INDEPENDENCE OF A CLASS OF MULTIPLE STOCHASTIC INTEGRALS

NICOLAS PRIVAULT

Abstract

We show that two multiple stochastic integrals $I_n(f_n)$, $I_m(g_m)$ with respect to the solution $(M_t)_{t \in \mathbf{R}_+}$ of a deterministic structure equation are independent if and only if two contractions of f_n and g_m , denoted as $f_n \circ_1^0 g_m$, $f_n \circ_1^1 g_m$, vanish almost everywhere.

1 Introduction

This paper aims to extend the necessary and sufficient conditions for the independence of single or multiple stochastic integrals of [12], [14], [15], [16], [17], cf. also [6], [7], proving and extending results that have been partially announced in [9]. Let $(M_t)_{t \in \mathbf{R}_+}$ be a martingale satisfying the structure equation

$$d[M,M]_t = dt + \phi_t dM_t,\tag{1}$$

where $\phi : \mathbf{R}_+ \to \mathbf{R}$ is a measurable deterministic function. Such martingales are normal in the sense of [2], i.e. $d < M, M >_t = dt, t \in \mathbf{R}_+$ and they satisfy the chaos representation property, cf. [3]. Moreover, they have independent increments, and if $(B_t)_{t \in \mathbf{R}_+}$, $(N_t)_{t \in \mathbf{R}_+}$ are independent standard Brownian motion and Poisson process of intensity ds/ϕ_s^2 , then $(M_t)_{t \in \mathbf{R}_+}$ can be represented as

$$M_t = \int_0^t \mathbf{1}_{\{\phi_s=0\}} dB_s + \int_0^t \phi_s \left(dN_s - \frac{ds}{\phi_s^2} \right), \quad t \in \mathbf{R}_+.$$
 (2)

We choose to construct the processes $(B_t)_{t\in\mathbb{R}_+}$ on the classical Wiener space $(\Omega_1, \mathcal{F}_1, P_1)$, where Ω_1 is the space of cadlag functions starting at zero. We denote by $(\Omega_2, \mathcal{F}_2, P_2)$ the space

$$\Omega_2 = \left\{ \sum_{i=1}^{i=N} \delta_{t_i} : (t_i)_{i=1,\dots,N} \in \mathbf{R}_+, \ N \in \mathbf{N} \cup \{\infty\} \right\},\$$

with the σ -algebra and probability measure \mathcal{F}_2 , P_2 under which the canonical random measure is Poisson with mean measure μ on $(\mathbf{R}_+, \mathcal{B}(\mathbf{R}_+))$ defined as

$$\mu(A) = \int_{A \cap \{\phi \neq 0\}} \frac{1}{\phi_s^2} ds, \quad A \in \mathcal{B}(\mathbf{R}_+).$$

Mathematics Subject Classification (1991): 60H05, 60G44, 60H07.

Keywords and phrases. Multiple stochastic integrals, Independence, Martingales.

With this notation, $(N_t)_{t\in\mathbb{R}_+}$ is written as $N_t(\omega_2) = \omega_2([0, t])$, and $(B_t)_{t\in\mathbb{R}_+}$ satisfies $B_t(\omega_1) = \omega_1(t)$, $t \in \mathbb{R}_+$. For $A \in \mathcal{B}(\mathbb{R}_+)$ we call \mathcal{F}_2^A the σ -algebra on Ω_2 generated by all random variables $\omega_2 \to \omega_2(A \cap B)$, $B \in \mathcal{B}(\mathbb{R}_+)$. The martingale M is then explicitly constructed as $M_t(\omega_1, \omega_2) = X_t(\omega_2) + B_t(\omega_1)$, $t \in \mathbb{R}_+$, on $(\Omega, \mathcal{F}, P) = (\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, P_1 \otimes P_2)$, where

$$X_t = \int_0^t \phi_s (dN_s - ds/\phi_s^2), \quad t \in \mathbf{R}_+.$$

If $f_n \in L^2(\mathbf{R})^{\otimes n}$, the multiple stochastic integral with respect to M, X, and B of f_n are respectively defined as

$$I_n(f_n) = n! \int_0^\infty \int_0^{t_n} \cdots \int_0^{t_2} \hat{f}_n(t_1, \dots, t_n) dM_{t_1} \cdots dM_{t_n},$$
(3)

$$I_n^X(f_n) = n! \int_0^\infty \int_0^{t_n} \cdots \int_0^{t_2} \hat{f}_n(t_1, \dots, t_n) dX_{t_1} \cdots dX_{t_n},$$
(4)

$$I_n^B(f_n) = n! \int_0^\infty \int_0^{t_n} \cdots \int_0^{t_2} \hat{f}_n(t_1, \dots, t_n) dB_{t_1} \cdots dB_{t_n},$$
(5)

where \hat{f}_n is the symmetrization in *n* variables of f_n . We note the relation

$$I_{n}(f_{n}) = \sum_{i=0}^{i=n} \binom{n}{k} I_{n-k}^{X}(I_{k}^{B}(\hat{f}_{n})) = \sum_{i=0}^{i=n} \binom{n}{k} I_{n-k}^{B}(I_{k}^{X}(\hat{f}_{n})).$$
(6)

Let $L^2(\mathbf{R}_+)^{\circ n}$ denote the subspace of $L^2(\mathbf{R}_+)^{\otimes n}$ made of symmetric functions. Let $f_n \otimes g_m$ denote the completed tensor product of two functions $f_n \in L^2(\mathbf{R}_+^n)$ and $g_m \in L^2(\mathbf{R}_+^m)$, and let $f_n \circ g_m$ denote the symmetrization of $f_n \otimes g_m$, $n, m \in \mathbf{N}$. Since $d < M, M >_t = dt$, we have

$$E\left[I_n(f_n)I_m(g_m)\right] = n!(f_n, g_m)_{L^2(\mathbf{R}_+)^{\otimes n}} \mathbf{1}_{\{n=m\}}, \quad f_n \in L^2(\mathbf{R}_+)^{\circ n}, g_m \in L^2(\mathbf{R}_+)^{\circ m}$$
(7)

Since $(M_t)_{t \in \mathbb{R}_+}$ has the chaos representation property, any square integrable functional $F \in L^2(\Omega, \mathcal{F}, P)$ has a chaos expansion

$$F = \sum_{n \ge 0} I_n(f_n), \quad f_k \in L^2(\mathbf{R}_+)^{\circ k}, k \ge 0.$$

A linear operator $\nabla : L^2(\Omega) \to L^2(\Omega) \otimes L^2(\mathbf{R}_+)$ is defined by annihilation as

$$\nabla_t I_n(f_n) = n I_{n-1}(f_n(\cdot, t)), \quad t \in \mathbf{R}_+,$$
(8)

 $f_n \in L^2(\mathbf{R}_+)^{\circ n}$, $n \in \mathbf{N}^*$, cf. e.g. [5]. This operator is closable, of L^2 -domain $Dom_2(\nabla)$, and its closed adjoint $\nabla^* : L^2(\Omega) \otimes L^2(\mathbf{R}_+) \to L^2(\Omega)$ satisfies

$$\nabla^* I_n(f_{n+1}) = I_{n+1}(f_{n+1}),$$

 $f_{n+1} \in L^2(\mathbf{R}_+)^{\circ n} \otimes L^2(\mathbf{R}_+)$. We denote by $Dom_1(\nabla)$ the set of functionals $F \in L^2(\Omega)$ such that there exists a sequence $(F_n)_{n \in \mathbb{N}} \subset Dom_2(\nabla)$ converging to F in $L^2(\Omega)$ and such that $(\nabla F_n)_{n \in \mathbb{N}}$ converges in $L^1(\Omega \times \mathbf{R}_+)$. The limit of the sequence $(\nabla F_n)_{n \in \mathbb{N}}$ is denoted ∇F which is well-defined, due to the relation

$$E[(\nabla F_n, u)_{L^2(\mathbf{R}_+)}] = E[F_n \nabla^*(u)], \quad n \in \mathbf{N}.$$

 $u \in Dom(\nabla^*) \cap L^{\infty}(\Omega \times \mathbf{R}_+)$, and since $Dom(\nabla^*) \cap L^{\infty}(\Omega \times \mathbf{R}_+)$ is dense in $L^1(\Omega \times \mathbf{R}_+)$. For $f_n \in L^2(\mathbf{R}_+)^{\circ n}$ and $g_m \in L^2(\mathbf{R}_+)^{\circ m}$, we define $f_n \otimes_k^l g_m$, $0 \leq l \leq k$, to be the function

$$(x_{l+1},\ldots,x_n,y_{k+1},\ldots,y_m) \mapsto \phi(x_{l+1})\cdots\phi(x_k)\int_{\mathbf{R}^l} f_n(x_1,\ldots,x_n)g_m(x_1,\ldots,x_k,y_{k+1},\ldots,y_m)dx_1\cdots dx_l$$

of n+m-k-l variables. We denote by $f_n \circ_k^l g_m$ the symmetrization in n+m-k-l variables of $f_n \otimes_k^l g_m$, $0 \le l \le k$.

Definition 1 Let S denote the vector space in $L^2(\Omega)$ generated by

$$\{I_n(f_1 \circ \cdots \circ f_n) : f_1, \ldots, f_n \in \mathcal{C}_c(\mathbf{R}_+), n \ge 1\}.$$

The vector space S is dense in $L^2(\Omega)$. For $F \in S$ and $f \in L^2(\mathbf{R}_+)$, we have from a general result in quantum stochastic calculus, cf. for example Th. II.1 of [1]:

$$F \int_0^\infty f(s) dM_s = \int_0^\infty f(s) \nabla_s F ds + \nabla^* (fF) + \nabla^* (\phi f \nabla F).$$
(9)

This formula is usually stated under the form

$$\int_{0}^{\infty} f(s) dM_{s} = \int_{0}^{\infty} f(s) da_{s}^{-} + \int_{0}^{\infty} f(s) da_{s}^{+} + \int_{0}^{\infty} \phi_{s} f(s) da_{s}^{*}$$

by quantum probabilists, where $\int_0^\infty f(s) dM_s$ is identified to a multiplication operator. The identity (9) can be easily rewritten into a multiplication formula between first and *n*th order stochastic integrals:

$$I_1(h)I_n(f_n) = I_{n+1}(f_n \circ h) + n \int_0^\infty h_t I_{n-1}(f_n(\cdot, t))dt + nI_n(f_n \circ_1^0(\phi h)).$$
(10)

We note that as a consequence of this formula, every element of S has a unique expression as a polynomial in single stochastic integrals and conversely, any polynomial in stochastic integrals has a finite chaos expansion.

Remark 1 This implies that each element of S has a version which is defined for every $\omega = (\omega_1, \omega_2) \in \Omega$, since $I_1(f) \in S$ can be written as

$$I_1(f) = -\int_0^\infty f'(s) B_s \mathbb{1}_{\{\phi_s=0\}} ds + \sum_{\{t : dN_t=1\}} \phi_t f(t) - \int_0^\infty \mathbb{1}_{\{\phi_s\neq 0\}} f(s) \frac{1}{\phi_s} ds.$$

Throughout this paper, $F \in S$ will always refer to the version of F defined via the above identity.

From (10), one can prove the following result which shows that the function ϕ accounts for the perturbation of the usual derivation rule for the Malliavin derivative on Wiener space.

Proposition 1 For any $F, G \in S$ we have

$$\nabla_t(FG) = F\nabla_t G + G\nabla_t F + \phi_t \nabla_t F \nabla_t G, \quad t \in \mathbf{R}_+.$$
(11)

If $\phi \in L^{\infty}(\mathbb{R}_+)$ then for any $F, G \in Dom_2(\nabla)$, we have $FG \in Dom_1(\nabla)$ and the above relation holds.

Proof. We first notice that for $F = I_1(h)$ and $G = I_n(f_n)$, this formula is a consequence of the multiplication formula (10), since

$$\begin{aligned} \nabla_t (I_1(h)I_n(f_n)) &= \nabla_t \left(I_{n+1}(f_n \circ h) + n \int_0^\infty h_s I_{n-1}(f_n(\cdot, s)ds + nI_n(f_n \circ_1^0(\phi h))) \right) \\ &= I_n(f_n) \nabla_t I_1(h) + nI_n(f_n(\cdot, t) \circ h) + n(n-1) \int_0^\infty h_s I_{n-2}(f_n(\cdot, t, s))ds \\ &+ n(n-1)I_n(f_n(\cdot, t) \circ_1^0(\phi h)) + \phi_t \nabla_t I_1(h) \nabla_t I_n(f_n) \\ &= I_n(f_n) \nabla_t I_1(h) + I_1 \nabla_t I_n(f_n) + \phi_t \nabla_t I_1(h) \nabla_t I_n(f_n). \end{aligned}$$

Next, we prove by induction on $k \ge 1$ that

$$\nabla_t (I_n(f_n)I_1(h)^k) = I_1(h)^k \nabla_t I_n(f_n) + I_n(f_n) \nabla_t I_1(h)^k + \phi_t \nabla_t I_1(h)^k \nabla_t I_n(f_n).$$

We have

$$\begin{split} \nabla_t (I_n(f_n)I_1(h)^{k+1}) &= I_1(h)^k \nabla_t (I_n(f_n)I_1(h)) + I_n(f_n)I_1(h) \nabla_t I_1(h)^k \\ &+ \phi_t \nabla_t I_1(h)^k \nabla_t (I_n(f_n)I_1(h)) \\ &= I_1(h)^{k+1} \nabla_t I_n(f_n) + I_n(f_n)I_1(h) \nabla_t I_1(h)^k + I_n(f_n)I_1(h)^k \nabla_t I_1(h) \\ &+ \phi_t I_n(f_n) \nabla_t I_1(h) \nabla_t I_1(h)^k + \phi_t I_1(h) \nabla_t I_1(h)^k \nabla_t I_n(f_n) \\ &+ \phi_t I_1(h)^k \nabla_t I_1(h) \nabla_t I_n(f_n) + \phi_t^2 \nabla_t I_1(h) \nabla_t I_1(h)^k \nabla_t I_n(f_n) \\ &= I_1(h)^{k+1} \nabla_t I_n(f_n) + I_n(f_n) \nabla_t I_1(h)^{k+1} + \phi_t \nabla_t I_1(h)^{k+1} \nabla_t I_n(f_n). \end{split}$$

Consequently, (11) holds for any polynomial in single stochastic integrals, hence it holds for any $F, G \in \mathcal{S}$. In order to prove the second part of the proposition, we assume that $F, G \in Dom_2(\nabla)$ and choose two sequences $(F_n)_{n \in \mathbb{N}}$ and $(G_n)_{n \in \mathbb{N}}$ contained in \mathcal{S} , converging respectively to F and G in $L^2(\Omega)$ and such that $(\nabla F_n)_{n \in \mathbb{N}}$ and $(\nabla G_n)_{n \in \mathbb{N}}$ converge to ∇F and ∇G in $L^2(\Omega \times \mathbb{R}_+)$. Then $(\phi \nabla F_n \nabla G_n)_{n \in \mathbb{N}}$ converges in $L^1(\Omega \times \mathbb{R}_+)$ to $\phi \nabla F \nabla G$, hence $(\nabla (F_n G_n))_{n \in \mathbb{N}}$ converges in $L^1(\Omega \times \mathbb{R}_+)$ to $F \nabla G + G \nabla F + \phi \nabla F \nabla G$, and $FG \in Dom_1(\nabla)$. \Box

The product rule for ∇ unifies the chain rule of derivation of the Wiener space Malliavin derivative and the finite difference rule of the Poisson space gradient of [8]. **Proposition 2** For any $F \in S$ we have

$$\nabla_t F = \lim_{\varepsilon \to 0} \frac{F\left(M_{\cdot} + (\varepsilon + \phi_t) \mathbf{1}_{[t,\infty[}(\cdot)\right) - F(M_{\cdot})}{\varepsilon + \phi_t}, \quad t \in \mathbf{R}_+.$$
 (12)

Proof. The statement (12) can be more precisely formulated as

$$\nabla_t F(\omega_1, \omega_2) = \lim_{\varepsilon \to 0} \frac{F(\omega_1 + \varepsilon \mathbf{1}_{[t, \infty[}, \omega_2 + \phi_t \delta_t) - F(\omega_1, \omega_2)}{\varepsilon + \phi_t},$$

where the notation F refers to the version defined in Remark 1. We first show that (12) holds for $F = I_1(f)$:

$$\begin{split} \lim_{\varepsilon \to 0} \frac{F(\omega_1 + \varepsilon \mathbf{1}_{[t,\infty[}, \omega_2 + \phi_t \delta_t) - F(\omega_1, \omega_2)}{\varepsilon + \phi_t} \\ &= \mathbf{1}_{\{\phi_t \neq 0\}} \frac{1}{\phi_t} \left(\sum_{\{s \ : \ dN_s = 1\}} \phi_s f(s) - \int_0^\infty \mathbf{1}_{\{\phi_s \neq 0\}} f(s) \frac{1}{\phi_s} ds + \phi_t f(t) \right) \\ &- \sum_{\{s \ : \ dN_s = 1\}} \phi_s f(s) - \int_0^\infty \mathbf{1}_{\{\phi_s \neq 0\}} f(s) \frac{1}{\phi_s} ds \\ &+ \mathbf{1}_{\{\phi_t = 0\}} \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(- \int_0^\infty f'(s) (B_s + \varepsilon) \mathbf{1}_{[t,\infty[}(s) \mathbf{1}_{\{\phi_s = 0\}} ds \right) \\ &+ \int_0^\infty f'(s) B_s \mathbf{1}_{\{\phi_s = 0\}} ds \\ &= \mathbf{1}_{\{\phi_t = 0\}} f(t) + \mathbf{1}_{\{\phi_t \neq 0\}} f(t) = f(t), \quad t \in \mathbf{R}_+. \end{split}$$

Moreover, the limit (12) satisfies the product rule (11), hence if $F, G \in S$ are of the form $F = I_1(f)$ and $G = I_1(g)$, we have

$$\lim_{\varepsilon \to 0} \frac{(FG) \left(M_{\cdot} + (\varepsilon + \phi_t) \mathbf{1}_{[t,\infty[}(\cdot)) - (FG)(M_{\cdot}) \right)}{\varepsilon + \phi_t} = F \nabla_t G + G \nabla_t F + \phi_t \nabla_t (FG)$$
$$= \nabla_t (FG), \quad t \in \mathbf{R}_+.$$

Thus by induction, (12) holds for any polynomial in single stochastic integrals, and for any element of S. \Box

With help of Prop. 11, the following multiplication formula has been proved in [9], as a generalization of (10). We refer to p. 216 of [2], and to [4], [13], [14], for different versions of this formula in the Poisson case. In [11] a more general result is proven, allowing to represent the product $I_n(f_n)I_m(g_m)$ as a sum of $n \wedge m$ terms that are not necessarily linear combinations of multiple stochastic integrals with respect to $(M_t)_{t \in \mathbb{R}_+}$, except if $d[M, M]_t$ is a linear deterministic combination of dt and dM_t , cf. [10].

Proposition 3 The product $I_n(f_n)I_m(g_m) \in L^2(\Omega)$ is in $L^2(B)$ if and only if the function

$$h_{n,m,s} = \sum_{s \le 2i \le 2(s \land n \land m)} i! \begin{pmatrix} n \\ i \end{pmatrix} \begin{pmatrix} m \\ i \end{pmatrix} \begin{pmatrix} i \\ s-i \end{pmatrix} f_n \circ_i^{s-i} g_m$$

is in $L^2(\mathbf{R}_+)^{\circ n+m-s}$, $0 \le s \le 2(n \land m)$, and in this case the chaotic expansion of $I_n(f_n)I_m(g_m)$ is

$$I_n(f_n)I_m(g_m) = \sum_{s=0}^{2(n \wedge m)} I_{n+m-s}(h_{n,m,s}).$$
(13)

The fact that $I_n(f_n)I_m(g_m)$ can be expanded as a sum of multiple stochastic integrals with respect to $(M_t)_{t\in\mathbb{R}_+}$ is essential in the proof of independence, cf. Th. 1.

2 Independence of multiple stochastic integrals

In the case of single stochastic integrals, the following proposition extends the result of [15] to a process that does not have stationary increments. In the case of multiple stochastic integrals, it extends the result of [17] since it includes a Poisson component in the martingale $(M_t)_{t \in \mathbb{R}_+}$.

Theorem 1 Let $f_n \in L^2(\mathbf{R}_+)^{\circ n}$ and $g_m \in L^2(\mathbf{R}_+)^{\circ m}$. The random variables $I_n(f_n)$ and $I_m(g_m)$ are independent and if and only if $f_n \circ_1^1 g_m = 0$ and $f_n \circ_1^0 g_m = 0$ a.e., i.e.

$$\int_0^\infty f_n(t, x_2, \dots, x_n) g_m(t, x_{n+1}, \dots, x_{n+m-2}) dt = 0, \quad dx_2 \cdots dx_{n+m-2} \ a.e. \ (14)$$

and

$$f_n(x_1, x_2, \dots, x_n)g_m(x_1, x_{n+1}, \dots, x_{n+m-1}) = 0, \quad |\phi_{x_1}| dx_1 dx_2 \cdots dx_{n+m-1} a.e.$$
(15)

Proof. If $I_n(f_n)$ and $I_m(g_m)$ are independent, then $I_n(f_n)I_m(g_m) \in L^2(\Omega, \mathcal{F}, P)$ and following [16],

$$| f_n \circ g_m |_{L^2(\mathbf{R}_+)^{\circ(m+m)}}^2 = (n+m)! | f_n \otimes g_m |_{L^2(\mathbf{R}_+)^{\otimes(n+m)}}^2$$

$$\geq n!m! | f_n |_{L^2(\mathbf{R}_+)^{\otimes n}}^2 | g_m |_{L^2(\mathbf{R}_+)^{\otimes m}}^2$$

$$= E \left[I_n(f_n)^2 \right] E \left[I_m(g_m)^2 \right] = E \left[(I_n(f_n)I_m(g_m))^2 \right]$$

$$= \sum_{r=0}^{2(n \wedge m)} (n+m-r)! | h_{n,m,r} |_{L^2(\mathbf{R}_+)^{\otimes(n+m-r)}}^2$$

INDEPENDENCE OF STOCHASTIC INTEGRALS

- $\geq (n+m)! \mid h_{n,m,0} \mid_{L^{2}(\mathbf{R}_{+})^{\otimes (n+m)}}^{2} + (n+m-1)! \mid h_{n,m,1} \mid_{L^{2}(\mathbf{R}_{+})^{\otimes (n+m-1)}}^{2} + (n+m-2)! \mid h_{n,m,2} \mid_{L^{2}(\mathbf{R}_{+})^{\otimes (n+m-2)}}^{2}$
- $\geq \quad (n+m)! \mid f_n \otimes g_m \mid_{L^2(\mathcal{R}_+)^{\otimes (n+m)}}^2 + nm(n+m-1)! \mid f_n \circ_1^0 g_m \mid_{L^2(\mathcal{R}_+)^{\otimes (n+m-1)}}^2 \\ + (n+m-2)! \mid nmf_n \circ_1^1 g_m + n(n-1) \frac{m(m-1)}{2} f_n \circ_2^0 g_m \mid_{L^2(\mathcal{R}_+)^{\otimes (n+m-2)}}^2.$

We obtain $f_n \circ_1^0 g_m = 0$ a.e., and $f_n \circ_1^1 g_m = 0$ a.e.

Conversely, if (14) is satisfied, then $dP_2(\omega_2)$ almost surely, $I_n(f_n)(\cdot, \omega_2)$ and $I_m(g_m)(\cdot, \omega_2)$ are Wiener integrals of square-integrable functions that also satisfy (14), hence $I_n(f_n)(\cdot, \omega_2)$ is independent of $I_m(g_m)(\cdot, \omega_2)$ under P_1 from [16], and for any $u, v \in \mathcal{C}_b(\mathbf{R})$,

$$\int_{\Omega_1} u(I_n(f_n))v(I_m(g_m))dP_1 = \int_{\Omega_1} u(I_n(f_n))dP_1 \int_{\Omega_1} v(I_m(g_m))dP_1, \quad dP_2(\omega_2) - a.s.$$

If further (15) is satisfied, we choose two version \bar{f}_n and \bar{g}_m of f_n , g_m and let

$$A = \left\{ s : \| \bar{f}_n(s, \cdot) \|_{L^2(\mathbf{R}_+)^{\circ(n-1)}} \neq 0 \text{ and } \phi_s \neq 0 \right\},\$$

and

$$B = \left\{ s : \| \bar{g}_m(s, \cdot) \|_{L^2(\mathbf{R}_+)^{\circ(m-1)}} \neq 0 \text{ and } \phi_s \neq 0 \right\}.$$

Then $\int_{\Omega_1} u(I_n(f_n))dP_1$ and $\int_{\Omega_1} v(I_m(g_m))dP_1$ are respectively \mathcal{F}_1^A -measurable and \mathcal{F}_1^B -measurable. Moreover,

$$0 = \int_0^\infty \| \bar{f}_n(s,\cdot) \|_{L^2(\mathbf{R}_+)^{\circ(n-1)}} \| \bar{g}_m(s,\cdot) \|_{L^2(\mathbf{R}_+)^{\circ(m-1)}} \| \phi_s \| ds$$

=
$$\int_{A \cap B} \| \bar{f}_n(s,\cdot) \|_{L^2(\mathbf{R}_+)^{\circ(n-1)}} \| \bar{g}_m(s,\cdot) \|_{L^2(\mathbf{R}_+)^{\circ(m-1)}} \| \phi_s \| ds,$$

hence $\mu(A \cap B) = 0$ and \mathcal{F}_1^A , \mathcal{F}_2^B are independent σ -algebras because $(N_t)_{t \in \mathbb{R}_+}$ has independent increments, and

$$\int_{\Omega} u(I_n(f_n))v(I_m(g_m))dP = \int_{\Omega} u(I_n(f_n))dP \int_{\Omega} v(I_m(g_m))dP, \quad u, v \in \mathcal{C}_b(\mathbf{R}),$$

proving the independence of $I_n(f_n)$ and $I_m(g_m)$. \Box

The following corollaries, cf. [16], [17], can be extended from the Wiener case to the martingale $(M_t)_{t \in \mathbb{R}_+}$.

Proposition 4 Two arbitrary families $\{I_{n_k}(f_{n_k}) : k \in I\}$ and $\{I_{m_l}(g_{m_l}) : l \in J\}$ of Poisson multiple stochastic integrals are independent if and only if $I_{n_k}(f_{n_k})$ is independent of $I_{m_l}(g_{m_l})$ for any $k \in I$, $l \in J$.

Proof. We start by considering families of the form $\{I_n(f_n)\}, \{I_k(g_k), I_m(h_m)\}$. If $I_n(f_n)$ is independent of $I_k(g_k)$ and $I_n(f_n)$ is independent of $I_m(h_m)$, then (14) is satisfied for f_n, g_k and for f_n, g_m . Moreover, $dP_2(\omega_2)$ almost surely, $I_n(f_n)(\cdot, \omega_2)$, $I_k(g_k)(\cdot, \omega_2)$ and $I_m(h_m)(\cdot, \omega_2)$ are multiple Wiener integrals of square-integrable functions that also satisfy (14), hence for $u \in \mathcal{C}_b(\mathbb{R})$ and $v \in \mathcal{C}_b(\mathbb{R}^2), u(I_n(f_n))(\cdot, \omega_2)$ is independent of $v(I_k(g_k), I_m(h_m))(\cdot, \omega_2)$ under P_1 from the analog of this proposition in [16], and

$$\int_{\Omega_1} u(I_n(f_n))v(I_k(g_k), I_m(h_m))dP_1 = \int_{\Omega_1} u(I_n(f_n))dP_1 \int_{\Omega_1} v(I_k(g_k), I_m(h_m))dP_1,$$

 $dP_2(\omega_2)$ -a.s.

We choose three versions \bar{f}_n , \bar{g}_k , and \bar{h}_m of f_n , g_k , h_m and let

$$A = \left\{ s : \| \bar{f}_n(s, \cdot) \|_{L^2(\mathbf{R}_+)^{\circ(n-1)}} \neq 0 \text{ and } \phi_s \neq 0 \right\},$$

$$B = \left\{ s : \| \bar{g}_k(s, \cdot) \|_{L^2(\mathbf{R}_+)^{\circ(k-1)}} \neq 0 \text{ and } \phi_s \neq 0 \right\},$$

and

$$C = \left\{ s : \| \bar{f}_m(s, \cdot) \|_{L^2(\mathbf{R}_+)^{\circ(m-1)}} \neq 0 \text{ and } \phi_s \neq 0 \right\}.$$

Since $I_n(f_n)$ is independent of $I_k(g_k)$ and $I_n(f_n)$ is independent of $I_m(h_m)$, (15) holds for f_n , g_k and f_n , h_m . This implies

$$0 = \int_0^\infty \|\bar{f}_n(s,\cdot)\|_{L^2(\mathbf{R}_+)^{\circ(n-1)}} \|\bar{g}_k(s,\cdot)\|_{L^2(\mathbf{R}_+)^{\circ(k-1)}} \|\phi_s\| ds$$

=
$$\int_{A\cap B} \|\bar{f}_n(s,\cdot)\|_{L^2(\mathbf{R}_+)^{\circ(n-1)}} \|\bar{g}_k(s,\cdot)\|_{L^2(\mathbf{R}_+)^{\circ(k-1)}} \|\phi_s\| ds,$$

hence $\mu(A \cap B) = 0$ and in the same way we get $\mu(A \cap C) = 0$, hence $\mu(A \cap (B \cup C)) = 0$. Consequently, \mathcal{F}_1^A is independent of $\mathcal{F}_2^{B \cup C}$ since $(N_t)_{t \in \mathbb{R}_+}$ has independent increments. Moreover, $\int_{\Omega_1} u(I_n(f_n))dP_1$ and $\int_{\Omega_1} v(I_k(g_k), I_m(h_m))dP_1$ are respectively \mathcal{F}_2^A and $\mathcal{F}_2^{B \cup C}$ -measurable, hence

$$\int_{\Omega} u(I_n(f_n))v(I_k(g_k), I_m(h_m))dP = \int_{\Omega} u(I_n(f_n))dP \int_{\Omega} v(I_k(g_k), I_m(h_m))dP$$

 $u \in \mathcal{C}_b(\mathbf{R}), v \in \mathcal{C}_b(\mathbf{R}^2)$, and $u(I_n(f_n))$ is independent of $v(I_k(g_k), I_m(h_m))$. The above proof generalizes to arbitrary families of multiple stochastic integrals. \Box

Corollary 1 Let $f_n \in L^2(\mathbf{R}_+)^{\circ n}$, $g_m \in L^2(\mathbf{R}_+)^{\circ m}$, and $S_{f_n} = \{f_n \circ_{n-1}^{n-1} h : h \in L^2(\mathbf{R}_+)^{\circ n-1}\}, S_{g_m} = \{g_n \circ_{m-1}^{m-1} h : h \in L^2(\mathbf{R}_+)^{\circ m-1}\}.$

The following statements are equivalent.

(i) $I_n(f_n)$ is independent of $I_m(g_m)$.

(ii) For any $f \in S_{f_n}$ and $g \in S_{g_m}$ we have fg = 0, $|\phi_t| dt$ -a.e. and $(f, g)_{L^2(\mathbf{R}_+)} = 0$ (iii) The σ -algebras $\sigma(I_1(f) : f \in S_{f_n})$ and $\sigma(I_1(g) : g \in S_{g_m})$ are independent. Proof. (i) \Leftrightarrow (ii) relies on the fact that any $f \in S_{f_n}$ and $g \in S_{g_m}$ can be written as $f = f_n \circ_{n-1}^{n-1} h$, $g = g_m \circ_{m-1}^{m-1} k$ with $h \in L^2(\mathbf{R}_+)^{\circ n-1}$, $k \in L^2(\mathbf{R}_+)^{\circ m-1}$, and that $\phi_t f(t)g(t) = (f_n \otimes_1^0 g_m(t, \cdot), h \otimes k)_{L^2(\mathbf{R}_+)^{\circ n+m-2}}, t \in \mathbf{R}_+$, and $(f, g)_{L^2(\mathbf{R}_+)} = (f_n \circ_1^1 g_m, h \otimes k)_{L^2(\mathbf{R}_+)^{\circ n+m-2}}$. (ii) \Leftrightarrow (iii) is a consequence of Prop. 4. \Box Let $(h_k)_{k \in \mathbf{N}^*}$ be an orthonormal basis of $L^2(\mathbf{R}_+)$. For simplicity, we denote by

$$\sigma(I_n(f_n), \nabla I_n(f_n), \dots, \nabla^{n-1}I_n(f_n))$$

the σ -algebra

$$\sigma \left(I_n(f_n), \left(\nabla I_n(f_n), h_{k_1^1} \right)_{L^2(\mathbf{R}_+)}, \dots, \right)$$
$$\left(\nabla^{n-1} I_n(f_n), h_{k_1^{n-1}} \circ \dots \circ h_{k_{n-1}^{n-1}} \right)_{L^2(\mathbf{R}_+)^{\circ n-1}}, \quad k_j^i \in \mathbf{N}^*, \ 1 \le i \le j \ \right).$$

Corollary 2 The multiple stochastic integrals $I_n(f_n)$ and $I_m(g_m)$ are independent if and only if the σ -algebras

$$\sigma(I_n(f_n), \nabla I_n(f_n), \dots, \nabla^{n-1}I_n(f_n))$$

and

$$\sigma(I_m(g_m), \nabla I_m(g_m), \dots, \nabla^{m-1}I_m(g_m))$$

are independent.

Proof. This is a consequence of Th. 1, Prop. 4, and the definition (8) of ∇ . \Box Let λ denote the Lebesgue measure on $(\mathbf{R}_+, \mathcal{B}(\mathbf{R}_+))$.

Corollary 3 If $F \in Dom_2(\nabla)$ and $G \in L^2(\Omega, \mathcal{F}, P)$ with $G = \sum_{m \ge 0} I_m(g_m)$, then F is independent of G if for any $m \ge 1$,

$$g_m \circ_1^1 \nabla F = 0$$
 $\lambda^{\otimes (m-1)} \otimes P - a.e.$ and $g_m \circ_1^0 \nabla F = 0$, $\lambda^{\otimes m} \otimes P - a.e.$ (16)

Proof. Assume that $F = \sum_{n\geq 0} I_n(f_n)$. Condition (16) is equivalent to $g_m \circ_1^1 f_n = 0$ and $g_m \circ_1^0 f_n = 0$ a.e. for any $n, m \in \mathbb{N}$, since the decomposition $\nabla F = \sum_{n\geq 0} nI_{n-1}(f_n)$ is orthogonal in $L^2(\Omega) \otimes L^2(\mathbb{R}_+)$. The result follows then from Th. 1 and Prop. 4. \Box

Remarks. *a*) In the Poisson case, the results of this paper can also be obtained for a Poisson measure on a metric space with a σ -finite diffuse measure.

b) The independence criterion also means that $I_n(f_n)$ and $I_m(g_m)$ are independent if and only if their Wick product coincides with their ordinary product:

$$I_n(f_n)I_m(g_m) = I_{n+m}(f_n \circ g_m) = I_n(f_n) : I_m(g_m)$$

References

- [1] S. Attal. Classical and quantum stochastic calculus. To appear in Quantum Probability Communications X, World Scientific, 1997.
- [2] C. Dellacherie, B. Maisonneuve, and P.A. Meyer. Probabilités et Potentiel, volume 4. Hermann, 1992.
- [3] M. Emery. On the Azéma martingales. In Séminaire de Probabilités XXIII, volume 1372 of Lecture Notes in Mathematics, pages 66–87. Springer Verlag, 1990.
- [4] Y.M. Kabanov. On extended stochastic integrals. Theory of Probability and its Applications, XX(4):710-722, 1975.
- [5] J. Ma, Ph. Protter, and J. San Martin. Anticipating integrals for a class of martingales. Purdue University technical report 95-39, 1995.
- [6] D. Nualart and A.S. Üstünel. Geometric analysis of conditional independence on Wiener space. Probab. Theory Relat. Fields, 89(4):407–422, 1991.
- [7] D. Nualart, A.S. Üstünel, and M. Zakai. Some relations among classes of σ -fields on Wiener space. *Probab. Theory Relat. Fields*, 85(1):119–129, 1990.
- [8] D. Nualart and J. Vives. Anticipative calculus for the Poisson process based on the Fock space. In J. Azéma, P.A. Meyer, and M. Yor, editors, *Séminaire de Probabilités XXIV*, volume 1426 of *Lecture Notes in Mathematics*, pages 154–165. Springer Verlag, 1990.
- [9] N. Privault. On the independence of multiple stochastic integrals with respect to a class of martingales. C. R. Acad. Sc. Paris, Série I, 323:515–520, 1996.
- [10] N. Privault, J.L. Solé, and J. Vives. Chaotic Kabanov formula for the Azéma martingales. Preprint No 367, Centre de Recerca Matemàtica, Barcelona, 1997.
- [11] F. Russo and P. Vallois. Product of two multiple stochastic integrals with respect to a normal martingale. Stochastic Processes and their Applications, to appear, 1996.
- [12] V. P. Skitovich. On characterizing Brownian motion. Teor. Verojatnost. i. Primenen., 1:361–364, 1956.
- [13] D. Surgailis. On multiple Poisson stochastic integrals and associated Markov semigroups. Probability and Mathematical Statistics, 3:217–239, 1984.
- [14] C. Tudor. Product formula for multiple Poisson-Itô integrals. To appear in Revue Roumaine de Mathématiques Pures et Appliquées.
- [15] K. Urbanik. Some prediction problems for strictly stationary processes. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 2, pages 235–258, Berkeley, 1967. Univ. of California Press.
- [16] A.S. Üstünel and M. Zakai. On independence and conditioning on Wiener space. Annals of Probability, 17(4):1441–1453, 1989.
- [17] A.S. Üstünel and M. Zakai. On the structure on independence on Wiener space. J. Funct. Anal., 90(1):113–137, 1990.

NICOLAS PRIVAULT, EQUIPE D'ANALYSE ET PROBABILITÉS, UNIVERSITÉ D'EVRY-VAL D'ESSONNE, BOULEVARD DES COQUIBUS, 91025 EVRY CEDEX, FRANCE