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Abstract

We study the absolute continuity of the image measure of the canoni-
cal Poisson probability measure under nonlinear shifts. The Radon-Nykodim
density function is expressed using a Carleman-Fredholm determinant and a
divergence operator. Results are obtained for non-necessarily invertible trans-
formations, under almost-sure differentiability hypothesis.

1 Introduction

The object of this work is to give conditions for the absolute continuity of the image

measure of the canonical Poisson probability measure under nonlinear shifts, and to

present a Girsanov theorem on Poisson space which is similar in its form to that

one given in [13] on the abstract Wiener space. This result can also be applied to

solve anticipative stochastic differential equations as in [4], [16], [19]. The Girsanov

theorem for semimartingales says that if a probability Q is absolutely continuous

with respect to a probability P , then a semimartingale under P is a semimartingale

under Q. On the Wiener space, this theorem can be specialized and gives conditions

for the absolute continuity of a translation of the trajectories of the Wiener process.

This kind of translations has no analogous version on the Poisson space, since the

continuous-time trajectories of the Poisson process are not preserved under the shifts

with absolutely continuous functions. The idea used here is to view the trajectories

of the Poisson process as sequences of exponentially distributed interjump times,

instead of right-continuous trajectories. The adequate translation of the trajectories

should then be expressed as a translation of the sequence of interjump times. Our

theorem says that if (τk)k∈IN is a sequence of independent exponentially distributed
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random variables on a probability space (B,F , P ), i.e. represents a standard Poisson

process, and if F is a sequence-valued random variable satisfying some regularity

conditions, then there exists a probability Q, absolutely continuous with respect to

P , such that (τk +Fk)k∈IN represents a standard Poisson process under Q. Moreover,

we express the involved density using a Carleman-Fredholm determinant and the

divergence operator on the Poisson space introduced in [18].

The problem of the absolute continuity of transformations of the Brownian motion

was first investigated by Cameron and Martin [6]. The Cameron-Martin theorem

has been generalized in different ways: Gross [11] and Kuo [12] have showed its

validity on the abstract Wiener space. Girsanov [10] has treated the problem of

adapted shifts and showed the role played by the Itô integral in the expression of

the density. Ramer [20] and Kusuoka [13] have treated the nonlinear anticipative

case, using a generalized version of the Itô integral to express the density. These

works have been further extended to anticipative flows, by Cruzeiro [8], Buckdahn [5]

and Üstünel-Zakai [21]. The Girsanov theorem on Wiener space, especially under

the form given by Kusuoka [13] has been applied to solve anticipative stochastic

differential equations, cf. for instance Buckdahn [4], Pardoux [16].

We adapt here the methods of Kusuoka [13], Nualart [14] and Ramer [20] to

the Poisson space case and obtain the absolute continuity result for locally H − C1

non-necessarily invertible shifts as in Üstünel-Zakai [22], [23]. In Sect. 2, we build a

measure P on a Banach space of sequences B which is the completion of a Hilbert

space H. This construction allows to proceed as in the Wiener space case and to

define a directional derivative and its adjoint, the divergence operator. The main

result is presented at the end of Sect. 2. Complications in the proofs come from the

fact that the measure P does not have full support in B, because the interjump times

of the Poisson process are almost surely positive random variables. Consequently,

a necessary condition for the absolute continuity of a transformation of B is that

it has to leave invariant the cone B+ of positive sequences in B. The expression

of the density is close to the expression obtained by Ramer [20] in the Gaussian

case. The main difference here lies in the fact that the square norm of F does not

appear in the exponential, hence no exponential integrability argument is needed as

in [23] to ensure the uniform integrability of the sequence of approximating densities.

First, in Sect. 3, we show that the absolute continuity result is valid for contractive

mappings. Then in Sect. 4, we show that the transformation can be written locally
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as the composition of a Lipschitz map, a linear map and a translation, in such a way

that we can use the result of Sect. 3. Finally, we study the connection between our

theorem and the usual Girsanov theorem for the Poisson process.

2 The triplet (H,B,P) and the stochastic calculus

of variations

The aim of this section is to present the tools of the stochastic calculus of variations

on the Poisson space and to state our main result, cf. Th. 1. In order to stay as

close as possible to the methods that are applied in the Wiener space case, we use

the triplet (H,B, P ) described in [18], where H = l2(IN) is the Hilbert space of real

square-summable sequences, B is a separable Banach space which is the completion

of H with respect to the norm

‖ ω ‖B= sup
n∈IN

| ωn |
n+ 1

and P is a probability measure on the Borel σ-algebra F ofB such that the coordinate

functionals (τn)n∈IN, defined as

τn : B → IR

ω 7→ ωn

where ω ∈ B is the sequence ω = (ωk)k∈IN, are independent exponentially dis-

tributed random variables. The projection τn represents the time between the (n-

1)-th and n-th jumps of a Poisson process, defined as Nt =
∑

n≥1 1[Tn,∞[(t), where

Tn =
∑k=n−1

k=0 τk, n ≥ 1, represents the n-th jump time of (Nt)t∈IR+ . We denote by

B+, B◦+, B− the subsets of B defined as

B+ = {x ∈ B : xk ≥ 0, k ∈ IN} ,

B◦+ = {x ∈ B : xk > 0, k ∈ IN} ,

B− = {x ∈ B : ∃k ∈ IN with xk < 0} .

Let S be the set of functionals on B of the form f(τk1 , ..., τkn) on B+ where n ∈ IN,

k1, ..., kn ∈ IN, and f is a polynomial or f ∈ C∞c (IRn
+). It is known that S is

dense in L2(B,P ), cf. [18]. We denote by (ek)k≥0 the canonical basis of H =

l2(IN). If X is a real separable Hilbert space with orthonormal basis (hi)i∈IN, let
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S(X) =
{∑i=n

i=0 Qihi : Q0, . . . , Qn ∈ S, n ∈ IN
}

and let H ⊗ X denote the com-

pleted Hilbert-Schmidt tensor product of H with X. If u ∈ S(H ⊗ X), we write

u =
∑∞

k=0 ukek, uk ∈ S(X), k ∈ IN.

Definition 1 We define the operators D : S(X) −→ L2(B × IN;X) and

δ : S(H ⊗X) −→ L2(B;X) by

(DF, h)H = lim
ε→0

F (ω + εh)− F (ω)

ε
, F ∈ S(X),

and

δ(u) =
∞∑
k=0

uk −Dkuk, u ∈ S(H ⊗X).

The perturbation of the trajectories is performed by translating the sequences of

interjump times of the Poisson process. Let

U(X) =

{
∞∑
k=0

τkukek : u ∈ S(H ⊗X)

}
.

It can be shown that U(X) is dense in L2(B × IN;X), since {xn : n ≥ 2} is total in

L2(IR+, e
−xdx), cf. [18]. We let U=U(IR) and S = S(IR).

Proposition 1 The operators D : S(X)→ L2(B × IN;X) and

δ : U(X)→ L2(B;X) are closable and satisfy to

E [(DF, u)H⊗X ] = E [(δ(u), F )X ] u ∈ U(X), F ∈ S(X).

Proof. cf. [18].

Definition 2 For p ≥ 1, we call Dp,1(X) the completion of S(X) with respect to

the norm ‖ F ‖Dp,1(X)=‖| F |X‖p + ‖| DF |H⊗X‖p, and Dom(δ;X) the domain of

the closed extension of δ for p = 2. Denote by DUp,1(H) the completion of U with

respect to the norm ‖ · ‖Dp,1(H). We call D∞,1(X), resp. DU∞,1(H) the subset of

D2,1(X), resp. DU2,1(H) made of the random variables F for which ‖ F ‖D∞,1(X),

resp. ‖ F ‖D∞,1(H) is bounded.

For the following result, we refer to [1] in the Wiener space case.

Proposition 2 The operator D is local. More precisely, if F ∈ D2,1(X), then DF =

0 a.s. on {F = 0}. The operator δ is also local, i.e. if u ∈ Dom(δ;X) then δ(u) = 0

a.s. on {u = 0}.
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Proof. It is sufficient to do the proof for X = IR. Let φ ∈ C∞c ([−1, 1]) with φ(0) = 1

and φ ≥ 0. For ε > 0, let φε(x) = φ(x/ε) and Ψε(x) =
∫ x
−∞ φε(y)dy. Then

DΨε(F ) = φε(F )DF . We have for u ∈ U :

| E[φε(F )(DF, u)H ] | = | E[(u,DΨε(F ))H ] |=| E[Ψε(F )δ(u)] |

≤ ‖ Ψε(F ) ‖∞‖ δ(u) ‖2≤ ε ‖ φ ‖1‖ δ(u) ‖2 .

Hence E
[
1{F=0}(DF, u)H

]
= 0, u ∈ U , and 1{F=0}DF = 0 a.s. The operator δ is

local from its definition, since D is local. 2

Definition 3 For 1 ≤ p ≤ ∞, we say that F ∈ Dloc
p,1(X) if there is a sequence

(Fn, An)n∈IN such that Fn ∈ Dp,1(X), An is measurable,
⋃
n∈INAn = B a.s. and

Fn = F a.s. on An, n ∈ IN. We define DU ,locp,1 (H) in the same way.

Let K be a Hilbert-Schmidt operator. The Carleman-Fredholm determinant of IH +

K is defined as

det2(IH +K) =
∞∏
i=0

(1 + λi) exp(−λi)

where (λk)k∈IN are the eigenvalues of K, counted with their multiplicities, cf. [9],

Th. 26. Note that det2(IH + · ) : H ⊗ H −→ IR is continuous, with the bound

| det2(IH +K) |≤ (1+ | K |H⊗H) exp(1+ | K |2H⊗H).

Proposition 3 We have DU2,1(H) ⊂ Dom(δ; IR) and

E
[
δ(u)2

]
≤ E

[
| Du |2H⊗H

]
, u ∈ DU2,1(H). (1)

Proof. cf. [18].

Definition 4 For F ∈ DU ,loc2,1 (H), let

ΛF = det2(IH +DF ) exp(−δ(F )).

The image measure of P by IB + F with F : B −→ H measurable is denoted by

(IB+F )∗P . The nonlinear transformations of B that we consider are of the following

form:

Definition 5 We say that a random variable F : B → H is H − C1
loc if there is

a random variable Q with Q > 0 a.s. such that h → F (ω + h) is continuously

differentiable on {h ∈ H : | h |H< Q(ω) and ω + h ∈ B+}, for any ω ∈ B+. If Q =

∞ a.s., then F is said to be H − C1.

5



Our main result is the following. It will be proved in Sect. 3 and 4.

Theorem 1 Let F ∈ H − C1
loc with F (k) = 0 on {τk = 0}, k ∈ IN. Let T = IB + F

and

M = {ω ∈ B+ : det2(IH +DF ) 6= 0} .

Assume that T (B◦+) ⊂ B◦+ and let N(ω;M) = card(T−1(ω)
⋂
M). Then N(ω;M) is

at most countably infinite and

E [fN(ω;M)] = E [f ◦ T | ΛF |]

for f ∈ C+
b (B). The restriction of (IB + F )∗P to M is absolutely continuous with

respect to P , and

d(IB + F )∗P |M
dP

(ω) =
∑

θ∈(IB+F )−1(ω)∩M

1

| ΛF (θ) |
.

The following two lemmata and their proofs are directly adapted from [5], [14], [15].

Lemma 1 Let Fn denote the σ-algebra generated by τ0, . . . , τn. If F ∈ L2(B), then

F ∈ D2,1 if and only if Fn = E[F | Fn] ∈ D2,1 for all n ∈ IN. In this case,

| DFn |H≤| DF |H , a.s., n ∈ IN.

Moreover, Fn belongs to D2,1 if and only if there exists

f ∈ W 2,1(IRn+1
+ , e−(x0+···+xn)dx)

such that Fn = f(τ0, . . . , τn). Then DFn = (∂kf(τ0, . . . , τn))k∈IN.

Proof. Let (Gk)k∈IN ⊂ S be a sequence converging to F in L2(B). we have

| DE[Gk | Fn] |H≤| E[DGk | Fn] |H ,

hence the first part. There is a smooth function fk such that E[Gk | F\] =

fk(τ0, . . . , τn), k ∈ IN. In order to prove the second part, it suffices to notice that the

convergence of (fk)k∈IN to a function f in W 2,1(IRn+1
+ , e−(x0+···+xn)dx) is equivalent to

the convergence of (E[Gk | Fn])k∈IN to Fn in D2,1. 2

Define π∗n : IRn+1 → H by π∗n(x) = (x0, . . . , xn, 0, . . .).
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Lemma 2 Let F ∈ L2(B;X) and c > 0. Assume that for any h ∈ H,

| F (ω + h)− F (ω) |X≤ c | h |H

for ω ∈ B+ such that ω + h ∈ B+. Then F ∈ D2,1(X) and | DF |H⊗X≤ c, a.s.

Proof. It is sufficient to show this statement with X = IR. Let Fn = E[F | Fn]. For

n ∈ IN, there is fn ∈ L2(IRn+1
+ , e−(x0+···+xn)dx) such that E[F | Fn] = fn(τ0, . . . , τn).

Let y ∈ IRn+1 and A = {ω ∈ B+ : ω + π∗n(y) ∈ B+}. We have for a.s. ω

1A(ω) | Fn(ω + π∗n(y))− Fn(ω) | = | E[1A(ω)(Fn(ω + π∗n(y))− Fn(ω)) | Fn] |

≤ E[1A(ω) | F (ω + π∗n(y))− F (ω)) || Fn]

≤ c1A(ω) | π∗n(y) |H .

This implies that fn ∈ W 2,1(IRn+1
+ , e−(x0+···+xn)dx) with derivative a.s. bounded by

c. The conclusion is given by Lemma 1. 2

Definition 6 If A ⊂ B is measurable we let for ω ∈ B

ρA(ω) = inf
h∈H
{| h |H : ω + h ∈ A}

and ρA(ω) =∞ if ω /∈ A+H.

We notice that as in [14], ρA(ω) = 0, ω ∈ A, and if φ ∈ C∞c (IR) with A σ-compact,

then

| φ(ρA(ω + h))− φ(ρA(ω)) |H≤‖ φ′ ‖∞| h |H , ω ∈ B, h ∈ H,

hence φ(ρA) ∈ D∞,1 with | Dφ(ρA) |H≤‖ φ′ ‖∞. Denote by πn the application

πn : B −→ H defined by πn(ω) =
(
τk1{k≤n}

)
k∈IN

.

Lemma 3 Let F : B → H measurable with bounded support in B, ‖| F |H‖∞< ∞,

such that F (k) = 0 on {τk = 0}, k ∈ IN, and for some c > 0

| F (ω + h)− F (ω) |H< c | h |H

h ∈ H, ω, ω + h ∈ B+. Then F ∈ DU∞,1, and there is a sequence (Φn)n∈IN ⊂ U that

converges to F in D2,1(H) with for n ∈ IN:

(i) ‖| Φn |H‖∞≤‖| F |H‖∞.

(ii) ‖| DΦn |H⊗H‖∞≤ c.

Assume moreover that τk + F (k) ≥ 0 a.s., k > n0, for some n0 ∈ IN
⋃
{∞}. Then

the sequence (Φn)n∈IN can be chosen to verify

(iii) τk + Φn(k) ≥ 0, k > n0, n ∈ IN.
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Proof. Let Fn = πnE[F | Fn], n ∈ IN. The sequence (Fn)n∈IN converges to F in

D2,1(H) and satisfies to (i), (ii). Let Fn(k) = 0 a.e. on {τk < 0}. There is a

version of Fn(k) which is Lipschitz on B+ and such that Fn(k) = 0 on {τk ≤ 0}. Let

ω ∈ B+, h ∈ H such that ωk + hk ≤ 0 and h̃ = −ωk1{k} +
∑∞

i=0 hiei1{i 6=k}. Then

Fn(k)(ω + h) = Fn(k)(ω + h̃) = 0, and

| Fn(k)(ω + h)− Fn(k)(ω) |H = | Fn(k)(ω + h̃)− F (ω) |H

≤ c | h̃ |H

≤ c

(
ω2
k +

∞∑
i=0

1{i 6=k}h
2
i

)1/2

≤ c | h |H .

There exists fk ∈ W 2,1(IRn+1
+ , e−(x0+···+xn)dx), such that Fn(k) = fk(τ0, . . . , τn) a.e.,

k = 0, . . . , n. Let fk = 0 a.e. on IRk−1
+ × IR∗−× IRn−k

+ . Then, from the above argument

concerning Fn(k), fk has a Lipschitz version on IRk−1
+ ×IR×IRn−k

+ such that fk = 0 on

IRk−1
+ × IR−× IRn−k. Let Ψ ∈ C∞c (IRn) with support in [−2, 0]k−1× [0, 2]× [−2, 0]n−k,

0 ≤ Ψ ≤ 1 and
∫

IRn+1 Ψ(x)dx = 1. Let for m ≥ 2

φk,m(y) =
1

mn+1

∫
IRk−1

+ ×IR×IRn−k
+

Ψ(m(y − x))fk(x)dx, y ∈ IRn+1
+ ,

and Φm(k) = φk,m(τ0, . . . , τn), k = 0, . . . , n, Φm(k) = 0, k > n. Then (Φm)m≥2 ⊂ U
converges to Fn in D2,1 and satisfies to (i), (ii). If τk + F (k) ≥ 0, it can be checked

that τk + Φn(k) ≥ 0 from the definition of Φn. 2

Let φ ∈ C∞c (IR) with ‖ φ ‖∞≤ 1, such that φ = 0 on [2/3,∞[, φ = 1 on [0, 1/3] and

‖ φ′ ‖∞< 4.

Lemma 4 Let F ∈ H − C1
loc with F (k) = 0 on {τk = 0}, k > n0, for some n0 ∈ IN.

Then F ∈ DU ,loc∞,1 (H). More precisely, for a, b > 0, let

A = { ω ∈ B◦+ : ‖ ω ‖B≤ a,

wk > 4/a, k ≤ n0,

Q(ω) ≥ 4/a,

sup
|h|H≤2/a

| F (ω + h) |H≤ b/(6a),

sup
|h|H≤2/a

| DF (ω + h) |H⊗H≤ b/6

}
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and F̃ = φ(aρG)F , where G is a σ-compact set contained in A. Then

| F̃ (ω + h)− F̃ (ω) |H≤ (5b/6) | h |H ,

for h ∈ H, ω, ω + h ∈ B+, and ‖| F̃ |H‖∞≤ b/(6a). Consequently F̃ ∈ DU∞,1(H).

Proof. We have | F̃ |H≤ 1{aρG<2/3} | F |H≤ (b/6a). If ω ∈ B+ with ωk = 0, then

ρG(ω) ≥ 4/a, k ≤ n0. This implies F̃ (k) = 0 on {τk = 0}, k ∈ IN. Let ω ∈ B+,

h ∈ H, with ω + h ∈ B+ and | h |H≤ 1/a. We have

| F̃ (ω + h)− F̃ (ω) |H ≤ | F (ω + h) (φ(aρG(ω + h))− φ(aρG(ω))) |H

+ | φ(aρG(ω)) (F (ω + h)− F (ω)) |H

≤ (4b/6) | h |H +1{aρG<2/3} | h |H
∫ 1

0

| DF (ω + th) |H⊗H dt

≤ (5b/6) | h |H ,

because aρG(ω) < 2/3 implies that there is h̃ ∈ H with | h̃ |H< 2/(3a) such that

ω + h̃ ∈ G. If h ∈ H, let h̃ = h/ | h |H , and choose n ∈ IN such that n/a ≤| h |H<
(n+ 1)/a. If ω, ω + h ∈ B+, then ω + kh̃/a ∈ B+, k = 0, . . . , n, and

| F (ω + h)− F (ω) |H ≤
k=n−1∑
k=0

| F (ω + (k + 1)h̃/a)− F (ω + kh̃/a) |H

+ | F (ω + h)− F (ω + nh̃/a) |H

≤ (n5b)/(6a) + (5b/6) | h− h̃n/a |H≤ (5b/6) | h |H .

The support of F̃ is bounded since A is bounded, hence from Lemma 3, F̃ ∈ DU∞,1(H).

We have that F ∈ DU ,loc∞,1 since B◦+ can be covered by a countable collection of sets

of the above form, with a ∈ IN∗. 2

Proposition 4 Let F,G ∈ S(H) and T = IB + F . We have G ◦ T ∈ Dom(δ) and

δ(G) ◦ T = δ(G ◦ T ) + trace(DF ∗(DG) ◦ T ).

Proof. We have δ(G ◦ T ) ∈ S and

δ(G ◦ T ) =
∞∑
k=0

G(k) ◦ T −Dk (G(k) ◦ T )

=
∞∑
k=0

G(k) ◦ T −
∞∑
k=0

Dk(IB + F )∗(DG(k)) ◦ T

= δ(G) ◦ T −
∞∑

k,l=0

DkF (l)(DlG(k)) ◦ T.
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2

To end this section, we construct from δ an operator δ̃ that coincides with the

Poisson stochastic integral on the predictable processes in L2(B)⊗ L2(IR+), in view

of applications to anticipative stochastic differential equations, cf. [19]. Given D :

L2(B) −→ L2(B)⊗H, we first define a gradient D̃ : L2(B) −→ L2(B)⊗ L2(IR+) by

composition with the Poisson process (Nt)t∈IR+ . We define an injection

i : L2(B)⊗H → L2(B)⊗ L2(IR+) by it(f) = −f(Nt−), t ∈ IR+, and let

D̃ = i ◦D.

The injection i has a dual operator j : L2(B)⊗ L2(IR+) −→ L2(B)⊗H such that

(i(f), u)L2(IR+) = (f, j(u))H

for f ∈ L2(B) ⊗ l2(IN) et u ∈ L2(B) ⊗ L2(IR+). Let δ̃ = δ ◦ j. It is easily checked

that D̃ et δ̃ are closable on L2(B,P ) and adjoint of each other, as well as D and δ

are adjoints, cf. [18]. Let Dom(δ̃) denote the domain of δ̃ and let (Ft)t∈IR+ be the

filtration generated by the Poisson process (Nt)t∈IR+ . If v ∈ L2(B)⊗L2(IR+) is (Ft)-
predictable, then δ̃(v) coincides with the compensated Poisson stochastic integral of

v, cf. [2], [7], [18]. If F ∈ DU2,1(H) is such that F = j(u) with u ∈ Dom(δ̃), then:

ΛF = det2(IH +Dj(u)) exp(−δ̃(u)).

3 The case of contractive transformations

Let K denote the set of finite rank linear operators K : H → H with rational

coefficients such that IH + K is invertible and let γ(K) = (‖ (IH +K)−1 ‖∞)
−1

,

K ∈ K. Let V denote the subset of H made of sequences with rational coefficients

and finite support in IN. We now show an absolute continuity result for contractive

mappings. In the general case, cf. the next section, F will be written locally as the

composition of a Lipschitz map, a linear map and a translation.

Proposition 5 Let K ∈ K, v ∈ V and n0 ∈ IN such that Support(v), Support(Kh) ⊂
{0, . . . , n0}, h ∈ H. Let A be a bounded Borel set in B◦+, and let F : B → H be

measurable. Let T = IB + F + K + v. We make the following assumptions on

(F,K, v, A):

• F has a bounded support in B,
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• ‖| F |H‖∞<∞,

• F (k) = 0 on {τk = 0}, k ∈ IN,

• There is c ∈ IR+, 0 < c < 1, such that

| F (ω + h)− F (ω) |H≤ cγ(K) | h |H , (2)

for h ∈ H, ω, ω + h ∈ B+,

• τk + F (k) ≥ 0 a.s., k > n0,

• T (A) ⊂ B◦+.

Then T is injective and

E
[
f1T (A)

]
= E [1Af ◦ T | ΛF+K+v |]

for f bounded measurable on B.

Proof. We first prove the injectivity of T . Assume that ω, ω′ ∈ B+ are such that

T (ω) = T (ω′). Then (I +K)(ω − ω′) = F (ω′)− F (ω), and ω − ω′ ∈ H. Now,

| (I +K)(ω − ω′) |H ≤ cγ(K) | F (ω′)− F (ω) |H

≤ cγ(K) | (I +K)−1(I +K)(ω′ − ω) |H

≤ c | (I +K)(ω′ − ω) |H ,

and since c < 1, we get ω = ω′.

We modify F with F = 0 on B−. Let (Fn)n≥n0 ⊂ U be a sequence given by Lemma 3,

converging to F in D2,1(H) with Fn = 0 on B−, such that Fn(k) = 0 if k > n, Fn

depending only on τ0, . . . , τn, and let Tn = IB + Fn +K + v. Then

| D
(
Fn ◦ (IB +K)−1

)
|H⊗H≤ c < 1.

By a classical argument, cf. [13], [23], IB + Fn ◦ (IB +K)−1 + v can be shown to be

bijective on B with inverse IB +Gn, where Gn satisfies

Gn = −Fn ◦ (IB +K)−1 ◦ (IB +Gn)− v, (3)

and

| DGn |H⊗H≤ c/(1− c). (4)

11



We have Tn = (IB + v) ◦ (IB + Fn ◦ (IB +K)−1) ◦ (IB +K) and T−1
n = (IB +K)−1 ◦

(IB +Gn). Moreover,

Tn({ω ∈ B : ωk ≥ 0, k > n0}) = {ω ∈ B : ωk ≥ 0, k > n0} (5)

since τk+Fn(k) ≥ 0 on B and τk+Gn(k) ≥ 0 on {ω ∈ B : ωl ≥ 0, l > n0}, k > n0,

from (3). Let α > 0 and

B◦+(α) = {ω ∈ B◦+ : ‖ ω ‖B< α}.

By boundedness of F and B◦+(α), there is V ∈ V with Support(V ) ⊂ {0, . . . , n0} such

that T−1
n (k) > Vk on B◦+(α), k, n ∈ IN, since (Fn)n≥n0 and (Gn)n≥n0 are uniformly

bounded in n and ω. Let TV : B −→ B denote the translation TV (ω) = ω + V , and

let

µα = exp

(
−

i=n0∑
i=0

Vi

)
(TV )∗P.

There is a function g ∈ C∞(IRn+1, IRn+1) with at most linear growth such that Fn +

K+v = π∗ng(τ0, . . . , τn), n ≥ n0. Let π⊥n = IB−πn, denote by P⊥n the image measure

of P by π⊥n and let B⊥n = π⊥n (B). The Jacobi theorem in finite dimension gives for

n > n0:∫
B

1B◦+(α) ◦ Tnf ◦ Tn | ΛFn+K+v | dµα

=

∫
B⊥n

∫
IRn+1

1B◦+(α)(ω + π∗n(x0 + g0, . . . , xn + gn))f(ω + π∗n(x0 + g0, . . . , xn + gn))

| det(IIRn+1 + ∂g) | exp(−(g0 + · · ·+ gn + x0 + · · ·+ xn))dxdP⊥n (ω)

=

∫
B⊥n

∫
IRn+1

+

1B◦+(α)(ω + π∗ny)f(ω + π∗ny) exp(−(y0 + · · ·+ yn))dydP⊥n (ω)

= E
[
1B◦+(α)f

]
for f ∈ C+

b (B). We need a uniform integrability argument for the left hand side,

namely we have to show that

sup
n∈IN

∫
B

1B◦+(α) ◦ Tn | ΛFn+K+v log | ΛFn+K+v || dµα <∞.

Since (| DFn |H⊗H)n∈IN is bounded uniformly in n and ω, (| det2DTn |)n∈IN is uni-

formly lower and upper bounded, hence we only need to estimate∫
B

1B◦+(α) ◦ Tn | δ(Fn +K + v)ΛFn+K+v | dµα = E
[
1B◦+(α) | δ(Fn +K + v) ◦ T−1

n |
]
.

12



We have

sup
n∈IN

E
[
1B◦+(α) | δ(πn0Fn +K + v) ◦ T−1

n |
]
<∞

since πn0Fn is uniformly bounded with its derivative and T−1
n is uniformly bounded

in n and ω on B◦+(α). It remains to study

sup
n∈IN

E
[
1B◦+(α) | δ(π⊥n0

Fn) ◦ T−1
n |

]
.

We have from Prop. 4:

δ(π⊥n0
Fn) ◦ T−1

n = δ(π⊥n0
Fn ◦ T−1

n )

+trace
[(
Dπ⊥n0

Fn
)∗ ◦ T−1

n ·D
(
−K ◦ (I +K)−1 + (I +K)−1 ◦Gn

)]
.

The trace term is uniformly bounded in n and ω from (4). From the construction

of Gn by iterations, cf. (3), it can be shown that T−1
n (k) = 0 on {τk = 0}, k > n0,

since Fn(k) = 0 on {τk = 0}, k ∈ IN. We have π⊥n0
Gn = −π⊥n0

Fn ◦ T−1
n , Dπ⊥n0

Gn =

−(DT−1
n )∗.(Dπ⊥no

Fn ◦ T−1
n ), hence π⊥n0

Gn ∈ U and

E
[
1B◦+(α) | δ(π⊥n0

Gn) |
]
≤ E

[
| δ(π⊥n0

Gn) |
]

≤ E
[
| Dπ⊥n0

Gn |2H⊗H
]

≤ (c/(1− c))2, n ∈ IN,

from (1). Choosing a subsequence if necessary and assuming that g ∈ C+
b (B) is zero

outside of B◦+(α), we have the µα-a.e. convergence of (g ◦ Tn | ΛFn+K+v |)n≥n0 to

g ◦ T | ΛF+K+v | (we set F = Fn = 0 on B−, n ∈ IN). Hence∫
B

g ◦ T | ΛF+K+v | dµα = E [g] . (6)

The set T (A) is bounded since A and F are bounded, so that we can choose α > 0

such that T (A) ⊂ B◦+(α). Then (6) remains true for g = 1O where O is successively

an open ball, an open set and a measurable set in B◦+(α). Hence it is still satisfied

for g = f1T (A) where f is measurable and bounded. This gives

E[f ◦ T1A | ΛF+K+v |] =

∫
B

g ◦ T | ΛF+K+v | dµα = E[g] = E[f1T (A)].

2
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4 The case of non-Lipschitz transformations

In this section, we use Prop. 5 to obtain a more general result, valid for F ∈ H−C1
loc.

Next, we prove Th. 1 by locally splitting IB + F into the composition of a linear

operator of finite rank, a contractive map and a translation, following the approaches

of [13], [14], [23]. Again, the added difficulty relies on the fact that P does not have

full support in B.

Proof of Th. 1. For K ∈ K, v ∈ V , n ∈ IN, we let

A(n,K, v) = { ω ∈ B◦+ : ‖ ω ‖B≤ n,

ωk > 4/n, k ≤ n0,

Q(ω) >
4

n
,

sup
|h|H≤1/n

| F (ω + h)−K(ω + h)− v |H< γ(K)/(6n),

sup
|h|H≤1/n

| DF (ω + h)−K |H⊗H< γ(K)/6

}
,

where n0 is the smallest integer such that Support(v), Support(Kh) ⊂ {0, . . . , n0},
h ∈ H. Let FK,v = φ(nρG(n,K,v))(F − K − v), where G(n,K, v) is a σ-compact

modification of A(n,K, v)
⋂
M . Then from Lemma 4, FK,v and G(n,K, v) satisfy

the hypothesis of Prop. 5. We have FK,v = F −K − v a.s. on G(n,K, v), hence by

locality of D, δ and Prop. 5,

E
[
1T (G(n,K,v))f

]
= E

[
1G(n,K,v)f ◦ T | ΛF |

]
.

We can now proceed as in [23]. Denote by (Gk)k∈IN the countable family (G(n,K, v))

and let Mn = Gn

⋂(⋃i=n−1
i=0 Gi

)c
, n ∈ IN∗. We have

⋃
n∈IN∗Mn = M , this union

being a partition,

T−1(ω)
⋂

M =
∞⋃
n=0

{θ ∈Mn : T (θ) = ω} , ω ∈ B,

and T is injective on Mn, n ∈ IN. Hence N(ω;M) is at most countable. Now,

E [f ◦ T | ΛF |] =
∞∑
n=0

E [1Mnf ◦ T | ΛF |]

=
∞∑
n=0

E
[
1T (Mn)f

]
= E [fN(ω;M)] .
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We also have

E [1Mf ◦ T ] =
∞∑
n=0

E

[
1Mnf ◦ Tn

ΛF

ΛF ◦ T ◦ T−1

]
=

∞∑
n=0

E

[
1T (Mn)f

1

ΛF ◦ T

]

= E

f ∑
θ∈T−1(ω)

T
M

1

ΛF (θ)

 .
2

Remark. The expression of the density using the Carleman-Fredholm determinant

and a divergence operator relies in both Wiener and Poisson cases on the simple

forms of the Gaussian and exponential densities. Thus this method does not seem

to be applicable to general renewal processes.

We now check that in the adapted case, Th. 1 yields the usual Girsanov

theorem for the change of intensity of the Poisson process, cf. for instance [3].

Theorem 2 Let (Nt)t≥0 denote the Poisson process on (B,P ) and let ν ∈ C1
c (IR+)

with ν > −1. Let also

L = exp

(
−
∫ ∞

0

ν(s)ds

)∏
k≥1

(1 + ν(Tk))

Then (Nt)t≥0 has intensity (1 + ν(t))t≥0 under LP .

Proof. Define F = j(ν). Then F ∈ H−C1 since P−a.s., only a finite number of jump

times are in the support of ν. Moreover, IB+F is bijective with (IB+F )(B◦+) = B◦+.

The differential DF is given by

DlF (k) =


0, l > k,
ν(Tk), k = l,
ν(Tk)− ν(Tk−1), l < k.

Hence IH + DF is invertible ∀ω ∈ B and F satisfies to the assumptions of Th. 1.

For f ∈ C+
b (B), we have∫

B

f ◦ (IB + F )−1dP =

∫
B

f | ΛF | dP.

Moreover, L =| ΛF |, as follows:

ΛF = det2(IH +DF ) exp(−δ(F ))

= exp(δ ◦ j(ν))
∏
k≥1

(1 + ν(Tk)) exp

(
∞∑
k=1

ν(Tk)

)

= exp

(
−
∫ ∞

0

ν(s)ds

)∏
k≥1

(1 + ν(Tk)) = L.
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We used the fact that δ̃ = δ ◦ j coincides with the compensated Poisson stochastic

integral on the square-integrable predictable processes. We have now that (Nτ(t))t≥0

is a standard Poisson process under LP , where the time change τ is defined as∫ τ(t)

0

(1 + ν(s))ds = t.

The rest of the proof comes from the following proposition. 2

Proposition 6 With the above notations, if (Nτ(t))t≥0 is a standard Poisson process

under a probability P , then (Nt)t≥0 has intensity (1 + ν(t))t≥0.

Proof. cf. [3]. We need to show that for any process of the form

C̃t(ω) = 1A(ω)1]τ(a),τ(b)](t)

where 0 ≤ a ≤ b and A ∈ Fτ(a),

E

[∫ ∞
0

C̃sdNτ(s)

]
= E

[∫ ∞
0

(1 + ν(s))C̃sds

]
Let Cs(ω) = 1A(ω)1]τ(a),τ(b)](s). We have

E

[∫ ∞
0

C̃sdNs

]
= E

[
1A(Nτ(b) −Nτ(a))

]
= E

[∫ ∞
0

CsdNτ(s)

]
= E [1A(b− a)] = E

[
1A

∫ τ(b)

τ(a)

(1 + ν(s))ds

]

= E

[∫ ∞
0

(1 + ν(s))C̃sds

]
.

2

We end this section with an example which uses the discrete chaotic decomposition

of L2(B,P ) described in [18]. Discrete multiple stochastic integrals In of functions

in the symmetric tensor product l2(IN)◦n are defined with the Laguerre polynomials

in such a way that every F ∈ L2(B,P ) admits the unique orthogonal decomposition

F =
∞∑
n=0

In(fn),

with fn ∈ l2(IN)◦n, n ∈ IN. For f ∈ l2(IN), we define an exponential vector ε(f) by

ε(f) =
∞∑
n=0

In(f on).
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The following simple example of a linear non-anticipative transformation shows the

role played by the discrete chaotic decomposition of L2(B,P ) in the expression of

the density function. Let f ∈ l2(IN) with ‖ f ‖2< 1. We let F (k) = τkfk, k ∈ IN, i.e.

F = −j ◦ i(f). Let G(k) = τk
fk

1−fk
, ∀k ∈ IN. Then

(IB + F )−1 = IB +G.

It is clear that G ∈ H − C1, IB + G : B → B is bijective, IH + DG : H → H is

invertible ∀ω ∈ B, and (IB +G)(B◦+) = B◦+. From Th. 1, (IB +F )∗P =| ΛG | P. But

DlG(k) =

{
fk/(1− fk), k = l,
0, k 6= l.

Hence

| ΛG | =
∞∏
k=0

(
1 +

fk
1− fk

)
exp

(
∞∑
k=0

− fk
1− fk

)
exp(−δ(G))

=
∞∏
k=0

1

1− fk
exp

(
−τk

fk
1− fk

)
,

=
∞∑
n=0

1

n!
In(f on) = ε(f)

from a result in [18], and (IB − j ◦ i(f))∗P = ε(f)P . We notice that in this case, the

density has an exponential form in the discrete chaotic decomposition of L2(B,P ).
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aléatoires réelles sur l’espace de Wiener. J. Funct. Anal., 69:229–259, 1986.

[2] N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space. de Gruyter,
1991.
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