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Abstract

We consider a spherical germ-grain model on Rd in which the centers of the spheres are
driven by a possibly non-Poissonian point process. We show that various covering probabil-
ities can be expressed using the cumulative distribution function of the random radii on one
hand, and distances to certain subsets of Rd on the other hand. This result allows us to com-
pute the spherical and linear contact distribution functions, and to derive expressions which
are suitable for numerical computation. Determinantal point processes are an important
class of examples for which the relevant quantities take the form of Fredholm determinants.
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1 Introduction

We consider a point process Φ on Rd, i.e. a random locally finite subset of points in Rd, and

to each point xi ∈ Φ we associate a random radius Ri which is independent of xi, and forms a

sequence of i.i.d. random variables distributed according to a given probability distribution µ.

The spherical germ-grain model Ξ is the union of the Euclidean balls centered around the points

xi ∈ Φ, with radii Ri. When Φ is a Poisson point process, Ξ is a Boolean model.



The study of random sets can be traced back to the 1930s (see [2, Section 6.1]) and the Boolean

model has been thoroughly studied since its introduction in the 1970s (see Section 3 in [2] for a

summary, and in particular Section 3.1.2 for a wide range of applications).

Lifting the Poissonian assumption introduces some technical difficulties, and indeed many

formulas become more complicated without this assumption. In [2, Section 6.5.2], the authors

present a formula for the capacity functional (see Section 3.1.5 therein) of general germ-grain

models, and derive their two-point probability function

(z1, z2) 7→ P(z1 ∈ Ξ, z2 ∈ Ξ), z1, z2 ∈ Rd,

assuming that their grains are non-overlapping. Other authors have studied germ-grain models,

see e.g. [9] for their first rigorous construction, and [12] for several formulas for the computa-

tion of their capacity functionals on open balls of Rd. The model has also been studied under

additional assumptions on the distribution of Φ, see [1].

Our main motivation is to compute multipoint probability functions defined by

P
(
∀i ∈ Θ1, zi ∈ Ξ, ∀j ∈ Θ2, zj /∈ Ξ

)
, z1, . . . , zn ∈ Rd, (1)

where Θ1 and Θ2 are two disjoint subsets of {1, . . . , n}, see Theorem 1. Another aim of this work

is to derive an expression for the capacity functional which can be implemented numerically, see

Proposition 1 and its consequences.

The above quantity appears naturally when the spherical germ-grain model is used as a model

for wireless networks, as it represents the probability that the nodes in Θ1 are covered by a net-

work of Radio Frequency (RF) sources while the ones in Θ2 are not. For example, one of the

main objectives of [7] is the explicit computation of such quantities in the case of the Boolean

model in order to estimate the average throughput in wireless energy harvesting sensor networks,

see for example § V therein.

An important class of point processes is given by the α-determinantal point processes intro-

duced in [15], which are widely used in the modeling of wireless networks [6, 8, 17] due to their

2



ability to model both repulsion and clustering among mobile users and base stations, see e.g. [5]

and references therein. Therefore we are particularly interested in obtaining concise formulas

when Φ is distributed as an α-determinantal point process.

In Theorem 1 below we show that the multipoint probability functions (1) can be expressed

using the cumulative distribution function of µ and the moment generating functional of the point

process Φ. From this result we deduce a formula for the capacity functional of the spherical germ-

grain model at a given compact set Λ in terms of the Euclidean distance to Λ, see Proposition 1.

Our results are written in a form which is suitable for numerical computation.

This result is then specialized in Proposition 1 as the expression (12) providing the capacity

functional of the spherical germ-grain model. This leads to formulas for spherical and linear

contact distribution functions in Corollary 1, again in terms of the moment generating functional

of Φ. Our examples of application include the Bernoulli point process, Poisson point processes,

and α-determinantal point processes treated in Section 4. In particular, when Φ is distributed as

an α-determinantal point process, we exploit the fact that the moment generating functional is a

Fredholm determinant and derive additional bounds on the increments of the contact distribution

functions, see Section 4.3. More generally, our results can be applied to any point process with

known moment generating functional, encompassing doubly stochastic Poisson point processes [3]

and α-stable point processes [4].

Our main results are presented in Section 3, and specialized in Section 4 to some specific

examples for which the moment generating functional is known.

2 Preliminaries on the spherical germ-grain model

We give in this section a short review of the spherical germ-grain model. Let ‖·‖ be the Euclidean
distance, and denote by B (x, r) := {y ∈ Rd : ‖x−y‖ < r} the open Euclidean ball of Rd centered

at x ∈ Rd with radius r ∈ [0,∞). For a point x ∈ Rd, we denote by (x(1), . . . , x(d)) the coordinates

of x.

3



We consider a simple locally finite point process Φ on Rd, and we denote the corresponding

expectation by E. For any Borel function f : Rd → [0, 1] we define the moment generating

functional of Φ at f as

GΦ(f) := E

[∏
x∈Φ

f(x)

]
.

In the spherical germ-grain model driven by Φ, each point in Φ is the center of a Euclidean

ball with random radius distributed according to a probability measure µ(dx) on [0,∞) with

cumulative distribution function Fµ(r) := µ([0, r]), independently of the other radii and of Φ.

We let (Ri)i∈N be a sequence of i.i.d. random variables, independent of Φ, constructed on the

same probability space and with same distribution µ, and we let {Yi} denote the points of Φ.

We define the marked point process Ψ on Rd × [0,∞) as Ψ := {(Yi, Ri)}. Each point (x, r) ∈ Ψ

models the location x ∈ Rd along with the radius r ∈ [0,∞) corresponding to the radius of the

ball centered around it.

We consider the subset of Rd covered by the Euclidean balls centered around the points of the

point process Φ, i.e.,

Ξ =
⋃

(x,r)∈Ψ

B (x, r),

which consists of all points covered by at least one ball. We call the set Ξ the spherical germ-grain

model, with Ψ as its driving point process.

Note that unlike in e.g. [2] and [14], the spherical germ-grain model that we consider is a

random open set, however our results also hold when replacing the open Euclidean balls with the

closed Euclidean balls, except for Proposition 1 and its consequences, which require the openness

of Ξ. In addition, our setting is not restricted to Euclidean balls as it extends to non-Euclidean

distances on Rd with minor modifications.
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3 Main result

Our main result relies on the following well-known Lemmas 1 and 2 pertaining to the spherical

germ-grain model. We start with the following result for the computation of the void probabilities

of Ψ, see e.g. Table 1 page 16 of [10].

Lemma 1. The void probabilities of Ψ are given for any Borel set B in Rd × [0,∞) by

P
(
Ψ ∩B = ∅

)
= GΦ

(∫ ∞
0

1Bc(·, r)µ(dr)

)
, (2)

where 1A denotes the indicator function of a set A, and Bc is the complement of the set B in

Rd × [0,∞).

Next, the probability that a fixed point in Rd is covered by the spherical germ-grain model is

computed in the following lemma.

Lemma 2. The probability that a point z ∈ Rd belongs to Ξ is computed as

P
(
z ∈ Ξ

)
= 1− GΦ

(
Fµ
(
‖ · −z‖

))
. (3)

Proof. Given a point z ∈ Rd we consider the set

Cz =
{

(x, r) ∈ Rd × [0,∞) : x ∈ B (z, r)
}
.

Then, we have

z /∈ Ξ ⇐⇒ ∀(x, r) ∈ Ψ, z /∈ B (x, r) ⇐⇒ ∀(x, r) ∈ Ψ, x /∈ B (z, r) ⇐⇒ Ψ ∩ Cz = ∅, (4)

as well as ∫ ∞
0

1(Cz)c(x, r)µ(dr) =

∫ ∞
0

1{‖x−z‖≥r} µ(dr) = Fµ
(
‖x− z‖

)
, x ∈ Rd, (5)

where we recall that Fµ is the cumulative distribution function of µ. We obtain

P
(
z ∈ Ξ

)
= 1− P

(
Ψ ∩ Cz = ∅

)
= 1− GΦ

(∫ ∞
0

1(Cz)c(·, r)µ(dr)

)
= 1− GΦ

(
Fµ
(
‖ · −z‖

))
,

where the first equality follows from (2), the second one from (4) and the third one from (5).
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We note that the above coverage probability (3) generalizes the known result in the Poisson

setting. Indeed, when Φ is the Poisson point process on Rd with the intensity measure λ(dx) =

c`(dx), for c > 0 a constant and `(dx) the Lebesgue measure, its moment generating functional

is given by (15) for Borel [0, 1]-valued functions f , and so (3) yields

P
(
z /∈ Ξ

)
= GΦ

(
Fµ
(
‖ · −z‖

))
= exp

(
−c
∫
Rd

(
1− Fµ

(
‖x− z‖

))
`(dx)

)
= exp

(
−c
∫ ∞

0

∫
Rd
1{x∈B(z,r)} `(dx)µ(dr)

)
= exp

(
−cvd

∫ ∞
0

rd µ(dr)

)
, (6)

where vd denotes the volume of the d-dimensional unit ball.

Our main result is the following generalization of (3) to an arbitrary number of points

z1, . . . , zn ∈ Rd. For all x ∈ Rd we take min
k∈∅
‖x − zk‖ = +∞ by convention. Note that this

implies that when Θ2 = ∅, the summand corresponding to θ = ∅ in (7) below is equal to one.

Theorem 1. Let n ≥ 1 be fixed and let z1, . . . , zn ∈ Rd denote the (fixed) locations of n points. We

consider two subsets of points (zi)i∈Θ1 and (zj)j∈Θ2, for Θ1,Θ2 ⊆ {1, . . . , n} such that Θ1∩Θ2 = ∅.
We have

P
(
∀i ∈ Θ1, zi ∈ Ξ, ∀j ∈ Θ2, zj /∈ Ξ

)
=
∑

θ ⊆ Θ1

(−1)|θ|GΦ

(
Fµ

(
min

k∈θ∪Θ2

‖ · −zk‖
))
, (7)

where |θ| denotes the cardinal of the set θ, and Fµ is the cumulative distribution function of µ.

Proof. We have

P
(
∀i ∈ Θ1, zi ∈ Ξ, ∀j ∈ Θ2, zj /∈ Ξ

)
= P

(
∀i ∈ Θ1, zi ∈ Ξ | ∀j ∈ Θ2, zj /∈ Ξ

)
· P
(
∀j ∈ Θ2, zj /∈ Ξ

)
=

(
1− P

(⋃
i∈Θ1

{
zi /∈ Ξ

}
| ∀j ∈ Θ2, zj /∈ Ξ

))
· P
(
∀j ∈ Θ2, zj /∈ Ξ

)
=

(
1 +

∑
θ ⊆ Θ1, θ 6=∅

(−1)|θ|P
(
∀i ∈ θ, zi /∈ Ξ | ∀j ∈ Θ2, zj /∈ Ξ

))
· P
(
∀j ∈ Θ2, zj /∈ Ξ

)
(8)
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=
∑

θ ⊆ Θ1

(−1)|θ|P
(
∀i ∈ θ, zi /∈ Ξ, ∀j ∈ Θ2, zj /∈ Ξ

)
=
∑

θ ⊆ Θ1

(−1)|θ|P
(
∀i ∈ θ ∪Θ2, zi /∈ Ξ

)
, (9)

where we have used the inclusion-exclusion formula in (8). At this point we note that when

Θ2 = ∅, it is clear that the summand corresponding to θ = ∅ in (9) is equal to one. Letting

θ ⊆ Θ1 be fixed, each of the summands in the above equation is computed as

P
(
∀i ∈ θ ∪Θ2, zi /∈ Ξ

)
= P

({
∀(x, r) ∈ Ψ, ∀i ∈ θ ∪Θ2, zi /∈ B (x, r)

})
= P

({
∀(x, r) ∈ Ψ, ∀i ∈ θ ∪Θ2, x /∈ B (zi, r)

})
= P

({
∀(x, r) ∈ Ψ, x /∈ ∪i∈θ∪Θ2B (zi, r)

})
= P

(
Ψ ∩ A = ∅

)
, (10)

where

A :=
{

(x, r) ∈ Rd × [0,∞) : x ∈
⋃

i∈θ∪Θ2

B (zi, r)
}
.

Additionally, we have∫ ∞
0

1Ac(·, r)µ(dr) =

∫ ∞
0

1{∀i∈θ∪Θ2, ‖·−zi‖≥r} µ(dr) = Fµ

(
min
i∈θ∪Θ2

‖ · −zi‖
)
. (11)

By applying (11) and Lemma 1 to compute (10), we find

P
(
∀i ∈ θ ∪Θ2, zi /∈ Ξ

)
= GΦ

(
Fµ

(
min
i∈θ∪Θ2

‖ · −zi‖
))
.

The proof is concluded by plugging the above equation into (9).

In Figure 1 below we plot the two-point probability functions P
(
z1 ∈ Ξ, z2 ∈ Ξ

)
for a stationary

Poisson point process and a standard Ginibre point process [6], both restricted to B (0, 10) with

the same intensity 1/π, where µ(dr) = exp(−r) dr. Since both point processes are stationary and

isotropic, we have fixed z1 at the origin, and plotted the resulting two-point probability function

as a function of ‖z1 − z2‖.
As expected from the repulsive nature of the determinantal point process, the coverage prob-

ability of a single point (when ‖z1 − z2‖ = 0 on the graph) is higher when Φ is a Ginibre point
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Figure 1: Comparison of the two-point probability functions P(z1 ∈ Ξ, z2 ∈ Ξ) of a Poisson point
process (red dot-dashed line) and a Ginibre Determinantal Point Process (blue solid line).

process. In addition, this covering property is preserved when ‖z1 − z2‖ increases, i.e. two

given points have a larger probability of being simultaneously covered when Φ is a Ginibre point

process than when Φ is a Poisson point process.

Interpreting the points z1, . . . , zn ∈ Rd appearing in Theorem 1 as n nodes in a wireless net-

work, the theorem provides in computable form the probability that the nodes with indices in

Θ1 are covered by the spherical germ-grain model while the nodes in Θ2 are not. Such quantities

have been shown to be of interest in the study of sensor networks, see [7].

For example, when Φ is the Poisson point process on Rd with the intensity measure λ(dx),

each term in (7) considerably simplifies since

GΦ

(
Fµ

(
min
i∈θ∪Θ2

‖x− zi‖
))

= exp

(
−
∫
Rd

(
1− Fµ

(
min
i∈θ∪Θ2

‖x− zi‖
))
λ(dx)

)
= exp

(
−
∫ ∞

0

∫
Rd
1{r>mini∈θ∪Θ2

‖x−zi‖}λ(dx)µ(dr)

)
= exp

(
−
∫ ∞

0

λ
(
∪i∈θ∪Θ2B (zi, r)

)
µ(dr)

)
,

where in the above derivation we have used arguments similar to those in (6) above. The formula

(7) thus extends the results proved in [7, Theorem 2] to the case where the nodes (zi)1≤i≤n are

not necessarily aligned.
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In particular when n = 2, Θ1 = {1, 2} and λ(dx) = c `(dx) for c > 0 a constant and `(dx) the

Lebesgue measure, Theorem 1 yields the two-point probability function (see [2, Section 3.1.6])

P
(
z1 ∈ Ξ, z2 ∈ Ξ

)
= 1− 2 exp

(
−cvd

∫ ∞
0

rd µ(dr)

)
+ exp

(
−c
∫ ∞

0

`
(
B (z1, r) ∪ B (z2, r)

)
µ(dr)

)
= 1− 2 exp

(
−cvd

∫ ∞
0

rd µ(dr)

)
+ exp

(
−2cvd

∫ ∞
0

rd µ(dr) + c

∫ ∞
‖z1−z2‖/2

`
(
B (z1, r) ∩ B (z2, r)

)
µ(dr)

)
= 1− 2 exp

(
−cvd

∫ ∞
0

rd µ(dr)

)
+ exp

(
−2cvd

∫ ∞
0

rd µ(dr) + cvd

∫ ∞
‖z1−z2‖/2

I1−‖z1−z2‖2/(4r2)

(d+ 1

2
,
1

2

)
rd µ(dr)

)
,

where Ix denotes the incomplete beta function. This also recovers Theorem 1 in [7] for the Boolean

model.

In the next Proposition 1 we derive a general expression for the capacity functional of the

spherical germ-grain model as a corollary of Theorem 1. This expression is simple to implement

numerically, especially when the moment generating functional is easily computable, see Section 4

for examples. Other related expressions for the capacity functional have been obtained for germ-

grain models, see e.g. [9, eq. (2.5)] and [2, eq. (6.96)], however, contrary to Proposition 1 these

assume that Ξ is a closed set.

Proposition 1. For any compact set Λ ⊂ Rd we have

P
(
Ξ ∩ Λ 6= ∅

)
= 1− GΦ

(
Fµ
(
d(·,Λ)

))
, (12)

where

d(x,Λ) := inf
y∈Λ
‖x− y‖, x ∈ Rd.

Proof. Let Λ ⊂ Rd be a compact set, and denote by (zn)n>0 a countable set which is dense in

Λ. Since Ξ is a (random) open set, we have equality between the event {∀x ∈ Λ, x /∈ Ξ} and
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{∀n > 0, zn /∈ Ξ}. Thus, by Theorem 1 we have

P
(
Ξ ∩ Λ = ∅

)
= P

(
∀x ∈ Λ, x /∈ Ξ

)
= P

(⋂
n>0

{
z1 /∈ Ξ, . . . , zn /∈ Ξ

})

= lim
n→∞

P
(
z1 /∈ Ξ, . . . , zn /∈ Ξ

)
= lim

n→∞
GΦ

(
Fµ

(
min

k=1,...,n
‖ · −zk‖

))
. (13)

By the right-continuity of Fµ and the density of (zn)n>0 in Λ, for any fixed x ∈ Rd we have

Fµ

(
min

k=1,...,n
‖x− zk‖

)
−−−→
n→∞

Fµ

(
min
k∈N
‖x− zk‖

)
= Fµ

(
d(x,Λ)

)
,

and so by the monotone convergence theorem, we obtain

∏
x∈Φ

Fµ

(
min

k=1,...,n
‖x− zk‖

)
= exp

(
−
∑
x∈Φ

− log

(
Fµ

(
min

k=1,...,n
‖x− zk‖

)))
P-a.s.−−−→
n→∞

exp

(
−
∑
x∈Φ

− log
(
Fµ
(
d(x,Λ)

)))
=
∏
x∈Φ

Fµ
(
d(x,Λ)

)
.

Combining the above with the dominated convergence theorem yields

lim
n→∞

GΦ

(
Fµ

(
min

k=1,...,n
‖ · −zk‖

))
= GΦ

(
Fµ
(
d(x,Λ)

))
,

and plugging this into (13) concludes the proof.

In the next corollary we compute the capacity functional of Proposition 1 for a class of compact

sets of the form

Ap(r) :=
{(
x(1), . . . , x(p), 0, . . . , 0

)
∈ Rd :

√(
x(1)
)2

+ · · ·+
(
x(p)
)2 ≤ r

}
, 1 ≤ p ≤ d,

made of p-dimensional balls in Rd.

Corollary 1. For any p ∈ {1, . . . , d}, we have

P
(
Ξ ∩ Ap(r) 6= ∅

)
= 1− GΦ

(
gr,p

)
, r ≥ 0,

where for x = (x(1), . . . , x(d)) ∈ Rd, we let

gr,p (x) := Fµ

(√
max

{√(
x(1)
)2

+ · · ·+
(
x(p)
)2 − r, 0

} 2

+
(
x(p+1)

)2
+ · · ·+

(
x(d)
)2
)
.
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The above corollary yields an expression for the spherical and linear contact distribution

functions defined in [2, Section 3.1.7]. Indeed, the spherical contact distribution function Hs(r)

defined by

Hs(r) := P
(
Ξ ∩ B (0, r) 6= ∅

)
, r ≥ 0

is obtained with p = d as

Hs(r) = 1− GΦ

(
Fµ
(
max

{
‖ · ‖ − r, 0

} ))
, r ≥ 0.

Similarly, the linear contact distribution function Hl(r) is given for p = 1 by

Hl(r) := P
(
Ξ ∩ L(r) 6= ∅

)
= 1− GΦ

(
hr
)
, r ≥ 0,

with

L(r) =
{

(t, 0, . . . , 0) ∈ Rd, where t ∈ [−r, r]
}
, (14)

and for x = (x(1), . . . , x(d)) ∈ Rd, we define

hr(x) = Fµ

(√
max

{ ∣∣x(1)
∣∣− r, 0 } 2

+
(
x(2)
)2

+ · · ·+
(
x(d)
)2
)
.

4 Examples
4.1 Bernoulli point process

By a Bernoulli point process we mean a binomial point process with one point, i.e. a point

process which has no points with probability p ∈ [0, 1] and one point with probability 1 − p,

distributed according to a given probability measure ν(dx) on Rd, see e.g. [11], pages 27-28.

When Φ is a Bernoulli point process, its moment generating functional is given for measurable

non-negative functions f by

GΦ(f) = p+ (1− p)
∫
Rd
f(x) ν(dx).

In the next proposition, we specialize Proposition 1 to this point process.

Proposition 2. Assume that Φ is a Bernoulli point process characterized by p ∈ [0, 1] and the

probability measure ν(dx) on Rd. Then, for any compact set Λ ⊂ Rd, the capacity functional is

given by

P
(
Ξ ∩ Λ 6= ∅

)
= (1− p)

∫
Rd

(
1− Fµ

(
d(x,Λ)

))
ν(dx).
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The above proposition can obviously be recovered by using the definition of the point process

to compute P(Ξ ∩ Λ 6= ∅) directly. We also remark that Proposition 2 can readily be generalized

to a binomial point process with n points, i.e. a point process with at most n independent points

distributed according to ν, each point appearing with the probability pi, i ∈ {1, . . . , n}.

4.2 Poisson point process
When Φ is distributed as the Poisson point process on Rd with the intensity measure λ(dx),

we recall that its moment generating functional is given for Borel [0, 1]-valued functions f by

GΦ(f) = exp

(
−
∫
Rd

(
1− f(x)

)
λ(dx)

)
. (15)

In the next proposition, we specialize Proposition 1 to the Poissonian setting.

Proposition 3. Assume that Φ is the Poisson point process on Rd with the intensity measure

λ(dx). Then, for any compact set Λ ⊂ Rd, the capacity functional is given by

P
(
Ξ ∩ Λ 6= ∅

)
= 1− exp

(
−
∫
Rd

(
1− Fµ

(
d(x,Λ)

))
λ(dx)

)
. (16)

Note that (16) is more explicit than its counterpart equation (3.7) on p. 72 of [2].

4.3 α-determinantal point processes

The class of α-determinantal point processes [15] models a wide range of phenomena [6,8,13]

while having tractable statistics. We recall here some simple facts required for our purposes and

refer the reader to [15] for the details. Let α ∈ {2/m : m ∈ N} ∪ {−1/m : m ∈ N} and let K

be a bounded symmetric integral operator on the space L2(Rd) of square-integrable functions on

Rd, which is assumed to be locally of trace class. In the following, we identify K with its kernel

which is a function from Rd×Rd to C. The moment generating functional of the α-determinantal

point process on Rd with the kernel K with respect to a reference measure λ(dx) is given for

[0, 1]-valued Borel functions f with compact support by Det (Id + αKf )
−1/α, where Det stands

for the Fredholm determinant, see e.g. Chapter 3 of [16], and the kernel Kf is defined as

Kf (x, y) :=
√

1− f(x) K(x, y)
√

1− f(y), x, y ∈ Rd.

In the next proposition, we specialize Proposition 1 to the α-determinantal setting.
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Proposition 4. Assume that Φ is an α-determinantal point process on Rd with a kernel K with

respect to a reference measure λ(dx). Assume further that either

(i) the radii of the balls in Ξ are bounded, so that Fµ(r) = 1 for a sufficiently large r; or

(ii) the α-determinantal point processes Φ is restricted to a compact set.

Then, for any compact set Λ ⊂ Rd, the capacity functional is given by

P
(
Ξ ∩ Λ 6= ∅

)
= 1−Det (Id + αKΛ)−1/α, (17)

where KΛ is the kernel defined as

KΛ(x, y) :=
√

1− Fµ
(
d(x,Λ)

)
K(x, y)

√
1− Fµ

(
d(y,Λ)

)
, x, y ∈ Rd.

When Φ is a determinantal point process (i.e. α = −1) and the eigenvalues (λn)n≥1 of KΛ are

known, the relation (17) allows us to write the capacity functional as 1 −
∏
n≥1

(1 − λn). In case

the eigenvalues of KΛ are unknown, the capacity functional (17) still yields bounds of interest in

specific cases, using Fredholm determinants.

Proposition 5. Let the setting and assumptions of Proposition 4 prevail. Assume further that

α = −1, i.e. that the point process is a determinantal point process, that the kernel K is a

continuous function on Rd×Rd, and that the distribution function Fµ is continuous on Rd. Then,

for any compact sets Λ1,Λ2 ⊂ Rd such that Λ1 ⊆ Λ2, we have

∣∣P(Ξ ∩ Λ1 6= ∅
)
− P

(
Ξ ∩ Λ2 6= ∅

)∣∣ ≤ ∫
Rd

(
Fµ
(
d(x,Λ1)

)
− Fµ

(
d(x,Λ2)

))
K(x, x)λ(dx)

× exp

(
1 +

∫
Rd

(
1− Fµ

(
d(x,Λ2)

))
K(y, y)λ(dy)

)
. (18)

Proof. By [16, p. 45] we have∣∣Det (Id−KΛ1)−Det (Id−KΛ2)
∣∣ ≤ ∥∥KΛ2 −KΛ1

∥∥
1

exp
(
1 + max

{
‖KΛ1‖1, ‖KΛ2‖1

} )
, (19)

where ‖ · ‖1 is the trace-norm. Since Λ1 ⊆ Λ2, we see that KΛ2 − KΛ1 is again a non-negative

trace-class operator with continuous kernel KΛ2(x, y)−KΛ1(x, y). Thus, we get∥∥KΛ2 −KΛ1

∥∥
1

=

∫
Rd

(
Fµ
(
d(x,Λ1)

)
− Fµ

(
d(x,Λ2)

))
K(x, x)λ(dx). (20)
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Additionally, we have d(x,Λ1) ≥ d(x,Λ2) and thus

max
{
‖KΛ1‖1, ‖KΛ2‖1

}
=

∫
Rd

(
1− Fµ

(
d(x,Λ2)

))
K(x, x)λ(dx). (21)

Combining equations (19), (20) and (21) with the result of Proposition 4, we obtain the upper

bound (18).

In the next corollary we note that the condition (22) holds e.g. if µ has a bounded density.

Corollary 2. Let the setting and assumptions of Proposition 5 prevail and assume additionally

that there exists a number C > 0 such that∣∣Fµ(s)− Fµ(t)
∣∣ ≤ C|s− t|, s, t ≥ 0. (22)

We have the following bound on the increments of the spherical contact distribution function:

∣∣Hs(r1)−Hs(r2)
∣∣ ≤ C

∣∣r2 − r1

∣∣ ∫
B(0,M+r2)\B(0,r1)

K(x, x)λ(dx)

× exp

(
1 +

∫
B(0,M+r2)\B(0,r2)

(
1− Fµ

(
‖y‖ − r2

))
K(y, y)λ(dy)

)
, r1 < r2, (23)

where M ∈ [0,∞] is a constant which upper bounds the radii, i.e. Fµ(r) = 1 for all r ≥M .

Proof. Applying Proposition 5 with Λ1 = B (0, r1) and Λ2 = B (0, r2) for some r2 > r1, we obtain∣∣Hs(r1)−Hs(r2)
∣∣

≤
∫
Rd

(
Fµ
(
max

{
‖x‖ − r1, 0

} )
− Fµ

(
max

{
‖x‖ − r2, 0

} ))
K(x, x)λ(dx)

× exp

(
1 +

∫
Rd

(
1− Fµ

(
max

{
‖y‖ − r2, 0

} ))
K(y, y)λ(dy)

)
≤
∫

B(0,r2)\B(0,r1)

Fµ
(
‖x‖ − r1

)
K(x, x)λ(dx) + C

(
r2 − r1

) ∫
B(0,M+r2)\B(0,r2)

K(x, x)λ(dx)

× exp

(
1 +

∫
B(0,M+r2)\B(0,r2)

(
1− Fµ

(
‖x‖ − r2

))
K(y, y)λ(dy)

)
≤
∫

B(0,r2)\B(0,r1)

C
(
‖x‖ − r1

)
K(x, x)λ(dx) + C

(
r2 − r1

) ∫
B(0,M+r2)\B(0,r2)

K(x, x)λ(dx)

× exp

(
1 +

∫
B(0,M+r2)\B(0,r2)

(
1− Fµ

(
‖x‖ − r2

))
K(x, x)λ(dx)

)
14



≤ C
(
r2 − r1

) ∫
B(0,M+r2)\B(0,r1)

K(x, x)λ(dx)

× exp

(
1 +

∫
B(0,M+r2)\B(0,r2)

(
1− Fµ

(
‖x‖ − r2

))
K(x, x)λ(dx)

)
,

which concludes the proof of (23).

Corollary 3. Let the setting and assumptions of Corollary 2 prevail. We have the following

bound on the increments of the linear contact function:∣∣Hl(r1)−Hl(r2)
∣∣ ≤ C

∣∣r2 − r1

∣∣ ∫
B(0,M+r2)

K(x, x)λ(dx)

× exp

(
1 +

∫
B(0,M+r2)

(
1− Fµ

(
‖y‖ − r2

))
K(y, y)λ(dy)

)
, r1 < r2, (24)

where we recall that C is defined by (22) and M ∈ [0,∞] is a constant which upper bounds the

radii.

Proof. Applying Proposition 5 with Λ1 = L(r1) and Λ2 = L(r2), where L is defined in (14), for

any x = (x(1), . . . , x(d)) ∈ Rd we have

Fµ
(
d(x,Λ1)

)
− Fµ

(
d(x,Λ2)

)
= Fµ

(√
max

{ ∣∣x(1)
∣∣− r1, 0

} 2

+
(
x(2)
)2

+ · · ·+
(
x(d)
)2
)

− Fµ
(√

max
{ ∣∣x(1)

∣∣− r2, 0
} 2

+
(
x(2)
)2

+ · · ·+
(
x(d)
)2
)

≤ C

(√
max

{ ∣∣x(1)
∣∣− r1, 0

} 2

+
(
x(2)
)2

+ · · ·+
(
x(d)
)2

−
√

max
{ ∣∣x(1)

∣∣− r2, 0
} 2

+
(
x(2)
)2

+ · · ·+
(
x(d)
)2
)

≤ C
(
r2 − r1

)
, r1 < r2,

where the last inequality follows since g(r) :=

√
max

{ ∣∣x(1)
∣∣− r, 0 } 2

+
(
x(2)
)2

+ · · ·+
(
x(d)
)2

is continuously differentiable with g′(r) ∈ [−1, 0]. Along with the fact that Fµ(d(y,Λ2)) = 1 for

‖y‖ ≥M + r2, this implies (24).
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