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Abstract

We derive closed-form analytical approximations in terms of series expan-
sions for option prices and implied volatilities in a 2-hypergeometric stochastic
volatility model with correlated Brownian motions. As in [4], these expan-
sions allow us to recover the well-known skew and smile phenomena on implied
volatility surfaces, depending on the values of the correlation parameter.
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1 Introduction

Stochastic volatility models have been introduced as realistic models for the motion of

asset prices in financial markets. The most well-known of such models is the Heston [7]

model, which however has one major drawback as its stochastic volatility may reach

zero in finite time unless one imposes the Feller condition, and this poses potential
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problems in model calibration, cf. e.g. § 1.3.3 of Janek et al. [8] and § 6.5.2 of Henry-

Labordère [6]. In view of this, the α-hypergeometric stochastic volatility model has

been introduced by Da Fonseca and Martini [2] to ensure strict positivity of volatility.

In the α-hypergeometric model the dynamics of the asset price St at time t and the

volatility Vt are governed by

dSt = Ste
VtdW 1

t , dVt =
(
a− c

2
eαVt

)
dt+ ηdW 2

t , (1)

c > 0, η > 0, a ∈ R, α > 0, and W 1
t and W 2

t are correlated Brownian motions

satisfying 〈W 1,W 2〉t = ρt. In this model the risk free rate r is taken to be equal to 0

and the value of c can be used to set the price of volatility risk.

Stochastic volatility models generally do not admit explicit solutions, and this has

motivated the development of approximate expansions. In Fouque et al. [3] a method

to obtain series expansions for European option prices has been proposed in the He-

ston model. The first and second order terms in this expansion do not depend on

the value of stochastic volatility which is a key quantity in the Heston model, and as

a consequence it cannot be used to reproduce the smile effect in model calibration.

A more accurate approximation has been proposed in Han et al. [4] for European

option prices in the Heston model via a series expansion that involves the underlying

stochastic volatility, allowing the authors to recover the smile effect and to avoid the

secular effect and terminal layer problems posed by the third term in the expansion

of [3], see also Kim [9] under stochastic interest rates.

In this paper we extend the method of [4], see also [10], in order to derive series expan-

sions based on approximations of the 2-hypergeometric model of [2]. In particular, our

analytical approximate solution depends on the underlying stochastic volatility. We

check that our approximate solutions agree with Monte Carlo simulations, including

in the case of first order approximations. We also derive implied volatility estimates

which display the well known phenomena of skew and smile.
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2 Stochastic volatility

We start with a general class of stochastic volatility models in which the dynamics of

the asset price and volatility processes are given by

dSεt = Sεt p(t, V
ε
t )dW 1

t , dV ε
t = u(t, V ε

t )dt+ εh(t, V ε
t )dW 2

t ,

where ε > 0. Note that by Brownian rescaling, small volatility coefficients can be

used to derive small time asymptotics, cf. e.g. Section 2.1.8 of [2]. Recall that under

absence of arbitrage, the vanilla option price of an option with payoff g (SεT ) takes the

form

f (t, Sεt , V
ε
t ) := E [g (SεT ) | Ft]

where (Ft)t∈[0,T ] is the filtration generated by (W 1
t ,W

2
t )t∈[0,T ], and the function f(t, x, v)

solves the PDE

∂f

∂t
+ u(t, v)

∂f

∂v
+
x2

2
p2(t, v)

∂f

∂x2
+ ερxp(t, v)h(t, v)

∂2f

∂x∂v
+
ε2

2
h2(t, v)

∂2f

∂v2
= 0, (2)

cf. e.g. (2.17) in [3], with the terminal condition f(T, x, v) = g(x). We start by

expanding f(t, x, v) as

f(t, x, v) = f0(t, x, v) + εf1(t, x, v) + o(ε). (3)

By plugging in the expansion (3) into the pricing PDE (2) we get the system of

equations
∂fn
∂t

+ L0fn + L1fn−1 + L2fn−2 = 0, n ∈ N,

with fn = 0, n ≤ −1, f0(T, x, v) = g(x) and fn(T, x, v) = 0, n ≥ 1. In particular the

operators L0, L1 and L2 are given by

L0 = u(t, v)
∂

∂v
+
x2

2
p2(t, v)

∂2

∂x2
, L1 = ρxp(t, v)h(t, v)

∂2

∂x∂v
, L2 =

1

2
h2(t, v)

∂2

∂v2
.

(4)

3 Deterministic volatility

When n = 0 we have
∂f0
∂t

+ L0f0 = 0, (S0
t )t∈[0,T ] and (V 0

t )t∈[0,T ] are given by

dS0
t = S0

t p
(
t, V 0

t

)
dW 1

t , dV 0
t = u

(
t, V 0

t

)
dt
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and the vanilla option price f0 (t, S0
t , V

0
t ) := E [g (S0

T ) | Ft] can be computed by the

Black-Scholes formula as

f0
(
t, S0

t , V
0
t

)
= E

[(
S0
T −K

)+ ∣∣∣Ft] = E

[(
S0
t exp

(
Zγ
(
t, V 0

t

)
− 1

2
γ2
(
t, V 0

t

))
−K

)+
∣∣∣∣∣Ft
]
,

where Z ' N (0, 1) is independent of Ft and γ2
(
t, V 0

t

)
:=

∫ T

t

p2
(
u, V 0

u

)
du, t ∈ [0, T ].

We note that in the α-hypergeometric model (1) with η = 0 the integral
∫ T
t
eαV

0
u du

can be computed in closed form as∫ T

t

eαV
0
u du =

2

αc
log

(
1 +

αc

2
eαV

0
t

∫ T−t

0

eαasds

)
=

2

αc
log

(
1 +

αc

2
eαV

0
t
eαa(T−t) − 1

αa

)
,

cf. § 2.1.1 of [2], and this yields the following proposition.

Proposition 1. In the 2-hypergeometric model (1) with η = 0 the European call price

f0
(
t, S0

t , V
0
t

)
= E

[(
S0
T −K

)+ ∣∣∣Ft]
under the terminal condition f0(T, x, v) = (x−K)+ is given by

f0(t, x, v) = xΦ (d+(t, x, v))−KΦ (d−(t, x, v)) ,

where Φ is the standard Gaussian cumulative distribution function,

d±(t, x, v) =
1

γ(t, v)

(
log
( x
K

)
± γ2(t, v)

2

)
, and γ2(t, v) =

1

c
log

(
1 + ce2v

e2a(T−t) − 1

2a

)
.

(5)

In the case of a put option the function f0(t, x, v) can be obtained as

f0(t, x, v) = −xΦ (−d+(t, x, v)) +KΦ (−d−(t, x, v)) , t ∈ [0, T ],

by a standard call-put parity argument. In the remainder of this paper we work in

the 2-hypergeometric model with α = 2.
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4 First order expansion

In this section we consider small values of the volatility of volatility by replacing η in

(1) with εηeV
ε
t , ε > 0, i.e. we have

dSεt = Sεt e
V ε
t dW 1

t , dV ε
t =

(
a− c

2
e2V

ε
t

)
dt+ εηeV

ε
t dW 2

t , (6)

and from (4) the operators L0, L1 and L2 are given by

L0 =
(
a− c

2
e2v
) ∂

∂v
+
x2

2
e2v

∂2

∂x2
, L1 = ηρxe2v

∂2

∂x∂v
, L2 =

η2

2
e2v

∂2

∂v2
.

In particular when n = 1 we get

∂f1
∂t

+ L0f1 + L1f0 = 0, with f1(T, x, v) = 0.

Note that our approximation (Sεt , V
ε
t )t∈[0,T ] does not lie within the class of 2-hypergeometric

models.

Proposition 2. The solution of
∂f1
∂t

+L0f1 +L1f0 = 0 under the terminal condition

f1(T, x, v) = 0 is given by

f1(t, x, v) = −ρKη

c
d−(t, x, v)φ (d−(t, x, v))

e−cγ
2(t,v) + cγ2(t, v)− 1

cγ2(t, v)
, t ∈ [0, T ],

where φ(x) is the standard Gaussian probability density function and γ(t, v) is defined

in (5).

Proof. From the relation φ (d+(t, x, v)) =
1√
2π

exp

(
−1

2
(d+(t, x, v))2

)
=
K

x
φ (d−(t, x, v))

and using the Feynman-Kac formula with locally Lipschitz coefficients as in e.g. The-

orem 1 of Heath and Schweizer [5], we have

f1
(
t, S0

t , V
0
t

)
=

∫ T

t

E
[
L1f0

(
r, S0

r , V
0
r

) ∣∣Ft] dr
= −η

∫ T

t

ρKe2V
0
r

γ (r, V 0
r )

∂γ

∂v

(
r, V 0

r

)
E
[
d−
(
r, S0

r , V
0
r

)
φ
(
d−
(
r, S0

r , V
0
r

)) ∣∣Ft] dr
= −ηρKd− (t, S0

t , V
0
t )

γ2 (t, V 0
t )

φ
(
d−
(
t, S0

t , V
0
t

)) ∫ T

t

e2V
0
r γ
(
r, V 0

r

) ∂γ
∂v

(
r, V 0

r

)
dr,
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by a standard computation based on the Gaussian distribution

d−
(
r, S0

r , V
0
r

)
∼ N

(
1

γ (r, V 0
r )

(
log

(
S0
t

K

)
− γ2 (t, V 0

t )

2

)
,
γ2 (t, V 0

t )

γ2 (r, V 0
r )
− 1

)
, r ∈ [t, T ],

given Ft. Finally we note that from (5) we have∫ T

t

e2V
0
r γ
(
r, V 0

r

) ∂γ
∂v

(
r, V 0

r

)
dr =

1

c

∫ T

t

e2V
0
r

(
1− e−cγ2(r,V 0

r )
)
dr

=
1

c2

(
e−cγ

2(t,V 0
t ) + cγ2

(
t, V 0

t

)
− 1
)
. (7)

�

5 Second order expansion

The computation of a second order correction term f̃2(t, x, v) requires us to replace η

in (1) with εηeVtγ4(t, Vt) in order to involve only even powers of γ(r, v) when extending

the computation of (7) above. In this case, L1 and L2 are replaced by the operators

L̃1 = ηρxe2vγ4(t, v)
∂2

∂x∂v
, L̃2 =

η2

2
e2vγ8(t, v)

∂2

∂v2
,

and we look for an expansion of the form

f(t, x, v) = f0(t, x, v) + εf̃1(t, x, v) + ε2f̃2(t, x, v) + o(ε2), (8)

where f0(T, x, v) = (x−K)+, f̃1(T, x, v) = 0, f̃2(T, x, v) = 0, and

∂f0
∂t

+ L0f0 = 0,
∂f̃1
∂t

+ L0f̃1 + L̃1f0 = 0,
∂f̃2
∂t

+ L0f̃2 + L̃1f̃1 + L̃2f0 = 0,

Proposition 3. The first and second order coefficients appearing in the expansion

(8) are given by

f̃1(t, x, v) = −ηρKd−(t, x, v)

c3γ2(t, v)
φ (d−(t, x, v))

(
e−cγ

2(t,v)
(
c2γ4(t, v) + c2γ2(t, v) + 2

)
− 2 +

c3

3
γ6(t, v)

)
,

f̃2(t, x, v) =
η2

c
Kφ (d−(t, x, v))

(
A3(t, v)

γ(t, v)
+ d−(t, x, v)B3(t, v) +

(d−(t, x, v))2

γ(t, v)
B3(t, v)

)
+ η2ρ2Kφ (d−(t, x, v)) (C3(t, v)

+
2D(t, v)

3c7γ4(t, v)

(
(d−(t, x, v))4

3γ(t, v)
− d−(t, x, v) +

(d−(t, x, v))3

3

)
+

(d−(t, x, v))2

γ5(t, v)
E3(t, v)

)
, t ∈ [0, T ],

where the functions Ai, Bi, Ci, D, Ei are given below for i = 1, 2, 3.
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Proof. The expression of f̃1 is obtained by the same argument as in the proof of

Proposition 2. For f̃2 we have
∂f̃2
∂t

+ L0f̃2 + L̃1f̃1 + L̃2f0 = 0 with f̃2 (T, x, v) = 0,

hence f̃2 can be computed by similar arguments from the Feynman-Kac formula and

the expected value

f̃2 (t, St, Vt) =

∫ T

t

E
[
L̃1f̃1(r, Sr, Vr) + L̃2f0(r, Sr, Vr)

∣∣∣Ft] dr.
For simplicity of exposition we skip the corresponding computations, which are sig-

nificantly longer than in the proof of Proposition 2. �

We have

A1(t, v) =
γ8(t, v)

2c
+

5γ6(t, v)

4c2
+

2γ4(t, v)

c3
+

9γ2(t, v)

4c4
+

3

2c5
+

3c−6

8γ2(t, v)
,

A2(t, v) = −γ
8(t, v)

c
− 5γ6(t, v)

c2
− 16γ4(t, v)

c3
− 24

c4
γ2(t, v)− 48

c5
− 24c−6

γ2(t, v)
,

A3(t, v) = −γ
8(t, v)

10c
+ e−2cγ

2(t,v)A1(t, v) + A2(t, v)e−cγ
2(t,v) +

93

4c5
+

189c−6

8γ2(t, v)
,

B1(t, v) = −γ
6(t, v)

4c2
− γ4(t, v)

2c3
− 3γ2(t, v)

4c4
− 3

4c5
− 3c−6

8γ2(t, v)
,

B2(t, v) =
γ6(t, v)

c2
+

4γ4(t, v)

c3
+

12γ2(t, v)

c4
+

24

c5
+

24c−6

γ2(t, v)
,

B3(t, v) =
γ8(t, v)

10c
+ e−2cγ

2(t,v)B1(t, v) +B2(t, v)e−cγ
2(t,v) − 189

8c6γ2(t, v)
,

C1(t, v) = −γ
5(t, v)

c2
+
γ3(t, v)

2c3
+

3γ2(t, v)

c4
+

4γ(t, v)

c4
+

9c−5

2
+

21c−5

2γ(t, v)
+

9c−6

2γ2(t, v)

+
9c−6

γ3(t, v)
+

9c−7

4γ4(t, v)
+

15c−7

4γ5(t, v)
,

C2(t, v) = −3γ5(t, v)

c2
− 9γ3(t, v)

c3
− 6γ2(t, v)

c4
− 64γ(t, v)

c4
− 36

c5
− 120c−5

γ(t, v)
− 36c−6

γ2(t, v)

+
24c−6

γ3(t, v)
− 36c−7

γ4(t, v)
+

24c−7

γ5(t, v)
,

C3(t, v) = −7γ7(t, v)

30c
− 2γ(t, v)

c4
+ C1(t, v)e−2cγ

2(t,v) + C2(t, v)e−cγ
2(t,v) +

189c−6

2γ3(t, v)

+
135c−7

4γ4(t, v)
− 111c−7

4γ5(t, v)
,

D(t, v) = e−2cγ
2(t,v)

(
ecγ

2(t,v)
(
c3γ6(t, v)− 3

)
+ 3cγ2(t, v)

( c
2
γ2(t, v) + 1

)
+ 3
)2
,
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E1(t, v) =
γ10(t, v)

c2
+
γ8(t, v)

c3
− 15γ6(t, v)

c4
− 27γ4(t, v)

c5
− 51γ2(t, v)

2c6
− 12

c7
,

E2(t, v) =
2γ10(t, v)

c2
+

2γ8(t, v)

c3
+

17γ6(t, v)

c4
+

216γ4(t, v)

c5
+

24γ2(t, v)

c6
+

24

c7
,

E3(t, v) =
γ12(t, v)

15c
+

4γ6(t, v)

c4
− 189γ2(t, v)

2c6
+ E1(t, v)e−2cγ

2(t,v) + e−cγ
2(t,v)E2(t, v)− 492

c7
.

Note that in the case of put options, only the function f0(t, x, v) is modified by

the standard call-put parity argument, while higher order terms such as f1(t, x, v),

f̃1(t, x, v) and f̃2(t, x, v) remain unchanged. In Figure 1 we plot the option price

against the stochastic variance v with correlation ρ = −0.5 and parameters x = K,

T = 0.1, t = 0, a = c/2 = 1, η = 2 and ε = 0.01. The Monte Carlo curve required

300, 000 samples based on 30, 000 time steps.

0 1 2 3 4 5 6 7

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

v

Op
tion

 Pr
ice

s

Monte Carlo
f0
f0 + ε f

~
1

f0 + ε f
~

1 + ε2 f
~

2

Figure 1: Option price f plotted against v with ρ = −0.5.

Figure 1 shows that our asymptotic solutions are in agreement with the Monte Carlo

solution, even if we only use f0 of our analytical approximate solutions when v is

in the interval [0, 4], while the Monte Carlo estimate hovers around the analytical

approximate solutions for larger values of v. For larger v, further increasing the num-

bers of simulations and time steps would yield a smoother Monte Carlo graph. In

the next Table 1 we present the approximated values obtained from f0, f0 + εf̃1,

f0 + εf̃1 + ε2f̃2, with the parameters S = K, T = 0.1, t = 0, a = c/2 = 1, η = 2,

ε = 0.01 and ρ = −0.5. The corresponding Monte Carlo estimates required 1, 000, 000

samples based on 100, 000 time steps, while the evaluation of the approximations is

instantaneous. The large number of time steps is due to instabilities in the solu-

tion of stochastic differential equations (SDEs) with non-Lipschitz (here exponential)
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coefficients such as (6).

v f0 f0 + εf̃1 f0 + εf̃1 + ε2f̃2 Monte Carlo
5.5 0.7239 0.7060 0.6998 0.6827
5.6 0.7289 0.7103 0.7036 0.6975
5.7 0.7338 0.7144 0.7072 0.7045
5.8 0.7386 0.7185 0.7107 0.7089
5.9 0.7433 0.7224 0.7140 0.7078
6.0 0.7478 0.7262 0.7172 0.7097

Table 1: Values of f0, f0 + εf̃1, f0 + εf̃1 + ε2f̃2 compared to Monte Carlo estimates.

We check that our approximate solutions using up to the second correction terms

gives values closer to the Monte Carlo estimates.

6 Implied volatility

In this section we provide an estimation of the implied volatility. σimp which is deter-

mined by the equation

fBS
(
t, x, T,K, σimp

)
= f(t, x, v),

where fBS
(
t, x, T,K, σimp

)
is the classical Black-Scholes function, cf. e.g. Da Fonseca

and Grasselli [1] in multi-factor models.

Theorem 4. The implied volatility σimp admits the series expansion

σimp(t, x, v) = σ0(t, x, v) + εσ1(t, x, v) + ε2σ2(t, x, v) + o(ε2),

where σ0(t, x, v) := γ(t, v)/
√
T − t,

σ1(t, x, v) :=
f̃1(t, x, v)

K
√
T − tφ (d−(t, x, v))

,

and

σ2(t, x, v) :=
f̃2(t, x, v)

K
√
T − tφ (d−(t, x, v))

− d+(t, x, v)d−(t, x, v)
σ2
1(t, x, v)

2σ0(t, x, v)
.
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Proof. The implied volatility σimp is determined by equating

fBS
(
t, x, T,K, σimp

)
= f(t, x, v) = f0(t, x, v) + εf̃1(t, x, v) + ε2f̃2(t, x, v) + o(ε2),

where fBS is the classical Black-Scholes function with implied volatility σimp. Ex-

pressing the implied volatility as a power series

σimp(t, x, v) = σ0(t, x, v) + εσ1(t, x, v) + ε2σ2(t, x, v) + o(ε2)

in ε, we expand fBS
(
t, x, T,K, σimp

)
and using a Taylor expansion in terms of ε to

obtain

fBS
(
t, x, T,K, σimp

)
= fBS(t, x, T,K, σ0(t, x, v))

+
(
εσ1(t, x, v) + ε2σ2(t, x, v)

) ∂f
∂σ

BS

(t, x, T,K, σ0(t, x, v))

+
1

2
ε2σ2

1(t, x, v)
∂2f

∂σ2

BS

(t, x, T,K, σ0(t, x, v)) + · · ·

The first three terms of the implied volatility expansion are obtained by identification

of coefficients in the above expressions. �

In Figure 2 we plot the estimation of implied volatility against the ratio (moneyness)

K/x of the strike price to the asset price, with the parameters T = 1, t = 0, a =

c/2 = v = 1, η = 3.5 and ε = 0.1.

0.6 0.8 1.0 1.2 1.4

1.0
1.1

1.2
1.3

1.4

k/s

σim
p

σ0
σ0 + εσ1

σ0 + εσ1 + ε2σ2

(a) ρ = −0.8

0.6 0.8 1.0 1.2 1.4

1.2
5

1.3
0

1.3
5

1.4
0

k/s

σim
p

σ0
σ0 + εσ1

σ0 + εσ1 + ε2σ2

(b) ρ = 0

Figure 2: Implied volatility σimp plotted against the moneyness K/x.

Our implied volatility estimate σ0(t, x, v)+εσ1(t, x, v)+ε2σ2(t, x, v) exhibits the well-

known skew and smile phenomena. In addition they show that it can be necessary to
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take into account the correction terms f̃1 and f̃2 for improved calibration. Monte Carlo

estimates of volatility are not available due to the instabilities observed in Figure 1

for the numerical solution of SDEs such as (6).
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