will be used in the proof of Theorem 4.1.

Lemma 3.2 Let d ≥ 3, b ≥ 2, and let ϕ : Rd → R+ be bounded and measurable.

Assume that

0 ≤ V (x) ≤ a

1 + |x|b
.

Then, for all t ≥ 1 and y ∈ Rd we have

Stϕ(y) ≥ c0t
−α2−d/21B

t1/2
(y)

∫
B
t1/2

ϕ(x) dx,

where α2 = 0 if b > 2, and α2(a) = ca for some c > 0 when b = 2.

Proof. Let y ∈ Bt1/2 . Due to Theorem 2.2 and self-similarity of Gaussian densities

we have

Stϕ(y) =

∫
Rd
ϕ(x)pt(x, y) dx

≥ c2t
−α2(a)

∫
B
t1/2

ϕ(x)Gt(c4(x− y)) dx

≥ c2t
−α2(a)−d/2

∫
B
t1/2

ϕ(x)G1(c4t
−1/2(x− y)) dx

≥ c0t
−α2(a)−d/2

∫
B
t1/2

ϕ(x) dx.

�

The next lemma, which will be needed in the proof of Theorem 4.1 below, provides

lower bounds on certain balls for the distributions of the bridges of the Markov process

(Xt)t∈R+ generated by ∆− V .

Lemma 3.3 Assume that d ≥ 3 and let (Xt)t∈R+ denote the Markov process with

generator ∆− V . If for some b ≥ 2,

0 ≤ V (x) ≤ a

1 + |x|b
, x ∈ Rd,

Then there exists c8 > 0 such that for all t ≥ 2, y ∈ Bt1/2, x ∈ B1 and s ∈ [1, t/2],

Px(Xs ∈ Bs1/2 | Xt = y) ≥ c8t
−2α2(a),

where α2(a) = 0 when b > 2 and α2(a) = ca when b = 2.
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Proof. Since V (x) ≥ 0, the Feynman-Kac formula (1.7) yields pt(x, y) ≤ Gt(y − x),

t > 0, x, y ∈ Rd. An application of Theorem 2.2 and of the Markov property of

(Xs)s∈R+ give

Px(Xs ∈ Bs1/2 | Xt = y) ≥
∫
B
s1/2

pt−s(y, z)ps(z, x)

pt(y, x)
dz

=
1

c26s
α2(a)(t− s)α2(a)

∫
B
s1/2

Gt−s(c4(y − z))Gs(c4(z − x))

Gt(c4(y − x))
dz

≥ c8t
−2α2(a),

where we used Lemma 2.2 of [2] to obtain the last inequality. �

We conclude this section with the following lemma, which will be used in the proof

of Theorem 5.2.

Lemma 3.4 Let d ≥ 3 and V (x) ≥ 0, x ∈ Rd. Assume that

V (x) ≥ a

1 + |x|b

holds for all |x| greater than some r0 > 0, where a > 0 and 0 ≤ b < 2. There exists

γ > 0 such that for all bounded measurable D ⊂ Rd,

St1D(x) ≤ cDt
−(1+γ), x ∈ Rd, (3.1)

for all sufficiently large t, where cD does not depend on x and t.

Proof. By Theorem 2.1 we have

pt(x, y) ≤ c2Gt(c3(x− y)) exp

(
−c1

((
t

1 + |x|b

)c4
+

(
t

1 + |y|b

)c4))
(3.2)

for certain constants c1, c2, c3, c4 > 0. Condition (3.1) is obviously fulfilled for any

positive γ if b = 0, hence let us assume that 0 < b < 2. For any bounded measurable

D ⊂ Rd we have, provided t > ‖D‖2 := supy∈D ‖y‖2,

St1D(x) ≤ c2

∫
D

Gt(c3(x− y))e
−c
(

t

1+|y|b

)c4
dy

≤ c2
(4πt)d/2

∫
D

dy

≤ cDt
−(1+γ),

with γ = (d− 2)/2 > 0. �
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4 Explosion in subcritical dimensions

Recall that if ut, vt respectively solve

∂ut
∂t

(y) = ∆ut(y) + ζt(y)ut(y),
∂vt
∂t

(y) = ∆vt(y) + ξt(y)vt(y),

with u0 ≥ v0 and ζt ≥ ξt for all t ≥ 0, then ut ≥ vt, t ≥ 0. In particular, if ϕ ≥ 0 is

bounded and measurable, and if ut is a subsolution of

∂wt
∂t

(y) = ∆wt(y) + κw1+β
t (y), w0 = ϕ, (4.1)

where κ, β > 0, then any solution of

∂vt
∂t

(y) = ∆vt(y) + κuβt (y)vt(y), v0 = ϕ,

remains a subsolution of (4.1).

Theorem 4.1 Let d ≥ 3, b ≥ 2, β > 0 and a > 0, and assume that

0 ≤ V (x) ≤ a

1 + |x|b
, x ∈ Rd.

Let G : R+ → R+ be such that

G(z)

z
≥ κzβ, z > 0, (4.2)

for some κ > 0. Let v : R+ × Rd → R+ be a measurable function satisfying

vt(x) ≥ tζ1B
t1/2

(x) (4.3)

for some ζ > 0. Consider the semilinear equation

∂ut(x)

∂t
= ∆ut(x)− V (x)ut(x) + vt(x)G(ut(x)), u0(x) = ϕ(x), x ∈ Rd, (4.4)

where ϕ ≥ 0 is bounded and measurable.

a) If b > 2 and

0 < β <
2(1 + ζ)

d
,

then any nontrivial positive solution of (4.4) blows up in finite time.
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b) If b = 2 and

0 < β < β∗(a) :=
1 + ζ − 2ac

ac+ d/2
<

2(1 + ζ)

d
,

where 2ac < 1+ζ and c > 0 is given in Remark 2.3, then any nontrivial positive

solution of (4.4) blows up in finite time.

Proof. Let gt denote the mild solution of

∂gt
∂t

(x) = ∆gt(x)− V (x)gt(x) + vt(x)
G(ft(x))

ft(x)
gt(x), g0(x) = ϕ(x),

where ft = Stϕ satisfies

∂ft
∂t

(x) = ∆ft(x)− V (x)ft(x), f0(x) = ϕ(x).

By the Feynman-Kac formula (1.7) we have

gt(y) =

∫
Rd
ϕ(x)pt(x, y)Ex

[
exp

∫ t

0

vs(Xs)
G(fs(Xs))

fs(Xs)
ds

∣∣∣∣Xt = y

]
dx.

Let α2(a) = 0 if b > 2, and α2(a) = ca if b = 2. Then, for y ∈ Bt1/2 , and for certain

positive constants K1, K2, K3, we have by Lemma 3.2 that

gt(y) ≥
∫
Rd
ϕ(x)pt(x, y)Ex

[
expK1

∫ t

0

vs(Xs)(fs(Xs))
βds

∣∣∣∣Xt = y

]
dx

≥
∫
Rd
ϕ(x)pt(x, y)Ex

[
exp

∫ t/2

1

K2s
ζ−dβ/2−βα2(a)1B

s1/2
(Xs) ds

∣∣∣∣∣Xt = y

]
dx

≥
∫
Rd
ϕ(x)pt(x, y) exp

(
K2

∫ t/2

1

sζ−dβ/2−βα2(a)Px (Xs ∈ Bs1/2|Xt = y) ds

)
dx

≥
∫
Rd
ϕ(x)pt(x, y) exp

(
K3t

−2α2(a)

∫ t/2

1

sζ−dβ/2−βα2(a) ds

)
dx

≥
∫
Rd
ϕ(x)pt(x, y)dx exp

(
K4t

ζ−dβ/2−(β+2)α2(a)+1
)
,

where we used Lemma 3.3 to obtain the fourth inequality. The above argument shows

that g eventually grows to +∞ uniformly on the unit ball B1 provided

ζ − dβ/2− (β + 2)α2(a) > −1.

This condition is satisfied for all 0 < β < 2(1+ζ)/d if b > 2, and for all 0 < β < β∗(a)

if b = 2. Since g is subsolution of (4.4), the comparison result recalled at the beginning

of this section shows that the solution ut of (4.4) also grows to +∞ uniformly on B1.

11



A well-known argument [6] involving Condition (4.2) then shows blow-up of (4.4). For

the sake of completeness we include this argument here. Given t0 ≥ 1, let ũt = ut+t0

and K(t0) = infx∈B1 ut0(x). The mild solution of (4.4) is given by

ũt(x) =

∫
Rd
pt(x, y)ũ0(y) dy +

∫ t

0

∫
Rd
pt−s(x, y)vs+t0(y)G(ũs(y)) dy ds.

Thus, for all t ∈ (1, 2] and x ∈ B1 we get from Theorem 2.2:

ũt(x) ≥
∫
B1

pt(x, y)ũ0(y) dy + κ

∫ t

0

sζ
∫
B1

pt−s(x, y)ũ1+βs (y) dy ds

≥ c6K(t0)

∫
B1

Gt(c4(x− y)) dy + κc6

∫ t

0

sζ
∫
B1

Gt−s(c4(x− y))ũ1+βs (y) dy ds.

Since ξ := c−d4 minx∈B1 mins∈[1,2] Px(Ws ∈ Bc4) > 0, we have

min
x∈B1

ũt(x) ≥ ξc6K(t0) + κξc6

∫ t

0

sζ(min
x∈B1

ũs(x))1+β ds.

It remains to choose t0 > 0 sufficiently large so that the blow-up time of the equation

v(t) = ξc6K(t0) + κξc6

∫ t

0

sζv1+β(s) ds

is smaller than 2. �

The following result gives an explosion criterion which is actually valid for any α ∈
(1, 2] and d = 1; its proof uses Theorem 2.4 instead of Theorem 2.2 and Lemma 3.3.

Here the potential V need not be bounded.

Theorem 4.2 Let α ∈ (1, 2], β > 0 and assume that V : R → R+ is integrable.

Then the solution of

∂ut
∂t

(x) = −(−∆)α/2ut(x)− V (x)ut(x) + κtζu1+βt (x), u0(x) = ϕ(x), x ∈ R,

blows up in finite time whenever 0 < β < 1 + αζ. If β = 1 + αζ the same happens

provided
∫
R V (z) dz is sufficiently small.

Proof. Let gt denote the mild solution of

∂gt
∂t

(x) = −(−∆)α/2gt(x)− V (x)gt(x) + κtζfβt (x)gt(x), g0(x) = ϕ(x), x ∈ R,

where ft = Ptϕ satisfies

∂ft
∂t

(x) = −(−∆)α/2ft(x), f0(x) = ϕ(x),
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and (Pt)t∈R+ is the α-stable semigroup. The Feynman-Kac formula and Jensen’s

inequality yield

gt(y) ≥∫
R
ϕ(x)Gα

t (x− y) exp

(
Ex

[∫ t

0

(
−V (Wα

s ) + sζ (Psϕ(Wα
s ))β

)
ds
∣∣∣Wα

t = y

])
dx,

where, for any t ≥ 1,

Ex

[∫ t

0

sζ (Psϕ(Wα
s ))β ds

∣∣∣Wα
t = y

]
≥ c2Ex

[∫ t

1

s−β/α+ζ1{B
s1/α
}(W

α
s )
∣∣∣Wα

t = y

]
≥ c2

∫ t

1

Px(Wα
s ∈ Bs1/α | Wα

t = y)s−β/α+ζds

≥ c5

∫ t

1

sζ−β/αds

=
c5

1 + ζ − β/α
(t1−β/α+ζ − 1);

here we applied Lemma 2.2 of [2]. The last inequality together with (2.3) renders

gt(y) ≥ e−Cαt
1−1/α

∫
R V (z) dz+

c5
1−β/α+ζ (t

1+ζ−β/α−1),

hence by the same steps as in the proof of Theorem 4.1 (comparison result for PDEs

and blow-up argument of [6]), finite time explosion occurs if β < 1+αζ, or if β = 1+αζ

and
∫
R V (z) dz is sufficiently small. �

Since 0 ≤ V (x) ≤ (1 + |x|b)−1, x ∈ R, and 1 < b ≤ 2 imply integrability of V (x) on

R, Theorem 4.2 yields a partial extension of Theorem 4.1 to the case 0 < α ≤ 2.

5 Existence of global solutions

We have the following non-explosion result, which is a generalization of Theorem 4.1

in [9].

Theorem 5.1 Consider the semilinear equation

∂wt
∂t

(x) = ∆wt(x)− V (x)wt(x) + tζG(wt(x)), w0(x) = ϕ(x), x ∈ Rd, (5.1)

where ζ ∈ R, ϕ is bounded and measurable, and G : R+ → R+ is a measurable

function satisfying

0 ≤ G(z)

z
≤ λzβ, z ∈ (0, c), (5.2)
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for some λ, β, c > 0. Assume that ϕ ≥ 0 is such that

λβ

∫ ∞
0

rζ‖Srϕ‖β∞ dr < 1

and

‖ϕ‖∞ ≤ c

(
1− λβ

∫ ∞
0

rζ‖Srϕ‖β∞dr
)1/β

. (5.3)

Then Equation (5.1) admits a global solution ut(x) that satisfies

0 ≤ ut(x) ≤ Stϕ(x)(
1− λβ

∫ t
0
rζ‖Srϕ‖β∞dr

)1/β , x ∈ Rd, t ≥ 0.

Proof. This is an adaptation of the proof of Theorem 3 in [16], see also [9]. Recall

that the mild solution of (5.1) is given by

ut(x) = Stϕ(x) +

∫ t

0

rζSt−rG(ur(x)) dr. (5.4)

Setting

B(t) =

(
1− λβ

∫ t

0

rζ‖Srϕ‖β∞dr
)−1/β

, t ≥ 0,

it follows that B(0) = 1 and

d

dt
B(t) = λtζ‖Stϕ‖β∞

(
1− λβ

∫ t

0

rζ‖Srϕ‖β∞dr
)−1−1/β

= λtζ‖Stϕ‖β∞B1+β(t),

hence

B(t) = 1 + λ

∫ t

0

rζ‖Srϕ‖β∞B1+β(r) dr.

Let (t, x) 7→ vt(x) be a continuous function such that vt(·) ∈ C0(Rd), t ≥ 0, and

Stϕ(x) ≤ vt(x) ≤ B(t)Stϕ(x), t ≥ 0, x ∈ Rd. (5.5)

Let now

R(v)(t, x) = Stϕ(x) +

∫ t

0

rζSt−rG(vr(x)) dr.

Since vr(x) ≤ B(r)‖Srϕ‖∞, r ≥ 0, we have from (5.5), (5.3) and (5.2) that

R(v)(t, x) = Stϕ(x) +

∫ t

0

rζSt−r

(
G(vr)

vr
vr

)
(x) dr

≤ Stϕ(x) + λ

∫ t

0

rζ(B(r))β‖Srϕ‖β∞St−rvr(x) dr

≤ Stϕ(x) + λ

∫ t

0

rζB1+β(r)‖Srϕ‖β∞St−r (Srϕ(x)) dr
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= Stϕ(x)

(
1 + λ

∫ t

0

rζ‖Srϕ‖β∞B1+β(r) dr

)
,

where the last inequality follows from (5.5). Hence

Stϕ(x) ≤ R(v)(t, x) ≤ B(t)Stϕ(x), t ≥ 0, x ∈ Rd.

Let

u0t (x) = Stϕ(x), and un+1
t (x) = R(un)(t, x), n ∈ N.

Then u0t (x) ≤ u1t (x), t ≥ 0, x ∈ Rd. Since St is non-negative, using induction we

obtain

0 ≤ unt (x) ≤ un+1
t (x), n ≥ 0.

Letting n→∞ yields, for t ≥ 0 and x ∈ Rd,

0 ≤ ut(x) = lim
n→∞

unt (x) ≤ B(t)Stϕ(x) ≤ Stϕ(x)(
1− λβ

∫ t
0
rζ‖Srϕ‖β∞dr

)1/β <∞.
Thus, ut is a global solution of (5.4) due to the monotone convergence theorem. �

As a consequence of Theorem 5.1, an existence result can be obtained under an

integrability condition on ϕ.

Theorem 5.2 Let G : R+ → R+ and v : R+×Rd → R+ be measurable functions such

that G(z) ≤ κ1z
1+β, z > 0, and vt(x) ≤ κ2t

ζ, (t, x) ∈ R+×Rd, where β, ζ, κ1, κ2 > 0.

Let 0 ≤ b ≤ 2, a > 0, and assume that

V (x) ≥ a

1 + |x|b
, x ∈ Rd.

i) If b < 2, then the equation

∂ut
∂t

(x) = ∆ut(x)− V (x)ut(x) + vt(x)G(ut(x)), w0 = ϕ, (5.6)

admits a global solution for all β > 0.

ii) If b = 2 and

β > β∗(a) :=
2(1 + ζ)

d+ α1(a)

then (5.6) admits a global solution.
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Proof. Clearly, it suffices to consider the semilinear equation

∂ut
∂t

(x) = ∆ut(x)− V (x)ut(x) + κtζu1+βt (x), u0(x) = ϕ(x), (5.7)

for a suitable constant κ > 0. Suppose that for some σ > 0,

0 ≤ ϕ(x) ≤ C

1 + |x|σ
, x ∈ Rd.

i) Assume that σ > b(1 + ζ)/β, and let ε ∈ (0, 1) be such that (1− ε)βσ/b > 1 + ζ.

From Proposition 3.1.i we get ∫ ∞
1

tζ‖Stϕ‖β∞dt < 1,

provided C is sufficiently small.

ii) If b = 2 and β > 2(1 + ζ)/(d + α1(a)), let ε ∈ (0, 1) be such that β(d/2 + (1 −
ε)α1(a)) > 1 + ζ. From Proposition 3.1.ii there exists σ > d such that∫ ∞

1

tζ‖Stϕ‖β∞dt < 1

provided C is sufficiently small. �

Remark 5.3 An alternative proof of Theorem 5.2-i) consists in letting the initial

value ϕ in (5.7) be such that

ϕ(x) ≤ τS11D(x),

for a sufficiently small constant τ > 0, where D ⊂ Rd is bounded and Borel measur-

able. By Lemma 3.4,

Stϕ(x) ≤ τSt+11D(x) ≤ τcD(1 + t)−(1+γ),

thus showing that
∫∞
1
tζ‖Stϕ‖β dt can be made arbitrarily close to 0 by choosing τ

sufficiently small. By Theorem 5.1 we conclude that (5.7) admits positive global

solutions.

Remark 5.4 In the same way as in the above remark we can deal with the semilinear

system

∂ut
∂u

(x) = ∆ut(x)− V1(x)ut(x) + ut(x)vt(x), u0(x) = ϕ(x),

∂vt
∂t

(x) = ∆vt(x)− V2(x)vt(x) + ut(x)vt(x), v0(x) = ψ(x),

(5.8)
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where x ∈ Rd, d ≥ 2, ϕ, ψ ≥ 0, and

V1(x) ∼ a1
1 + |x|b1

, V2(x) ∼ a2
1 + |x|b2

, x ∈ Rd, (5.9)

with ai > 0 and bi ≥ 0, i = 1, 2.

Theorem 5.5 If max(b1, b2) < 2, then (5.8) admits nontrivial positive global solu-

tions.

Proof. Without loss of generality let us assume that b := b1 < 2. Let (S1
t )t≥0 denote

the semigroup with generator L = ∆ − V1. By Lemma 3.4, there exists γ > 0 such

that

S1
t 1D(x) ≤ cDt

−(1+γ), x ∈ Rd,

for all sufficiently large t > 0, where cD does not depend on x and t. The proof is

finished by an application of Theorem 1.1 in [10]. �
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Apartado Postal 402
36000 Guanajuato, Mexico
jalfredo@cimat.mx
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