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In this paper we derive a formula for the expectation of random Hermite
polynomials in Skorohod integrals, extending classical results in the adapted
case. As an application we recover, under simple conditions and with short
proofs, the anticipative Girsanov identity and quasi-invariance results obtained
in [6] for quasi-nilpotent shifts on the Wiener space.

Key words: Malliavin calculus, Skorohod integral, Wiener measure, quasi-invariance,
Girsanov identity, Euclidean motions.
Mathematics Subject Classification: 60H07, 60G30.

1 Introduction

It is well known that the Hermite polynomial

Hn(x, µ) =
∑

0≤2k≤n

n!(−µ/2)k

k!(n− 2k)!
xn−2k, x ∈ IR, (1.1)

with parameter µ ∈ IR and generating function

etx−t
2µ/2 =

∞∑
n=0

tn

n!
Hn(x, µ), x, t ∈ IR, (1.2)

∗nprivault@ntu.edu.sg
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satisfies the identity

E[Hn(X, σ2)] =
1√

2πσ2

∫ ∞
−∞

Hn(x, σ2)e−x
2/(2σ2)dx = 0, n ≥ 1, (1.3)

where X ' N (0, σ2) is a centered Gaussian random variable with variance σ2 ≥ 0,

since

E[H2n(X, σ2)] =
n∑
k=0

(2n)!(−σ2/2)k

k!(2n− 2k)!
E[X2n−2k]

=
(2n)!

n!

n∑
k=0

(
n

k

)
(−σ2/2)k(σ2/2)n−k

= 0,

from the even Gaussian moment E[X2m] = (σ2/2)m(2m)!/m!, m ≥ 0.

The identity (1.3) holds in particular when X is written as the stochastic integral

X =

∫ ∞
0

f(s)dBs

of a deterministic real-valued function f with respect to the standard Brownian mo-

tion (Bt)t∈IR+ and σ2 is the constant σ2 =

∫ ∞
0

|f(s)|2ds.

It is well known, however, that the Gaussianity of X is not required for E[Hn(X, σ2)]

to vanish when σ2 is allowed to be random. Indeed, such an identity also holds in the

random adapted case under the form

E

[
Hn

(∫ ∞
0

utdBt,

∫ ∞
0

|ut|2dt
)]

= 0, (1.4)

where (ut)t∈IR+ is a square-integrable process adapted to the filtration generated by

(Bt)t∈IR+ , due to the fact that

Hn

(∫ ∞
0

utdBt,

∫ ∞
0

|ut|2dt
)

= n!

∫ ∞
0

utn

∫ tn

0

utn−1 · · ·
∫ t2

0

ut1dBt1 · · · dBtn ,

is the n-th order iterated multiple stochastic integral of ut1 · · ·utn with respect to

(Bt)t∈IR+ , cf. [4] and [2] page 319.
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In this paper we prove an extension of (1.4) to the random case, by computing in

Theorem 3.1 the expectation

E[Hn(δ(u), ‖u‖2)], n ≥ 1,

of the random Hermite polynomial Hn(δ(u), ‖u‖2), where δ(u) is the Skorohod inte-

gral of a possibly anticipating process (ut)t∈IR+ . In particular we provide conditions

on the process (ut)t∈IR+ for the expectation E[Hn(δ(u), ‖u‖2)], n ≥ 1, to vanish. Such

conditions cover the quasi-nilpotence condition of [5] and include the adaptedness of

(ut)t∈IR+ , which recovers (1.4) as a particular case since δ(u) coincides with the Itô

integral when (ut)t∈IR+ is adapted.

This type of argument has been applied in [3] to the computation of moments and

to the invariance of the Skorohod integral under random rotations, however the case

of Hermite polynomials is more complicated and it leads to Girsanov identities as an

additional application.

Indeed, it is well known that in the adapted case, (1.4) and (1.2) can be used for the

proof of the (adapted) Girsanov identity

E

[
exp

(∫ ∞
0

utdBt −
1

2

∫ ∞
0

|ut|2dt
)]

= 1,

under the Novikov type condition

E

[
exp

(
1

2

∫ T

0

|ut|2dt
)]

<∞.

Similarly we recover, under simple conditions and with short proofs, the anticipating

Girsanov identity obtained in [5] for quasi-nilpotent anticipative shifts of Brownian

motion. This also simplifies the proof of classical results on the quasi-invariance of

Euclidean motions [6], cf. Section 4, and on the invariance of random rotations.

The results of this paper can be formally summarized by the derivation formula

∂

∂t
E
[
etδ(u)−

t2

2
‖u‖2
]

= tE
[
etδ(u)−t

2〈u,u〉/2〈D∗u,D(IH − tDu)−1u〉
]
, (1.5)
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for t in a neighborhood of 0, cf. Relation (4.3) below, where D and δ respectively

denote the Malliavin gradient and Skorohod integral, showing that

E

[
exp

(
δ(u)− 1

2
‖u‖2

)]
= 1,

provided

〈D∗u,D(IH − tDu)−1u〉 = 0,

for t in a neighborhood of 0, cf. Corollary 3.3 below for a formal statement.

We proceed as follows. In Section 2 we introduce the notation on the Malliavin

derivative and Skorohod integral used in this paper. In Section 3 we derive our

main formula for the expectation of Hermite polynomials composed with a Skorohod

anticipative integral. Finally in Section 4 we study the applications of Theorem 3.1 to

anticipative Girsanov identities on the Wiener space. These results can be similarly

derived for the Hitsuda-Skorohod integral in the white noise framework, cf. [1].

2 Notation

We refer to [7] and to Appendix B in [6] for the notation recalled in this section. Let

(Bt)t∈IR+ denote a standard IRd-valued Brownian motion on the Wiener space (W,P )

with W = C0(IR+, IR
d). For any separable Hilbert space X, consider the Malliavin

derivative D with values in H = L2(IR+, X ⊗ IRd), defined by

DtF =
n∑
i=1

1[0,ti](t)∂if(Bt1 , . . . , Btn), t ∈ IR+,

for F of the form

F = f(Bt1 , . . . , Btn), (2.1)

f ∈ C∞b (IRn, X), t1, . . . , tn ∈ IR+, n ≥ 1. Let IDp,k(X) denote the completion of the

space of smooth X-valued random variables under the norm

‖u‖IDp,k(X)
=

k∑
l=0

‖Dlu‖Lp(W,X⊗H⊗l), p > 1,
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where X ⊗H denotes the completed symmetric tensor product of X and H. For all

p, q > 1 such that p−1 + q−1 = 1 and k ≥ 1, let

δ : IDp,k(X ⊗H)→ IDq,k−1(X)

denote the Skorohod integral operator adjoint of

D : IDp,k(X)→ IDq,k−1(X ⊗H),

with

E[〈F, δ(u)〉X ] = E[〈DF, u〉X⊗H ], F ∈ IDp,k(X), u ∈ IDq,k(X ⊗H).

For u ∈ ID2,1(H) we identify Du = (Dtus)s,t∈IR+ to the random operator Du : H → H

almost surely defined by the relation

(Du)v(s) =

∫ ∞
0

(Dtus)vtdt, s ∈ IR+, v ∈ L2(W ;H),

in which a⊗ b ∈ X ⊗H is identified to a linear operator a⊗ b : H → X via

(a⊗ b)c = a〈b, c〉H , a⊗ b ∈ X ⊗H, c ∈ H.

The adjoint D∗u of Du on H ⊗H is given by

(D∗u)v(s) =

∫ ∞
0

(D†sut)vtdt, s ∈ IR+, v ∈ L2(W ;H),

where D†sut denotes the transpose matrix of Dsut in IRd ⊗ IRd. We will use the

commutation relation

Dδ(u) = u+ δ(D∗u), u ∈ ID2,2(H). (2.2)

Finally, recall that Du : H → H is a quasi-nilpotent operator if

trace (Du)k = 0, k ≥ 2, (2.3)

where the trace of (Du)k is a.s. given for all k ≥ 2 by

trace (Du)k =

∫ ∞
0

· · ·
∫ ∞
0

〈D†tk−1
utk , Dtk−2

utk−1
· · ·Dt1ut1Dtkut1〉IRd⊗IRddt1 · · · dtk.

In the sequel we will drop the indices in the scalar products and norms in IRd ⊗ IRd,

H, and H ⊗H, letting in particular ‖u‖ = ‖u‖H .
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3 Random Hermite polynomials

In Theorem 3.1 below we extend Relations (1.3) and (1.4) by computing the expecta-

tion of the random Hermite polynomial Hn(δ(u), ‖u‖2) in the Skorohod integral δ(u),

n ≥ 1. This result will be applied in Section 4 to anticipating Girsanov identities on

the Wiener space. In the sequel, all scalar products in H and in H⊗H will be simply

denoted by 〈·, ·〉, with ‖h‖2 = 〈h, h〉H , h ∈ H.

Theorem 3.1 For any n ≥ 0 and u ∈ IDn+1,2(H) we have

E[Hn+1(δ(u), ‖u‖2)] =
n−1∑
l=0

n!

l!
E

[
δ(u)l

∑
0≤2k≤n−1−l

(−1)k

k!

‖u‖2k

2k
〈D∗u,D((Du)n−2k−l−1u)〉

]
.

Clearly it follows from Theorem 3.1 that if u ∈ IDn,2(H) and

〈D∗u,D((Du)ku)〉 = 0, 0 ≤ k ≤ n− 2, (3.1)

then we have

E[Hn(δ(u), ‖u‖2)] = 0, n ≥ 1, (3.2)

which extends Relation (1.4) to the anticipating case.

Lemma 3.2 For all k ≥ 0 and u ∈ IDk+1,2(H) we have

〈D∗u,D((Du)ku)〉 = trace (Du)k+2 +
k−1∑
i=0

1

k + 1− i
〈(Du)iu,D trace (Du)k+1−i〉.

Proof. From [3] pages 120-121 we have

〈D∗u,D((Du)ku)〉 = 〈D∗u, (Du)k+1〉+ 〈D∗u,D(Du)ku〉

= trace (Du)k+2 +
k−1∑
i=0

1

k + 1− i
〈(Du)iu,D trace (Du)k+1−i〉.

�

As a consequence of Lemma 3.2, if Du : H → H is a.s. quasi-nilpotent in the sense

of (2.3) then it satisfies (3.1). This leads to the following corollary of Theorem 3.1.
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Corollary 3.3 Let u ∈ IDn,2(H) for some n ≥ 1, such that Du : H → H is a.s.

quasi-nilpotent or satisfies (3.1). Then we have

E[Hn(δ(u), ‖u‖2)] = 0.

Recall that when the process (ut)t∈IR+ is adapted with respect to the Brownian filtra-

tion we have trace (Du)k = 0, k ≥ 2, cf. [6], and therefore Condition (3.1) is satisfied.

This recovers (1.4) in the setting of adapted processes since in this case δ(u) coincides

with the Itô integral of u ∈ L2(W ;H) with respect to Brownian motion, i.e.

δ(u) =

∫ ∞
0

utdBt. (3.3)

Proof of Theorem 3.1. Step 1. We show that for any n ≥ 1 and u ∈ IDn+1,2(H) we

have

E[Hn+1(δ(u), ‖u‖2)] =
∑

0≤2k≤n−1

(−1)k
n!

k!2k(n− 2k − 1)!
E[δ(u)n−2k−1〈u, u〉k〈u, δ(D∗u)〉]

+
∑

1≤2k≤n

(−1)k
n!

k!2k(n− 2k)!
E[δ(u)n−2k〈u,D〈u, u〉k〉]. (3.4)

For F ∈ ID2,1 and l, k ≥ 1 we have

E[Fδ(u)l+1] =
l + 2k + 1

2k
E[Fδ(u)l+1]− l + 1

2k
E[Fδ(u)l+1]

=
l + 2k + 1

2k
E[Fδ(u)l+1]− l + 1

2k
E[〈u,D(δ(u)lF )〉]

=
l + 2k + 1

2k
E[Fδ(u)l+1]− l(l + 1)

2k
E[Fδ(u)l−1〈u,Dδ(u)〉]− l + 1

2k
E[δ(u)l〈u,DF 〉]

=
l + 2k + 1

2k
E[Fδ(u)l+1]− l(l + 1)

2k
E[Fδ(u)l−1〈u, u〉]

− l(l + 1)

2k
E[Fδ(u)l−1〈u, δ(D∗u)〉]− l + 1

2k
E[δ(u)l〈u,DF 〉],

i.e.

E[Fδ(u)n−2k+1] +
(n− 2k)(n− 2k + 1)

2k
E[Fδ(u)n−2k−1〈u, u〉]

=
n+ 1

2k
E[Fδ(u)n−2k+1]− (n− 2k)(n− 2k + 1)

2k
E[Fδ(u)n−2k−1〈u, δ(D∗u)〉]

−n− 2k + 1

2k
E[δ(u)n−2k〈u,DF 〉].
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Hence, taking F = 〈u, u〉k, we get

E[δ(u)n+1] = E[〈u,Dδ(u)n〉]

= nE[δ(u)n−1〈u,Dδ(u)〉]

= nE[δ(u)n−1〈u, u〉] + nE[δ(u)n−1〈u, δ(D∗u)〉]

= nE[δ(u)n−1〈u, δ(D∗u)〉]

−
∑

1≤2k≤n+1

(−1)k
n!

(k − 1)!2k−1(n+ 1− 2k)!

(
E[δ(u)n−2k+1〈u, u〉k]

+
(n− 2k + 1)(n− 2k)

2k
E[δ(u)n−2k−1〈u, u〉k+1]

)
= nE[δ(u)n−1〈u, δ(D∗u)〉]

−
∑

1≤2k≤n+1

(−1)k
n!

(k − 1)!2k−1(n+ 1− 2k)!

(
n+ 1

2k
E[δ(u)n−2k+1〈u, u〉k]

−(n− 2k)(n− 2k + 1)

2k
E[δ(u)n−2k−1〈u, u〉k〈u, δ(D∗u)〉]

−n− 2k + 1

2k
E[δ(u)n−2k〈u,D〈u, u〉k〉]

)
= −

∑
1≤2k≤n+1

(−1)k
(n+ 1)!

k!2k(n+ 1− 2k)!
E[δ(u)n−2k+1〈u, u〉k]

+
∑

0≤2k≤n−1

(−1)k
n!

k!2k(n− 2k − 1)!
E[δ(u)n−2k−1〈u, u〉k〈u, δ(D∗u)〉]

+
∑

1≤2k≤n

(−1)k
n!

k!2k(n− 2k)!
E[δ(u)n−2k〈u,D〈u, u〉k〉],

which yields (3.4) after using (1.1).

Step 2. For F ∈ ID2,1 and 0 ≤ i ≤ l we have

E[Fδ(u)l〈(Du)iu, δ(D∗u)〉]− lE[Fδ(u)l−1〈(D∗u)i+1u, δ(D∗u)〉]

= E[〈D∗u,D(Fδ(u)l(Du)iu)〉]− lE[Fδ(u)l−1〈(D∗u)i+1u, δ(D∗u)〉]

= lE[Fδ(u)l−1〈D∗u, (Du)iu⊗Dδ(u)〉]− lE[Fδ(u)l−1〈(D∗u)i+1u, δ(D∗u)〉]

+E[δ(u)l〈D∗u,D(F (Du)iu)〉]

= lE[Fδ(u)l−1〈D∗u, (Du)iu⊗Dδ(u)〉] + lE[Fδ(u)l−1〈D∗u, (Du)iu⊗ δ(D∗u)〉]

−lE[Fδ(u)l−1〈(D∗u)i+1u, δ(D∗u)〉] + E[δ(u)l〈D∗u,D(F (Du)iu)〉]
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= lE[Fδ(u)l−1〈(Du)i+1u, u〉] + E[δ(u)l〈(Du)i+1u,DF 〉]

+E[Fδ(u)l〈D∗u,D((Du)iu)〉].

Hence, replacing l above with l − i, we get

E[Fδ(u)l〈u, δ(D∗u)〉] = l!E[F 〈(Du)lu, δ(D∗u)〉]

+
l−1∑
i=0

l!

(l − i)!
(
E[Fδ(u)l−i〈(Du)iu, δ(D∗u)〉]− (l − i)E[Fδ(u)l−i−1〈(D∗u)i+1u, δ(D∗u)〉]

)
= l!E[F 〈(Du)lu, δ(D∗u)〉] +

l−1∑
i=0

l!

(l − i− 1)!
E[Fδ(u)l−i−1〈(Du)i+1u, u〉]

+
l−1∑
i=0

l!

(l − i)!
E[δ(u)l−i〈(Du)i+1u,DF 〉] +

l−1∑
i=0

l!

(l − i)!
E[Fδ(u)l−i〈D∗u,D((Du)iu)〉]

= l!E[〈(Du)l+1u,DF 〉] +
l−1∑
i=0

l!

(l − i− 1)!
E[Fδ(u)l−i−1〈(Du)i+1u, u〉]

+
l−1∑
i=0

l!

(l − i)!
E[δ(u)l−i〈(Du)i+1u,DF 〉] +

l∑
i=0

l!

(l − i)!
E[Fδ(u)l−i〈D∗u,D((Du)iu)〉]

= l!E[〈(Du)l+1u,DF 〉] +
l−1∑
i=0

l!

(l − i− 1)!
E[Fδ(u)l−i−1〈(Du)i+1u, u〉]

+
l∑

i=1

l!

(l − i+ 1)!
E[δ(u)l−i+1〈(Du)iu,DF 〉] +

l∑
i=0

l!

(l − i)!
E[Fδ(u)l−i〈D∗u,D((Du)iu)〉],

thus letting F = 〈u, u〉k and l = n− 2k − 1 above, and using (3.4) in Step 1, we get

E[Hn+1(δ(u), ‖u‖2)] =
∑

0≤2k≤n−1

(−1)k
n!

k!2k(n− 2k − 1)!
E[δ(u)n−2k−1〈u, u〉k〈u, δ(D∗u)〉]

+
∑

1≤2k≤n

(−1)k
n!

k!2k(n− 2k)!
E[δ(u)n−2k〈u,D〈u, u〉k〉]

=
∑

0≤2k≤n

(−1)k
n!

k!2k
E[〈(Du)n−2ku,D〈u, u〉k〉]

+
∑

0≤2k≤n−1

(−1)k

k!2k

n−2k−2∑
i=0

n!

(n− 2(k + 1)− i)!
E[〈u, u〉kδ(u)n−2(k+1)−i〈(Du)i+1u, u〉]

+
∑

0≤2k≤n−1

(−1)k

k!2k

n−2k−1∑
i=1

n!

(n− 2k − i)!
E[δ(u)n−2k−i〈(Du)iu,D〈u, u〉k〉]
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+
∑

0≤2k≤n−1

(−1)k

k!2k

n−2k−1∑
i=0

n!

(n− 2k − 1− i)!
E[〈u, u〉kδ(u)n−2k−i−1〈D∗u,D((Du)iu)〉]

+
∑

0≤2k≤n−1

(−1)k
n!

k!2k(n− 2k)!
E[δ(u)n−2k〈u,D〈u, u〉k〉]

=
∑

0≤2k≤n

(−1)k
n!

k!2k
E[〈(Du)n−2ku,D〈u, u〉k〉]

−
∑

0≤2k≤n−1

(−1)k+1

(k + 1)!2k+1

n−2k−2∑
i=0

n!

(n− 2(k + 1)− i)!
E[δ(u)n−2(k+1)−i〈(Du)iu,D〈u, u〉k+1〉]

+
∑

0≤2k≤n

(−1)k

k!2k

n−2k−1∑
i=0

n!

(n− 2k − i)!
E[δ(u)n−2k−i〈(Du)iu,D〈u, u〉k〉]

+
∑

0≤2k≤n−1

(−1)k

k!2k

n−2k−1∑
i=0

n!

(n− 2k − 1− i)!
E[〈u, u〉kδ(u)n−2k−i−1〈D∗u,D((Du)iu)〉]

=
∑

0≤2k≤n−1

(−1)k

k!2k

n−2k−1∑
i=0

n!

(n− 2k − 1− i)!
E[〈u, u〉kδ(u)n−2k−i−1〈D∗u,D((Du)iu)〉],

where we applied the relation

〈u, u〉k〈(Du)i+1u, u〉 =
1

2
〈u, u〉k〈(Du)iu,D〈u, u〉〉

=
1

2(k + 1)
〈(Du)iu,D〈u, u〉k+1〉

=
1

2(k + 1)
〈(Du)iu,D〈u, u〉k+1〉,

which follows from D〈u, u〉 = 2(D∗u)u and the derivation property of the gradient

operator D. �

4 Anticipative Girsanov identities

The next proposition is an immediate consequence of (3.2), using the generating func-

tion (1.2). In comparison with Proposition 8.2.1 of [6] we do not require assumptions

on the inverse mapping (IH −Du)−1 and we show that quasi-nilpotence of Du can be

replaced by the weaker condition (3.1), while working under a stronger integrability

condition. Let ID∞,2(H) =
⋂
n≥1

IDn,2(H).
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Corollary 4.1 Assume that u ∈ ID∞,2(H) with E[e|δ(u)|+‖u‖
2/2] < ∞, and that Du :

H → H is a.s. quasi-nilpotent, or more generally that (3.1) holds. Then we have

E

[
exp

(
δ(u)− 1

2
‖u‖2

)]
= 1. (4.1)

Proof. From (1.1) we have the bound

|Hn(x, σ2)| ≤
∑

0≤2k≤n

(−1)k

k!2k
n!

(n− 2k)!
|x|n−2k(−σ2)k = Hn(|x|,−σ2),

hence

E

[
∞∑
n=0

1

n!
|Hn(δ(u), ‖u‖2)|

]
≤ E

[
∞∑
n=0

1

n!
Hn(|δ(u)|,−‖u‖2)

]
= E

[
e|δ(u)|+‖u‖

2/2
]
<∞.

Consequently, by Theorem 3.1 and the Fubini theorem we have

E

[
exp

(
δ(u)− 1

2
‖u‖2

)]
= 1 + E

[
∞∑
n=0

1

(n+ 1)!
Hn+1(δ(u), ‖u‖2)

]

= 1 +
∞∑
n=0

1

(n+ 1)!
E
[
Hn+1(δ(u), ‖u‖2)

]
= 1.

�

This shows in particular that if u ∈ ID∞,2(H) is such that ‖u‖ is deterministic and

Du : H → H is a.s. quasi-nilpotent, or more generally (3.1) holds, then we have

E
[
eδ(u)

]
= e

1
2
‖u‖2 ,

i.e. δ(u) has a centered Gaussian distribution with variance ‖u‖2, cf. Theorem 2.1-b)

of [5] and Corollary 2.2 of [3].

More generally, Corollary 4.2 below states an anticipative Girsanov identity (4.2)

that recovers Proposition 8.2.1 of [6] under simpler hypotheses, namely without re-

quirements on the smoothness and integrability of (IH − Du)−1. In the sequel, for

u ∈ ID2,1(H) we let

Λu = exp

(
δ(u)− 1

2
‖u‖2

)
,
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and we denote by Tu the transformation of W defined by

Tuω(t) = ω(t) +

∫ t

0

us(ω)ds, t ∈ IR+, ω ∈ W.

Corollary 4.2 Assume that u ∈ ID∞,2(H) with E[eε(|δ(u)|+‖u‖
2/2)] < ∞ for some

ε > 1, and that Du : H → H is a.s. quasi-nilpotent, or more generally that (3.1)

holds. Then the transformation Tu : W → W satisfies the Girsanov type identity

E[F ◦ Tu Λu] = E[F ], (4.2)

for all bounded random variables F .

Proof. For all exponential vectors Λf = e
∫∞
0 f(t)dBt− 1

2
‖f‖2 , f ∈ L2(IR+), we have

Λf ◦ Tu Λu = e
∫∞
0 f(t)dBt−

∫∞
0 f(t)u(t)dt− 1

2
‖f‖2Λu

= eδ(f+u)−
1
2
‖f‖2− 1

2
‖u‖2−〈f,u〉

= Λu+f ,

hence by Corollary 4.2 we have

E [Λf ◦ Tu Λu] = E [Λu+f ] = 1,

and we conclude by density of the linear combination of exponential vectors Λf , f ∈
L2(IR+), in L2(W ). �

In particular, if Tu : W → W is invertible, then by Corollary 4.2 it is absolutely

continuous with respect to the Wiener measure, and

dT ∗uP

dP
= Λu.

We refer to Corollary 8.4.1 of [6] for sufficient conditions for the invertibility of

Tu : W → W .

The conditions imposed to obtain the Girsanov identity for Euclidean motions written

as the sum of a rotation and a quasi-nilpotent shifts as in Theorem 8.6.1 of [6] can be

simplified similarly.
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Finally we sketch the proof of the formal identity (1.5) stated in the introduction, i.e.

∂

∂t
E
[
etδ(u)−

t2

2
‖u‖2
]

= tE
[
etδ(u)−t

2〈u,u〉/2〈D∗u,D(IH − tDu)−1u〉
]
. (4.3)

Proof. We have

∂

∂t
E[etδ(u)−

t2

2
‖u‖2 ] =

∞∑
n=0

tn

n!
E[Hn+1(δ(u), ‖u‖2)]

=
∞∑
n=0

tnE

[
n−1∑
l=0

δ(u)l

l!

∑
0≤2k≤n−1−l

(−1)k

k!

‖u‖2k

2k
〈D∗u,D((Du)n−2k−l−1u)〉

]

= tE

[
∞∑
l=0

tlδ(u)l

l!

∞∑
n=0

tn
∑

0≤2k≤n

(−1)k

k!

‖u‖2k

2k
〈D∗u,D((Du)n−2ku)〉

]

= tE

[
etδ(u)

∞∑
n=0

tn
∑

0≤2k≤n

(−1)k

k!

‖u‖2k

2k
〈D∗u,D((Du)n−2ku)〉

]

= tE

[
etδ(u)

∞∑
k=0

(−1)k

k!

‖u‖2k

2k

∞∑
n=0

tn〈D∗u,D((Du)nu)〉

]
= tE

[
etδ(u)−t

2〈u,u〉/2〈D∗u,D(IH − tDu)−1u〉
]
.

�

In a similar way, from Theorem 2.1 of [3] we get

∂

∂t
E[etδ(u)] =

∞∑
n=0

tn

n!
E[(δ(u))n+1]

=
∞∑
n=0

tn
n∑
k=1

1

(n− k)!
E
[
(δ(u))n−k

(
〈(Du)k−1u, u〉+ 〈D∗u,D((Du)k−1u)〉

)]
= t

∞∑
n=0

tn

n!
E

[
(δ(u))n

∞∑
k=0

tk
(
〈(Du)ku, u〉+ 〈D∗u,D((Du)ku)〉

)]
= tE

[
etδ(u)

(
〈u, (IH − tDu)−1u〉+ 〈D∗u,D((IH − tDu)−1u)〉

)]
,

hence

∂

∂t
E[etδ(u)] = tE

[
etδ(u)

(
〈u, (IH − tDu)−1u〉+ 〈D∗u,D((IH − tDu)−1u)〉

)]
.
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