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1 Introduction

The independence of two Gaussian random variables can be characterized by the

vanishing of their covariance, and this property has been extended to multiple Wiener

integrals in [9], [10], by stating that the multiple integrals In(fn), Im(gm) with respect

to Brownian motion are independent if and only if the contraction∫ ∞
0

fn(x1, . . . , xn−1, z)gm(y1, . . . , ym−1, z)dz = 0,

vanishes, x1, . . . , xn−1, y1, . . . , ym−1 ∈ IR, where L2(IR+)◦n denotes the subspace of

L2(IR+)⊗n = L2(IRn
+) made of symmetric functions.
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A proof of necessity has been provided in [2] using standard probabilistic arguments,

while the original proof of [9], [10] relied on the Malliavin calculus. In addition, In(fn)

is independent of Im(gm) if and only if

E[(In(fn))2(Im(gm))2] = E[(In(fn))2]× E[(Im(gm))2], (1.1)

cf. Corollary 5.2 of [7]. Independence criteria for multiple stochastic integrals with

respect to other Gaussian processes have been obtained in [1].

Coming back to the case of single integrals I1(f) with respect to Brownian motion,

when X ' N (0, s) and Y ' N (0, t − s) are two independent centered Gaussian

random variables it is well known that

X − Y ' I1(f), with f = 1[0,s] − 1[s,t],

is independent of

X + Y ' I1(g), with g = 1[0,s] + 1[s,t],

since 〈f, g〉 = 〈1[0,s] − 1[s,t],1[0,s] + 1[s,t]〉 = 0.

The situation is completely different whenX ' P̃(s) and Y ' P̃(t−s) are independent

centered Poisson random variables with means s and t− s, in which case X −Y is no

longer independent of X + Y . Although we may also write

X − Y ' I1(f) = I1(1[0,s] − 1[s,t])

and

X + Y ' I1(g) = I1(1[0,s] + 1[s,t])

where I1(f) is the compensated Poisson integral of f , independence can occur only

when fg = 0, as follows from Proposition 3.1 below.

When In(fn) and Im(gm) are multiple Poisson stochastic integrals on IR+, the condition

fn ⊗0
1 gm(x1, . . . , xn, y1, . . . , yn−1) := fn(x1, . . . , xn)gm(y1, . . . , yn−1, xn) = 0, (1.2)
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x1, . . . , xn, y1, . . . , yn−1 ∈ IR+, is sufficient for the independence of In(fn) and Im(gm)

on the Poisson space, due to the independence of increments of the Poisson process,

since by symmetry of these functions, the supports of fn and gm can be respectively

contained in two Borel sets of the form An ⊂ IRn
+ and Bm ⊂ IRm

+ with A∩B = ∅, cf. [5].

On the other hand, it has been claimed in [4], [5] that (1.2) is also a necessary condi-

tion for the independence of In(fn) and Im(gm) on the Poisson space. A similar result

was stated independently in [8].

However that necessity claim was proved only when the functions fn and gm have

constant signs. More precisely, the necessity condition therein is based on the relation

(1.1) which, unlike on the Wiener space, turns out to be weaker than the indepen-

dence of In(fn) and Im(gm) when fn and gm have variable signs, as was shown in [7]

by a counterexample for n = 2 and m = 1, cf. also Remark 3.4 below.

In this note we present some examples in which (1.2) holds as a necessary and sufficient

condition for the independence of In(fn), Im(gm) when fn and gm are allowed to have

variable signs. Namely we treat the following cases:

- tensor powers: fn and gm take the form fn = f ◦n and gm = g◦m,

- integrals of first and multiple orders: fn ∈ L2(IR+)◦n and g1 has constant sign,

- Integrals of 1st and 2nd orders: f2 = f ◦ g, without sign restrictions on f2 and g1,

for which we show that fn⊗0
1 gm = 0 is necessary and sufficient for independence. The

question whether (1.2) is a necessary condition for independence is still open in full

generality.

In Section 2 we recall the necessary conditions for independence obtained in [4], [5].

The examples of multiple integrals with variable-sign kernels for which the disjoint

support condition is necessary and sufficient are given in Section 3. Finally in Sec-

tion 4 we consider the expectation of multiple stochastic integrals.
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The results of this paper are stated for a standard Poisson process on the half line

IR+, however they can be extended without difficulty to Poisson measures on metric

spaces.

2 Necessary condition for independence

We start by recalling some results of [4]. Given fn ∈ L2(IR)◦n a symmetric square-

integrable function of n variables on IRn
+, the multiple stochastic integral of fn with

respect to the standard Poisson process (Nt)t∈IR+ is defined as

In(fn) = n!

∫ ∞
0

∫ t−n

0

· · ·
∫ t−2

0

fn(t1, . . . , tn)d(Nt1 − t1) · · · d(Ntn − tn). (2.1)

We will need the multiplication formula

In(fn)Im(gm) =

2(n∧m)∑
s=0

In+m−s(hn,m,s), (2.2)

cf. e.g. Proposition 4.5.6 of [6], provided

hn,m,s :=
∑

s≤2k≤2(s∧n∧m)

k!

(
n

k

)(
m

k

)(
k

s− k

)
fn ◦s−kk gm

is in L2(IR+)◦n+m−s, 0 ≤ s ≤ 2(n∧m) where fn◦lk gm, 0 ≤ l ≤ k, is the symmetrization

in n+m− k − l variables of the function

fn ⊗lk gm(xl+1, . . . , xn, yk+1, . . . , ym) :=∫ ∞
0

· · ·
∫ ∞

0

fn(x1, . . . , xn)gm(x1, . . . , xk, yk+1, . . . , ym)dx1 · · · dxl.

for fn ∈ L2(IR+)◦n and gm ∈ L2(IR+)◦m such that fn ◦lk gm ∈ L2(IR+)◦n+m−k−l,

0 ≤ l ≤ k ≤ n ∧m.

The following proposition shows that fn ◦0
1 gm = 0 is a necessary condition for the

independence of In(fn) and Im(gm).
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Proposition 2.1 Let fn ∈ L2(IR+)◦n and gm ∈ L2(IR+)◦m such that

E[(In(fn))2(Im(gm))2] = E[(In(fn))2]× E[(Im(gm))2].

Then we have fn ◦0
1 gm = 0.

Proof. ([4]) If In(fn) and Im(gm) are independent, then In(fn)Im(gm) ∈ L2(Ω) and

using the isometry formula

E [In(fn)Im(gm)] = n!〈fn, gm〉L2(IR+)⊗n1{n=m}, (2.3)

for fn ∈ L2(IR+)◦n, gm ∈ L2(IR+)◦m, we get

(n+m)! | fn ◦ gm |2L2(IR+)⊗n+m≥ n!m! | fn ⊗ gm |2L2(IR+)⊗n+m

= n!m! | fn |2L2(IR+)⊗n| gm |2L2(IR+)⊗m

= E
[
In(fn)2

]
E
[
Im(gm)2

]
= E

[
(In(fn)Im(gm))2]

=

2(n∧m)∑
r=0

(n+m− r)! | hn,m,r |2L2(IR+)⊗n+m−r

≥ (n+m)! | hn,m,0 |2L2(IR+)⊗n+m +(n+m− 1)! | hn,m,1 |2L2(IR+)⊗n+m−1

≥ (n+m)! | fn ◦ gm |2L2(IR+)⊗n+m +nm(n+m− 1)! | fn ◦0
1 gm |2L2(IR+)⊗n+m−1

from (2.2), which implies fn ◦0
1 gm = 0. �

It follows from Proposition 2.1 that if In(fn) and Im(gm) are independent then we

have fn ◦0
1 gm = 0. However, fn ◦0

1 gm = 0 is in general only a necessary and not

sufficient condition for fn ⊗0
1 gm to vanish, since

〈fn ◦0
1 gm, fn ◦0

1 gm〉 ≤ 〈fn ⊗0
1 gm, fn ⊗0

1 gm〉,

which follows from the fact that fn◦0
1gm is the symmetrization of fn⊗0

1gm in n+m−1

variables.

A counterexample for which we have fn ◦0
1 gm = fm ◦1

1 gm = 0 and fn ⊗0
1 gm 6= 0 can

be found in [7], Example 5.3, as

f2(s, t) = (2.4)
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1{st<0}(1[−1,−1/2](s)− 1[−1/2,1/2](s) + 1[1/2,1](s))(1[−1,−1/2](s)− 1[−1/2,1/2](s) + 1[1/2,1](s))

and g1(t) = −1[−1,0](t) + 1(0,1](t). In this example the integrals I2(f2) and I1(g1) are

not independent, however (1.1) holds and therefore (1.1) and (1.2) cannot characterize

the independence of In(fn) and Im(gm).

In the case n = 2 and m = 1 we are able to show that (1.1) entails f2 ◦1
1 g1 = 0 in

addition to f2 ◦0
1 g1 = 0.

Proposition 2.2 Let f2 ∈ L2(IR+)◦2 and g1 ∈ L2(IR+) such that

E[(I2(f2))2(I1(g1))2] = E[(I2(f2))2]× E[(I1(g1))2].

Then we have

f2 ◦0
1 g1 = 0, and f2 ◦1

1 g1 = 0.

Proof. By the same argument as in the proof of Proposition 2.1 we find

h2,1,1 = f2 ◦0
1 g1 = 0,

and

h2,1,2 := 2f2 ◦1
1 g1 = 0.

�

When f2 = f ◦ g and g1 = h, Proposition 2.2 yields

(f ◦ g) ◦0
1 h =

1

4
(f ⊗ (gh) + (gh)⊗ f + g ⊗ (fh) + (fh)⊗ g) = 0, (2.5)

and

(f ◦ g) ◦1
1 h = f〈g, h〉+ g〈f, h〉 = 0, (2.6)

hence

〈g, h〉 = 〈f, h〉 = 0, (2.7)

provided f ◦ g 6= 0.
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3 Variable-sign kernels

In this section we consider examples of kernels fn ∈ L2(IR+)◦n, gm ∈ L2(IR+)◦m for

which

fn ◦0
1 gm = 0 =⇒ fn ⊗0

1 gm = 0,

in which case the condition

fn ⊗0
1 gm = fn(x1, . . . , xn−1, z)gm(y1, . . . , ym−1, z) = 0,

x1, . . . , xn−1, y1, . . . , ym−1, z ∈ IR, becomes both necessary and sufficient for the in-

dependence of In(fn) and Im(gm), and is equivalent to (1.1), which also becomes

necessary and sufficient.

We note that

〈fn ◦0
1 gm, fn ◦0

1 gm〉 (3.1)

=
1

(n+m− 1)!

∑
σ∈Σn+m−1∫

IRn+m−1
+

(fn ⊗0
1 gm)(x1, . . . , xn+m−1)(fn ⊗0

1 gm)(xσ1 , . . . , xσn+m−1)dx1 · · · dxn+m−1

=
(n− 1)!(m− 1)!

(n+m− 1)!
〈fn ⊗0

1 gm, fn ⊗0
1 gm〉

+
1

(n+m− 1)!

∑
σ∈Θn,m∫

IRn+m−1
+

fn ⊗0
1 gm(x1, . . . , xn+m−1)fn ⊗0

1 gm(xσ1 , . . . , xσn+m−1)dx1 · · · dxn+m−1,

where

Θn,m = {σ ∈ Σn+m−1 : σ({1, . . . , n− 1}) 6= {1, . . . , n− 1}

or σ({n+ 1, . . . , n+m− 1}) 6= {n+ 1, . . . , n+m− 1}},

and our method of proof will rely on this decomposition to show that fn ⊗0
1 gm = 0.
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Tensor powers

In the next proposition we obtain a necessary and sufficient condition for the inde-

pendence of integrals of (symmetric) tensor powers.

Proposition 3.1 Let f, g ∈ L2(IR). Then In(f⊗n) is independent of Im(g⊗m) if and

only if f⊗n ⊗0
1 g
⊗m = 0, which is equivalent to fg = 0.

Proof. We have

f ◦n ◦0
1 g
◦n = (fg) ◦ f ◦(n−1) ◦ g◦(m−1),

hence f ◦n ◦0
1 g
◦n = 0 is equivalent to fg = 0 and to

f⊗n ⊗0
1 g
⊗n = f⊗(n−1) ⊗ (fg)⊗ g⊗(m−1) = 0.

�

In particular, I1(f) is independent of I1(g) if and only if fg = 0, for all f, g ∈ L2(IR+).

Integrals of first and multiple orders

Here we consider the case of In(fn) and I1(g1) when only g1 has constant sign.

Proposition 3.2 Let fn ∈ L2(IR+)◦n, and assume that g1 ∈ L2(IR+) only has constant

sign. Then In(fn) is independent of I1(g1) if and only if fn ⊗0
1 g1 = 0, i.e.

fn(x1, . . . , xn)g1(x1) = 0, x1, . . . , xn ∈ IR+.

Proof. We have

fn ◦0
1 g1(x1, . . . , xn) =

1

n
fn(x1, . . . , xn)

n∑
k=1

g1(xk),

and, as in (3.1),

〈fn ◦0
1 g1, fn ◦0

1 g1〉 =
1

n2

∫ ∞
0

· · ·
∫ ∞

0

f 2
n(x1, . . . , xn)

n∑
i=1

n∑
j=1

g1(xi)g1(xj)dx1 · · · dxn

=
1

n

∫ ∞
0

· · ·
∫ ∞

0

f 2
n(x1, . . . , xn)|g1(xi)|2dx1 · · · dxn

+
n− 1

n

∫ ∞
0

· · ·
∫ ∞

0

f 2
n(x1, . . . , xn)g1(x1)g1(x2)dx1 · · · dxn

=
1

n
〈fn ⊗0

1 g1, fn ⊗0
1 g1〉+

n− 1

n
〈fn ⊗n−2

n fn, g1 ⊗ g1〉, (3.2)

hence fn ◦0
1 g1 = 0 implies fn ⊗0

1 g1 = 0 since fn ⊗n−2
n fn ≥ 0. �
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Integrals of first and second orders

In the next result the necessary and sufficient condition for independence of multiple

stochastic integrals is obtained without any sign assumption on the integrands in the

first and second order case. In this section we work in the tensor case f2 = f ◦g, which

does not include Example 2.4, see (3.5) below for an example in the tensor case.

Proposition 3.3 Let f, g, h ∈ L2(IR+). The double Poisson stochastic integral

I2(f ◦ g) = 2

∫ ∞
0

f(t)

∫ t−

0

g(s)d(Ns − s)d(Nt − t)

is independent of the single integral I1(h) =

∫ ∞
0

h(t)d(Nt − t) if and only if

(f ◦ g)⊗0
1 h = 0,

which is equivalent to fh = gh = 0.

Proof. We assume for simplicity that 〈f, f〉 = 〈g, g〉 = 1. If I2(f ◦ g) is independent

of I1(h), Proposition 2.1 shows that (f ◦ g) ◦0
1 h = 0 and the conclusion follows from

Lemma 3.5 in case 〈f 2, h〉〈g2, h〉 ≥ 0. Next, if

〈f 2, h〉〈g2, h〉 < 0,

Lemma 3.6 below shows that

h = λ1{f 6=0} − λ1{g 6=0}, (3.3)

where

|λ| = 〈f 2, h2〉1/2 = 〈g2, h2〉1/2 6= 0. (3.4)

In addition we have fg = 0 by Lemma 3.6, and by Proposition 2.2, (2.6) and (3.3),

we get ∫ ∞
0

f(x)dx =

∫ ∞
0

g(x)dx = 0,

hence, letting

α− =

∫ ∞
0

1{g(x)6=0}dx <∞, and α+ =

∫ ∞
0

1{f(x)6=0}dx <∞,
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which are both finite since h ∈ L2(IR+), we obtain

E[(I2(f ◦ g))21{I1(h)=λn}] = E[I1(f)2I1(g)21{I1(h)=λn}]

= e−α−−α+

∞∑
k=0∨(−n)

1

(2k + n)!

∫
IRk

+

(
k∑
i=1

f(xi)

)2

dx1 · · · dxk
∫

IRk+n
+

(
n+k∑
i=1

g(yi)

)2

dy1 · · · dyk+n

= e−α−−α+

∞∑
k=0∨(−n)

1

(2k + n)!

∫
IRk

+

k∑
i=1

f 2(xi)dx1 · · · dxk
∫

IRk+n
+

n+k∑
i=1

g2(yi)dy1 · · · dyk+n

= e−α−−α+

∞∑
k=0∨(−n)

k(k + n)

(2k + n)!
.

On the other hand, being the difference of two Poisson random variables, λ−1I1(h)

has the Skellam distribution.

P (I1(h) = λn) = e−α−−α+

∞∑
k=0∨(−n)

αn+k
+ αk−

k!(n+ k)!

= e−α−−α+

(
α+

α−

)n/2
I|n|(2

√
α+α−),

n ∈ Z, where

In(x) =
∞∑
k=0

(x/2)n+2k

k!(n+ k)!
, x > 0,

is the modified Bessel function of the first kind with parameter n ≥ 0. It follows that

E[(I2(f ◦ g))2 | I1(h) = λn] =

(
α+

α−

)−n/2 ∑∞
k=0

k(k+n)
(2k+n)!

I|n|(2
√
α+α−)

,

which cannot be constant in n because the Bessel function In(x) is not separable in

its variables x and n. Therefore the independence of I2(f ◦ g) with I1(h) imposes

λ = 0 which concludes the proof by contradiction with (3.4). �

From the above proof we note again that, although independence of I2(f ◦ g) and

I1(h) is equivalent to (f ◦ g)⊗0
1 h = 0, in general the statement (f ◦ g) ◦0

1 h = 0 does

not imply (f ◦ g)⊗0
1 h = 0, as shown by the following example:

f = 1A, g = 1B, h = 1A − 1B, (3.5)

A,B ⊂ IR+, with A ∩B = ∅, where we have

(f ◦ g)⊗0
1 h = (1A ◦ 1B)⊗0

1 (1A − 1B) = −1A ⊗ 1B + 1B ⊗ 1A 6= 0,
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and (f ◦ g) ◦0
1 h = 0, while (f ◦ g)⊗0

1 h 6= 0, i.e. (1.2) does not hold. In this case the

independence of I2(f ◦ g) and I1(h) does not hold, as in Example (2.4) above.

Remark 3.4 Unlike in the Wiener case, Condition (1.1) is in general not sufficient

for the independence of In(fn) and Im(gm), as shown by the example (2.4). Therefore

the search for a necessary and sufficient condition for independence in the general

case has to involve more complex criteria than (1.1).

The next lemma has been used in the proof of Proposition 3.3.

Lemma 3.5 Let f, g, h ∈ L2(IR+) such that (f ◦ g) ◦0
1 h = 0 and

〈f 2, h〉〈g2, h〉 ≥ 0.

Then we have (f ◦ g)⊗0
1 h = 0, and fh = gh = 0.

Proof. For simplicity and without loss of generality, we assume that

〈f, f〉 = 〈g, g〉 = 1.

By Proposition 2.2 we have (f ◦ g) ◦0
1 h = 0, and from (3.2) or (2.5) we find

0 = 〈(f ◦ g) ◦0
1 h, (f ◦ g) ◦0

1 h〉

=
1

2
〈(f ◦ g)⊗0

1 h, (f ◦ g)⊗0
1 h〉+

1

2
〈(f ◦ g)⊗0

2 (f ◦ g), h⊗ h〉

=
1

2
〈(f ◦ g)⊗0

1 h, (f ◦ g)⊗0
1 h〉+

1

4
〈fg, h〉2 +

1

4
〈f 2, h〉〈g2, h〉.

This shows that

(f ◦ g)⊗0
1 h = 0,

provided 〈f 2, h〉〈g2, h〉 ≥ 0, and we conclude by Lemma 3.7 below. �

The next lemma has been used in the proof of Proposition 3.3.

Lemma 3.6 Let f, g, h ∈ L2(IR+) such that (f ◦ g) ◦0
1 h = 0 and

〈g2, h〉 6= 〈f 2, h〉. (3.6)

Then we have fg = 0 and

h = λ1{f 6=0} − λ1{g 6=0},
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for some λ 6= 0 such that

λ2 =
〈f 2, h2〉
〈f, f〉

=
〈g2, h2〉
〈g, g〉

.

In particular it holds that

〈g2, h〉〈f 2, h〉 < 0.

Proof. For simplicity of exposition we assume that 〈f, f〉 = 〈g, g〉 = 1. The condition

(f ◦ g) ◦0
1 h = 0 implies

〈(f ◦ g) ◦0
1 h, f ⊗ f〉 = 〈f, gh〉+ 〈f 2, h〉〈f, g〉 = 0,

〈(f ◦ g) ◦0
1 h, g ⊗ g〉 = 〈f, gh〉+ 〈g2, h〉〈f, g〉 = 0,

and since 〈g2, h〉 6= 〈f 2, h〉 this gives 〈f, g〉 = 〈f, gh〉 = 0, hence

〈(f ◦ g) ◦1
1 h, (f ◦ g) ◦1

1 h〉 =
1

2
〈f 2, h〉〈g2, h〉+ 〈(f ◦ g)⊗0

1 h, (f ◦ g)⊗0
1 h〉

=
1

2
〈f 2, h〉〈g2, h〉+

1

4
(〈f, f〉〈g2, h2〉+ 〈g, g〉〈f 2, h2〉)

≥ −1

2
〈f 2, h2〉1/2〈g2, h2〉1/2 +

1

4
(〈g2, h2〉+ 〈f 2, h2〉) (3.7)

=
1

4
(〈f 2, h2〉1/2 − 〈g2, h2〉1/2)2

≥ 0,

which shows that 〈(f ◦ g) ◦1
1 h, (f ◦ g) ◦1

1 h〉 = 0 implies 〈f 2, h2〉 = 〈g2, h2〉, and, by the

equality (3.7),

fh = λf, and gh = −λg,

for some λ ∈ IR such that

|λ| = 〈f 2, h2〉1/2 = 〈g2, h2〉1/2.

Hence we have

h = λ1{f 6=0} − λ1{g 6=0}, (3.8)

and

λ2fg = h2fg,

which imply that fg = 0 a.e. on

{h2 = 0} = {f = h = 0} ∪ {fg 6= 0},

hence fg = 0. Finally we note that λ 6= 0 by (3.6) and (3.8). �
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The next lemma has been used in the proof of Lemma 3.5.

Lemma 3.7 For any f, g, h ∈ L2(IR+), the condition (f ◦ g)⊗0
1 h = 0 is equivalent to

fh = gh = 0.

Proof. Assuming again that 〈f, f〉 = 〈g, g〉 = 1, we note that since

(f ◦ g)⊗0
1 h =

1

2
(f ⊗ (gh) + g ⊗ (fh)), (3.9)

we have

〈(f ◦ g)⊗0
1 h, (f ◦ g)⊗0

1 h〉 =
1

4
(〈g2, h2〉+ 〈f 2, h2〉+ 2〈f, g〉〈fg, h2〉)

≥ 1

4
(〈g2, h2〉+ 〈f 2, h2〉 − 2|〈fg, h2〉|) (3.10)

≥ 1

4
(〈g2, h2〉+ 〈f 2, h2〉 − 2〈g2, h2〉1/2〈f 2, h2〉1/2)

=
1

4
(〈f 2, h2〉1/2 − 〈g2, h2〉1/2)2

≥ 0.

Assuming that (f ◦g)⊗0
1h = 0, if 〈fg, h2〉 6= 0 then the equality (3.10) implies f = −g

and fh = gh = 0 by (3.9). On the other hand, if 〈fg, h2〉 = 0 we have

0 = 〈(f ◦ g)⊗0
1 h, (f ◦ g)⊗0

1 h〉 =
1

4
(〈g2, h2〉+ 〈f 2, h2〉),

hence fh = gh = 0. This shows that fh = gh = 0 in all cases, and (f ◦ g)⊗0
1 h = 0 is

equivalent to fh = gh = 0. �

4 Conditional expectations

In this section we present some complements on conditional expectations. Next is an

adaptation of Proposition 3 in [3] to the Poisson case.

Proposition 4.1 Let fn ∈ L2(IR+), n ≥ 1, and let A be a Borel set of IR+ with finite

measure. We have

E[In(fn) | In(1⊗nA )] = E[In(fn) | I1(1A)] =
〈fn,1⊗nA 〉
〈1A,1A〉n

In(1⊗nA ),

which is a polynomial in I1(1A).
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Proof. For any k ≥ 1, by (2.2) we have

I1(1A)k =
k∑
l=0

αlIl(1
⊗l
A ), (4.1)

where α0, . . . , αk ∈ (0,∞), hence

E[In(fn)(I1(1A))k] = αk1{k≥n}〈fn,1⊗nA 〉

=
〈fn,1⊗nA 〉
〈1A,1A〉n

E[(I1(1A))kIn(1⊗nA )],

which shows that

E[In(fn) | I1(1A)] =
〈fn,1⊗nA 〉
〈1A,1A〉n

In(1⊗nA ).

By (2.2) we also have

In(1⊗nA ) =
n∑
l=0

βlIl(1
⊗l
A ),

where β0, . . . , βn ∈ IR, which implies σ(In(1⊗nA )) ⊂ σ(I1(1A)), and

E[In(fn) | In(1⊗nA )] = E[E[In(fn) | I1(1A)] | In(1⊗nA )]

=
〈fn,1⊗nA 〉
〈1A,1A〉n

E[E[In(1⊗nA ) | I1(1A)] | In(1⊗nA )]

=
〈fn,1⊗nA 〉
〈1A,1A〉n

In(1⊗nA ).

�

When n = 1 the above result says that

E[I1(f1) | I1(1A)] =
〈f1,1A〉
〈1A,1A〉

I1(1A), (4.2)

which follows by a direct orthogonal projection argument. In particular when X '
P̃(s) and Y ' P̃(t−s) are independent centered Poisson random variables with means

s and t− s,
X ' I1(1[0,s]) and Y ' I1(1[s,t])

taking f1 = 1[0,s] and A = [0, t], Relation (4.2) follows from the fact that X + s has a

binomial distribution with parameter s/t given X + Y + t.
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Finally we note that, contrary to the Wiener case and Proposition 2 of [3], the condi-

tional expectation of an odd order integral given an even order integral is not zero in

general, indeed,

E[I3(f3)(I2(g2))2]

does not vanish in general, from the multiplication formula (2.2).
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