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Moment identities for Poisson-Skorohod integrals
and application to measure invariance
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Abstract - We present a moment identity on the Poisson space that extends the Skorohod
isometry to arbitrary powers of the Skorohod integral. Applications of this identity are given
to the invariance of Poisson measures under intensity preserving random transformations.

Identités de moments pour les intégrales de Poisson-Skorohod et
applications à l’invariance en mesure

Résumé - Nous présentons une identité de moments sur l’espace de Poisson qui étend
l’isométrie de Skorohod à des puissances quelconques de l’intégrale de Skorohod, et nous
étudions les applications de cette identité à l’invariance de la mesure de Poisson sous les tran-
formations aléatoires qui préservent l’intensité.
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1 Introduction

The classical invariance theorem for Poisson measures states that given a deterministic
transformation τ : X → Y between measure spaces (X, σ) and (Y, µ) sending σ to µ,
the corresponding transformation on point processes maps the Poisson distribution πσ
with intensity σ(dx) on X to the Poisson distribution πµ with intensity µ(dy) on Y . In
this note we present sufficient conditions for the invariance of random transformations
τ : ΩX ×X → Y of Poisson random measures on metric spaces. Our results are inspired
by the treatment of the Wiener case in [8], see [6] for a recent simplified proof. However,
the use of finite difference operators instead of derivation operators as in the continuous
case makes the proofs and arguments more complex from an algebraic point of view.
Here the almost sure isometry condition on Rd assumed in the Gaussian case will be
replaced by an almost sure condition on the preservation of intensity measures and, as
in the Wiener case, we will characterize probability measures via their moments.

In this Note the proofs of the main results are only outlined. The details of the complete
proofs, which are technical, can be found in [5].

2 Notation and preliminaries

In this section we recall some notation and facts on stochastic analysis under Poisson
measures, see [3] and [7] for recent reviews. Let X be a σ-compact metric space with
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Borel σ-algebra B(X). Let ΩX denote the configuration space on X, i.e. the space of at
most countable and locally finite subsets of X, defined as

ΩX =
{
ω = (xi)

N
i=1 ⊂ X, xi 6= xj ∀i 6= j, N ∈ N ∪ {∞}

}
,

and endowed with the Poisson probability measure πσ with σ-finite diffuse intensity σ(dx)

on X. Each element ω of ΩX is identified to the Radon point measure ω =

ω(X)∑
i=1

εxi , where

εx denotes the Dirac measure at x ∈ X and ω(X) ∈ N∪ {∞} is the cardinality of ω. Let
D denote the finite difference gradient defined πσ ⊗ σ(dω, dx)-almost everywhere as

DxF (ω) = F (ω ∪ {x})− F (ω), ω ∈ ΩX , x ∈ X, (2.1)

for any random variable F : ΩX → R, cf. [1]. We refer to [2] for the definition of the
Skorohod integral operator

δσ(u) =

∫
X

u(ω \ {t}, t)(ω(dt)− σ(dt)), (2.2)

on any sufficiently integrable measurable process u : ΩX ×X → R. Note that if Dtut =
0, t ∈ X, δσ(u) coincides with the compensated Poisson-Stieltjes integral of u. From
Corollary 1 in [4] we have the duality relation

Eσ[〈DF, u〉L2(X,σ)] = Eσ[Fδσ(u)], F ∈ Dom(D), u ∈ Dom(δσ). (2.3)

In addition, for any u ∈ Dom(δσ) we have the commutation relation

Dtδσ(u) = δσ(Dtu) + ut, t ∈ X. (2.4)

3 Moment identities

Using Relations (2.3) and (2.4), the next lemma provides an extension of the Skorohod
isometry to moments of order higher than 2. Here and in other formulas stated in the
sequel we will simply assume that all terms are sufficiently summable and integrable.

Lemma 1. We have

Eσ[(δσ(u))n+1] =
n−1∑
k=0

(
n

k

)
Eσ

[
(δσ(u))k

∫
X

(ut)
n−k+1σ(dt)

]
+

n∑
k=1

(
n

k

)
Eσ

[∫
X

(ut)
n−k+1((δσ((I +Dt)u))k − (δσ(u))k)σ(dt)

]
,

for all n ≥ 1.

Proof. This lemma is proved using the identities (2.3) and (2.4) applied to F = (δσ(u))n.
�
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Lemma 1 also shows that the moments of the compensated Poisson stochastic integral∫
X

f(t)(ω(dt)− σ(dt)) of f ∈
N+1⋂
p=1

Lpσ(X) satisfy the recurrence identity

Eσ

[(∫
X

f(t)(ω(dt)− σ(dt))

)n+1
]

(3.1)

=
n−1∑
k=0

(
n

k

)∫
X

(f(t))n−k+1σ(dt)Eσ

[(∫
X

f(t)(ω(dt)− σ(dt))

)k]
.

In particular, in order for δσ(u) to have the same moments as the compensated Poisson
integral of f , it should satisfy the recurrence relation

Eσ[(δσ(u))n+1] =
n−1∑
k=0

(
n

k

)∫
X

(f(t))n−k+1σ(dt)Eσ
[
(δσ(u))k

]
, (3.2)

n ≥ 0, which is Relation (3.1) for the moments of compensated Poisson stochastic inte-
grals, and characterizes their distribution by Carleman’s condition when sup

p≥1
‖f‖Lpσ(Y ) <

∞. In order to simplify the presentation of moment identities for the Skorohod integral
δσ, it will be convenient to use the symbolic notation

∆s0 · · ·∆sj

j∏
p=0

usp :=
∑

Θ0∪···∪Θj={0,1,...,j}
0/∈Θ0,··· ,j /∈Θj

DΘ0us0 · · ·DΘjusj , (3.3)

where DΘ =
∏
j∈Θ

Dsj when Θ ⊂ {0, 1, . . . , j}, j ≥ 0, s0, . . . , sj ∈ X.

Let (Y, µ) denote another measure space with associated configuration space ΩY and
Poisson measure πµ with intensity µ(dy).

Theorem 1. Let N ≥ 0 and let R : Lpµ(Y ) → Lpσ(X) be a random isometry for all

p = 2, . . . , N + 1. Then for h ∈
N+1⋂
p=2

Lpµ(Y ) and n = 0, . . . , N we have

Eσ[(δσ(Rh))n+1] =
n−1∑
k=0

(
n

k

)∫
Y

(h(y))n−k+1µ(dy)Eσ
[
(δσ(Rh))k

]
+

n∑
a=0

a∑
j=0

(
a

j

) n∑
b=a

∑
l0+···+la=n+1−b

l0,...,la≥1
la+1,...,lb=1

C(l0, . . . , la, a, b, n)
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(
b∏

q=j+1

∫
Y

(h(y))lq µ(dy)

)
Eσ

[∫
Xb+1

∆t0 · · ·∆tj

(
j∏

p=0

(Rh(tp))
lp

)
σ(dt0) · · ·σ(dtj)

]
,

where

C(l0, . . . , la, a, b, n)

= (−1)b
(

n

l0 − 1

) ∑
0=rb+1<···<r0=a+b

b∏
q=0

rq−1−b+q∏
p=rq+1−b+q+1

(
l1 + · · ·+ lp+1 − q − 1

l1 + · · ·+ lp − q

)
.

Proof. This result is obtained by repeated applications of the integration by parts
formula (2.3) until removal of all terms in δσ. �

As a consequence of Theorem 1, if R : Lpµ(Y ) → Lpσ(X) is a random isometry for all
p = 1, . . . , N + 1, that satisfies the condition∫

Xj+1

∆t0 · · ·∆tj

(
j∏

p=0

(Rh(tp))
lp

)
σ(dt0) · · ·σ(dtj) = 0, (3.4)

for all l0 + · · ·+ lj ≤ N + 1, l0 ≥ 1, . . . , lj ≥ 1, j = 1, . . . , N , then we have

Eσ[(δσ(Rh))n+1] =
n−1∑
k=0

(
n

k

)∫
Y

(h(y))n−k+1µ(dy)Eσ
[
(δσ(Rh))k

]
, (3.5)

n = 0, . . . , N , i.e. the moments of δσ(Rh) satisfy the recurrence relation (3.1).

Corollary 1. Let R : Lpµ(Y )→ Lpσ(X) be a random isometry for all p ≥ 1, and assume

that h ∈
∞⋂
p=1

Lpµ(Y ) satisfies sup
p≥1
‖h‖Lpµ(Y ) <∞ and the cyclic condition

Dt1Rh(t2) · · ·DtkRh(t1) = 0, t1, . . . , tk ∈ X, (3.6)

πσ ⊗ σ⊗k-a.e., for all k ≥ 2. Then, under πσ, δσ(Rh) has same distribution as the
compensated Poisson integral δµ(h) of h under πµ.

Proof. We first show that (3.6) implies (3.4), and then apply Theorem 1. �

4 Invariance of Poisson measures

Given a measurable random process

τ : ΩX ×X → Y,

indexed by X, let τ∗(ω), ω ∈ ΩX , denote the image measure of ω by τ , i.e.

τ∗ : ΩX → ΩY (4.1)
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maps

ω =

ω(X)∑
i=1

εxi ∈ ΩX to τ∗(ω) =

ω(X)∑
i=1

ετ(xi) ∈ ΩY .

In other terms, the random mapping τ∗ : ΩX → ΩY shifts each configuration point x ∈ ω
according to x 7→ τ(ω, x). We are interested in finding conditions for τ∗ : ΩX → ΩY

to map πσ to πµ. This question is well known to have an affirmative answer when the
transformation τ : X → Y is deterministic and maps σ to µ.

Corollary 2. Let τ : ΩX ×X → Y be a measure preserving transformation mapping σ
to µ, i.e. τ∗(ω, ·)σ = µ, ω ∈ ΩX , and satisfying the cyclic condition

Dt1τ(ω, t2) · · ·Dtkτ(ω, t1) = 0, t1, . . . , tk ∈ X, ω ∈ ΩX , (4.2)

for all k ≥ 2. Then τ∗ : ΩX → ΩY maps πσ to πµ, i.e. τ∗πσ = πµ is the Poisson measure
with intensity µ(dy) on Y .

Proof. We apply Corollary 1 to the isometry R : Lpµ(Y ) → Lpσ(X), p ≥ 1, defined
by Rh = h ◦ τ , h ∈ Lpµ(Y ). Then we note that (4.2) implies (3.6) and that we have
δσ(Rh) = δσ(h ◦ τ) = δµ(h) ◦ τ∗ from (2.2) and the relation DtRh(t) = Dth(τ(ω, t)) = 0,
σ ⊗ πσ(dt, dω)-a.e. �

In the above corollary the identity (4.2) is interpreted when Y is a metric space by stating
that for all k ≥ 2 and t1, . . . , tk ∈ X the k-tuples

(τ(ω ∪ {t1}, t2), τ(ω ∪ {t2}, t3), . . . , τ(ω ∪ {tk−1}, tk), τ(ω ∪ {tk}, t1))

and (τ(ω, t2), τ(ω, t3), . . . , τ(ω, tk), τ(ω, t1)) coincide on at least one component in Y k, for
almost every ω ∈ ΩX . Examples of random transformations τ : ΩX ×X → Y satisfying
the above hypotheses are considered in [5].
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