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1 Introduction

Computing the moments and cumulants of random variables has important applica-

tions in probability and statistics, e.g. for the estimation of distributions. In this paper
∗nprivault@ntu.edu.sg
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we review the computation of moments of random functionals of Poisson point pro-

cesses via combinatorial identities that extend the Slivnyak-Mecke formula to higher

order moments, see [Pri12b, Pri16], and present some applications.

For this, we derive moment identities for stochastic integrals using sums over

partitions. Those identities are used to derive criteria for invariance of Poisson ran-

dom measures under random transformations, and for distribution estimation of the

cardinality of random sets based on a Poisson point process.

The moments of random functionals can be used to estimate random graph con-

nectivity in the random connection model using probability generating functions. This

approach is based on the computation of the moments of k-hop path counts as sums

over non-flat partitions, using extensions of moment identities to multiparameter pro-

cesses, see [BRSW17].

The calculation of moments can also be applied to estimate the skewness and

kurtosis of probability distributions, and to approximate probability densities via

Edgeworth and Gram-Charlier expansions. Examples are provided using stochastic

differential equations in Poisson shot noise models, with an application to the estima-

tion of probability densities of neuron membrane potentials.

This paper is organized as follows. In Section 2 we review moment identities

for Poisson stochastic integrals with random integrands. In Section 3, such identities

are specialized to indicator functions of random sets, for application in stochastic

geometry. Section 4 deals with applications to the statistics of k-hop counts in the

random-connection model, using multiparameter stochastic integrals for the analysis

of random graph connectivity. Section 5 considers the moments of Poisson shot noise

processes, with an application to the modeling of membrane potential distributions.

2 Moments of Poisson point processes

We consider a Poisson point process with intensity measure σ(dx) on the space

ΩX :=
{
ξ = {xi}i∈I ⊂ X : #(A ∩ ξ) <∞ for all compact A ∈ B(X)

}
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of locally finite configurations on a subset X ⊂ IRd, where ξ(A) = #{k : xk ∈ A}
denotes the count of configuration points that belong to a measurable subset A ⊂ X.
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For all compact disjoint subsets A1, . . . , An of X, n ≥ 1, the mapping

ξ 7→ (ξ(A1), . . . , ξ(An))

is a vector of independent Poisson distributed random variables on IN with respective

intensities σ(A1), . . . , σ(An). As a consequence, the Poisson stochastic integral with

respect to the Poisson random measure with intensity σ(dx) on X has the moment

generating function

IE

[
exp

(∑
x∈ξ

h(x)

)]
= exp

(∫
X
(eh(x) − 1)σ(dx)

)
. (2.1)

Slivnyak-Mecke identity

The Slivnyak-Mecke ([Sli62], [Mec67]) identity allows one to compute the moments of

first order stochastic integrals of random integrands as

IE

[∑
x∈ξ

u(x, ξ)

]
= IE

[∫
X
ε+
x u(x, ξ)σ(dx)

]
, (2.2)

where ε+
x is the addition operator defined on random variables F on ΩX as

ε+
x F (ξ) = F (ξ ∪ {x}), x ∈ X.

Nonlinear Slivnyak-Mecke identities

Next, we show how the Slivnyak-Mecke identity can be used to derive a covariance

formula with random integrands. We have

IE

[∑
x1∈ξ

u1(x1, ξ)
∑
x2∈ξ

u2(x2, ξ)

]
= IE

[∑
x1∈ξ

(∑
x2∈ξ

u2(x2, ξ)

)
ui(x1, ξ)

]
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= IE

[∫
X
ε+x1

(∑
x2∈ξ

u2(x2, ξ)u1(x1, ξ)

)
σ(dx1)

]
,

with

ε+x1

∑
x2∈ξ

u2(x2, ξ) =
∑
x2∈ξ

ε+x1u2(x2, ξ) + ε+x1u2(x1, ξ).

Hence, another application of (2.2) yields

IE

[∑
x1∈ξ

u1(x1, ξ)
∑
x2∈ξ

u2(x2, ξ)

]

= IE

[∫
X

∑
x2∈ξ

ε+x1(u1(x1, ξ)u2(x2, ξ))σ(dx1)

]
+ IE

[∫
X
ε+x1(u1(x1, ξ)u2(x1, ξ))σ(dx1)

]

= IE

[∫
X2

ε+x1ε
+
x2

(u1(x1, ξ)u2(x2, ξ))σ(dx1)σ(dx2)

]
+ IE

[∫
X
ε+x1(u1(x1, ξ)u2(x1, ξ))σ(dx1)

]
.

Proposition 2.1 below, see Theorem 1 in [Pri16], can be regarded as a nonlinear

extension of the Slivnyak-Mecke formula (2.2) with random integrands u : X×ΩX −→
IR. The sum (2.3) runs over the partitions π1, . . . , πk of {1, . . . , n}, where |πi| denotes
the cardinality of the block πi, i = 1, . . . , k. Given zn = (z1, . . . , zn) ∈ Xn we will use

the shorthand notation ε+
zn for the operator

(ε+
znF )(ξ) = F (ξ ∪ {z1, . . . , zn}), ξ ∈ ΩX,

for F a random variable on ΩX.

Proposition 2.1 Let u : X× ΩX −→ IR be a (measurable) process. For all n ≥ 1 we

have

IE

[(∑
x∈ξ

u(x, ξ)

)n]
=
∑
ρ∈Π[n]

IE

∫
X|ρ|

ε+z|ρ|

|ρ|∏
l=1

u|ρl|(zl)σ
⊗|ρ|(dz|ρ|)

 , (2.3)

where the sum runs over all partitions ρ of {1, . . . , n} with cardinality |ρ|.

See [DF14] for an extension of (2.3) to point processes admitting Papangelou inten-

sities, and [BRSW17] for an extension to multiparameter processes. This result can

be more generally stated as the next joint moment identity for Poisson stochastic

integrals with random integrands, cf. Proposition 7 in [Pri16].
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Proposition 2.2 Let u1, . . . , up : X× ΩX −→ IR be random processes, p ≥ 1. For all

n1, . . . , np ≥ 0 and n := n1 + · · ·+ np, We have

IE

(∑
x1∈ξ

u1(x1, ξ)

)n1

· · ·

∑
xp∈ξ

up(xp, ξ)

np
=

n∑
k=1

∑
π1∪···∪πk={1,...,n}

IE

[∫
Xk
ε+x1 · · · ε

+
xk

(
k∏
j=1

p∏
i=1

u
lni,j
i (xj, ξ)

)
σ(dx1) · · ·σ(dxk)

]
,

where the sum runs over all partitions π1, . . . , πk of {1, . . . , n} and the power lni,j is

the cardinality

lni,j := |πj ∩ (n1 + · · ·+ ni−1, n1 + · · ·+ ni]|, i = 1, . . . , k, j = 1, . . . , p.

Proposition 2.2 implies in particular the next joint moment identity. Let f1, . . . , fp :

X −→ IR be deterministic functions, p ≥ 1. Then, for any bounded random variable

F and n1, . . . , np ≥ 0 and n := n1 + · · ·+ np, we have

IE

F (∑
x1∈ξ

f1(x1)

)n1

· · ·

∑
xp∈ξ

fp(xp)

np
=

n∑
k=1

∑
π1∪···∪πk={1,...,n}

∫
Xk

IE
[
ε+x1 · · · ε

+
xk
F
] k∏
j=1

p∏
i=1

f
lni,j
i (xj)σ(dx1) · · ·σ(dxk).

3 Random sets in stochastic geometry

We consider possibly random sets A(ξ) such that

{ξ ∈ ΩX : A(ξ) ⊂ K} ∈ F for all K ∈ K(X),

and let N(A(ξ)) denote the cardinality of ξ∩A(ξ). The next proposition is a factorial

moment identity for N(A), see Proposition 2.1 in [BP14].

Proposition 3.1 Let A(ξ) be a random measurable subset of X. For all n ≥ 1 and

sufficiently integrable random variable F , we have

IE
[
F N(A)(n)

]
= IE

[∫
Xn

ε+
xn(F1An(x1, . . . , xn)) σ⊗n(dx1, . . . , dxn)

]
,

where N(A)(n) = N(A)(N(A)− 1)(N(A)− n+ 1) denotes the descending factorial of

N(A), n ≥ 1.
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Given K in the collection K(X) of compact subsets of X, let

FK := σ(ξ(U) : U ⊂ K, σ(U) <∞)

denote the sigma-algebra generated by ξ 7→ ξ(U), with U ⊂ K and σ(U) < ∞. We

recall that a random compact set S is called a stopping set if

{ξ ∈ ΩX : S(ξ) ⊂ K} ∈ FK for all K ∈ K(X).

In other words, modifying the configuration ξ outside of S(ξ) does not affect S(ξ)

itself, see [Zuy99] and Definition 2.27 page 335 of [Mol05].

In the sequel, we consider stopping sets S satisfying the following monotonicity and

stability conditions.

i) The stopping set S is non-increasing in the sense that

S(ξ ∪ {x}) ⊂ S(ξ), ξ ∈ ΩX, x ∈ X.

ii) The stopping set S is stable in the sense that

x ∈ S(ξ) =⇒ x ∈ S(ξ ∪ {x}), ξ ∈ ΩX, x ∈ X.

Examples of stopping sets satisfying the above conditions can be given as follows:

- The minimal closed ball S = Bm centered at 0 and containing exactly m ≥ 1 points,

see Figure 1-(a).

- The complement S of the open convex hull S of a Poisson point process inside a

convex subset of finite σ-measure in IRd, see Figure 1-(b).

- The Voronoi flower S, which is the union of closed balls centered at the vertices

of the Voronoi polygon, containing the point 0 and exactly two other process

points, see Figure 1-(c).
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(a) Disc Bm with m = 5.
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(b) Convex hull.
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(c) Voronoi flower.

Figure 1: Examples of stopping sets.

- The complement S of the union of open cones generated by a Boolean-Poisson

model on a set of finite σ-measure in IRd, see Figure 2.

•

•

•

•

x

y

r

0

Figure 2: Cones generated by a Boolean-Poisson model.

- Other examples of stopping sets include the Voronoi sausage or the Delaunay lunes,

see e.g. [CQZ03] and [Cow06].

From (3.2) and Proposition 3.1 we obtain the next factorial moment identity.

Proposition 3.2 Let S be the complement of a stable, non-increasing stopping set S.

For all n ≥ 1, we have

IE
[
F N(S)(n)

]
= IE

[ ∫
Sn
ε+
x1
· · · ε+

xnF σ(dx1) · · ·σ(dxn)

]
,

for F a bounded random variable.

Given S a stopping set, we consider the stopped sigma-algebra generated by S defined

as

FS := σ(B ∈ F : B ∩ {ξ ∈ ΩX : S(ξ) ⊂ K} ∈ FK , K ∈ K(X)),
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see Definition 1 in [Zuy99]. As a consequence of Proposition 3.2, we obtain the

following invariance result, see Propositions 4.1-4.2 and Corollary 5.2 in [Pri15].

Corollary 3.3 Consider S(ξ) a stable and non-increasing stopping set and F (ξ) a

non-negative FS-measurable random variable with IE
[
ezσ(S)(1 + z)ξ(S)F (ξ)

]
< ∞ for

some z > 0. We have the Girsanov identity

IE[F (ξ)] = IE
[
e−zσ(S)(1 + z)ξ(S)F (ξ)

]
. (3.1)

Relation (3.1) yields the following conditional Laplace transform for S(ξ) a stable and

non-increasing stopping set:

IE[e−zσ(S) | ξ(S) = n] =
1

(1 + z)n
Pz(ξ(S) = n)

P(ξ(S) = n)
, z > 0, n ∈ IN,

where Pz denotes the Poisson point process distribution with intensity zσ(dx), which

is consistent with the gamma-type results of Theorem 2 of [MZ96] and Theorem 2 of

[Zuy99], and this recovers the gamma distribution of σ(S) conditionally to ξ(S) = n,

when Pz(ξ(S) = n) does not depend on z > 0.

Corollary 3.4 Let S be a non-increasing and stable stopping set. Then the comple-

ment S of S satisfies

P(N(S) = n | FS) =
e−(σ(S))

n!
(σ(S))n, n ≥ 0.

Proof. We note that the complement S of a stable and non-increasing stopping set S

fulfills the condition

ε+
xn(1S(x1) · · ·1S(xn)) = 1S(x1) · · ·1S(xn), x1, . . . , xn ∈ X, n ≥ 1, (3.2)

and apply the factorial moment identity of proposition 3.2. �

Corollary 3.4 shows in particular that, given the stopping set S, the count N(S) is a

Poisson random variable with intensity σ(S), see Theorem 3.1 of [BR16], and [Pri12a],

when S is the closed complement of the Poisson convex hull S. From Corollary 3.4 we

can construct an alternative estimator

P(N(S) = n | FS) =
(σ(S))n

n!
e−σ(S). (3.3)
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of the distribution P(N(S) = n) of the number of Poisson vertices inside the comple-

ment S of a stopping set S, in addition to the standard sampling estimator 1{N(S)=n},

see [Pri21] for numerical experiments where the performances of the estimators 1{N(S)=n}

and (3.3) are compared via their respective variances given by P(N(S) = n)(1 −
P(N(S) = n)), and IE

[
(σ(S))2ne−2σ(S)

]
/n!2 − (P(N(S) = n))2.

4 Multiparameter integrals in random graphs

In this section we consider joint moment identities for multiparameter processes

(uz1,...zr)(z1,...zr)∈Xr .

• Let Π[n× r] denote the set of partitions of

∆n×r := {1, . . . , n} × {1, . . . , r} =
{

(k, l) : k = 1, . . . , n, l = 1, . . . , r
}
.

• Given ρ = {ρ1, . . . , ρm} a partition of ∆n×r, let ζρ : ∆n×r −→ {1, . . . ,m} let

ζρ(k, l) = p if and only if (k, l) ∈ ρp,

denote the index of the block ρp containing (k, l).

In the next proposition, see Theorem 3.1 in [BRSW17], we use the notation

ε+zku(z1, . . . , zk, ξ) := u(z1, . . . , zk, ξ ∪ {z1, . . . , zk}), zn = (z1, . . . , zn) ∈ Xn, (4.1)

for (u(z1, . . . , zk, ξ))z1,...,zk∈X a multiparameter process.

Proposition 4.1 We have

IE

[( ∑
z1,...,zr∈ξ

u(z1, . . . , zr, ξ)

)n]
=

∑
ρ∈Π[n×r]

IE

[∫
X|ρ|

ε+z|ρ|

n∏
k=1

u(zρπk)σ
⊗|ρ|(dz|ρ|)

]
,

where zρπk := (zζρ(k,1), . . . , zζρ(k,r)) and πk := {(k, 1), . . . , (k, r)}, k = 1, . . . , n.

When n = 1, this yields the multivariate version of the Georgii, [NZ79] identity

IE

[ ∑
z1,...,zr∈ξ

u(z1, . . . , zr, ξ)

]
=

∑
ρ∈Π[1×r]

IE
[∫

Xr
ε+
z|ρ|
u(zζρ(1,1), . . . , zζρ(1,r))σ

⊗|ρ|(dz|ρ|)

]
.
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We write π � σ when a partition π ∈ Π[n × r] is finer than another partition σ ∈
Π[n × r], i.e. when every block of π is contained in a block of σ. We also write

ρ ∧ π = 0̂ when µ = 0̂ := {{1, 1}, . . . , {n, r}} is the only partition µ ∈ Π[n × r] such
that µ � π and µ � ρ, i.e. |πk ∩ ρl| ≤ 1 for k = 1, . . . , n, l = 1, . . . , |ρ|. The moment

identity in the next proposition is written as a sum over partitions ρ ∈ Π[n × r]

such that the partition diagram Γ(π, ρ) is non-flat, see Chapter 4 of [PT11], where

π := (π1, . . . , πn) ∈ Π[n× r] is given by πk := {(k, 1), . . . , (k, r)}, k = 1, . . . , n.

Proposition 4.2 Assume that u(z1, . . . , zr, ξ) = 0 whenever zi = zj, 1 ≤ i 6= j ≤ r,

ξ ∈ ΩX. We have

IE

[( ∑
z1,...,zr∈ξ

u(z1, . . . , zr, ξ)

)n]
=

∑
ρ∈Π[n×r]
ρ∧π=0̂

IE

[∫
X|ρ|

ε+z|ρ|

n∏
k=1

u(zρπk)σ
⊗|ρ|(dz|ρ|)

]
,

where the sum is over non-flat partition diagrams Γ(π, ρ), with zρπk := (zζρ(k,1), . . . , zζρ(k,r))

and πk := {(k, 1), . . . , (k, r)}, k = 1, . . . , n.

Figure 3 shows an example of a non-flat partition of Π[n× r] with n = 3 and r = 2,

which is tagged using the four symbols 4, 2, D, #, with π3 = {(3, 1), (3, 2)}, π2 =

{(2, 1), (2, 2)}, π1 = {(1, 1), (1, 2)}, and 4 = {(1, 2), (2, 1), (3, 2)}, # = {(1, 1), (3, 1)},
D = {(2, 2)}.

π1

π2

π3

Figure 3: Example of a non-flat partition of Π[3× 2].

Figure 4 illustrates the non-flat partition technique in the case n = 3 and r = 2,

by displaying 6 out of the 87 multigraphs occurring in the computation of the case

of the third moment of the 3-hop count based on possible combinations of common

nodes in the product (4.2), together with each corresponding non-flat partition of

[3× 2] = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)}, and every path in the multigraph is

followed from the blue node x to the red node y.
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Multigraph Partition Multigraph Partition Multigraph Partition

× # × # × #

# D D # D �

4 2 4 2 4 2

× # 2 4 2 4

D # 2 # 4 �

4 D 2 D D 4

Figure 4: Matching of non-flat partitions of [3× 2] to multigraphs with identification
of common nodes.

Random-connection model

In the random-connection model, two vertices x 6= y of the Poisson point process ξ of

nodes on X ⊂ IRd are independently connected with the probability H(x, y) given ξ

in the probability space ΩX, where H : X ×X −→ [0, 1] is a connection function, see

Figure 5. In particular, the 1-hop count 1{x↔y}, where x ↔ y means that x ∈ X is

connected to y ∈ X, is a Bernoulli random variable with parameter H(x, y) and we

have the relation

IE

[
ε+zr

r∏
i=0

1{zi↔zi+1}(ξ)

∣∣∣∣ ξ
]

=
r∏
i=0

H(zi, zi+1)

for any subset {z0, . . . , zr+1} of distinct elements of X, where ε+zr is the addition oper-

ator of point process nodes at the locations zr = {z1, . . . , zr}, see (4.1).

Figure 5: Random-connection graph.

Given x, y ∈ X two vertices in X, the count Nx,y
r of (r + 1)-hop paths from x to y as

particular cases, i.e. the number of (r + 1)-hop sequences z1, . . . , zr ∈ ξ of vertices

11



connecting x to y in the random graph is the multiparameter stochastic integral

Nx,y
r+1 =

∑
z1,...,zr∈ξ

u(z1, . . . , zr)

over the vertices of the point process ξ, of the multiparameter r-process

u(z1, . . . , zr, ξ) := 1{zi 6=zj , 1≤i<j≤r}1{z1,...,zr∈ξ}

r∏
i=0

1{zi↔zi+1}(ξ)

which vanishes on the diagonals in Xr, with z0 := x and zr+1 := y. Computing the

moments of Nr requires to raise Nr to a given power, creating product terms of the

form
n∏
l=1

u(z
(l)
1 , . . . , z(l)

r ; ξ) (4.2)

where (z
(l)
1 , . . . , z

(l)
r ) denotes the sequence of points appearing in the l-th product term.

For example, computing the second moment of a 3-hop count requires to identify and

count the 7 possible multigraphs that can connect x to y via two 3-hop paths with

possible common nodes as in Figure 6, see also Figure 2 in [KGK18], in which every

path in each multigraph is followed from the blue node x to the red node y. The

difficulty in dealing with common nodes is that they break the independence property

in the product (4.2), and as such they have to be dealt with separately.

Figure 6: The seven possible ways to join two nodes via two 3-hop paths and their
common nodes.

The next proposition, which is a direct consequence of Proposition 4.1, provides a

general expression for the moments of the count Nx,y
r+1 of (r+1)-hop paths, see [Pri19].

12



Proposition 4.3 The moment of order n of the (r + 1)-hop count between x, y ∈ X
is given by

IE
[(
Nx,y
r+1

)n]
=

∑
ρ∈Π[n×r]
ρ∧π=0̂

IE

[∫
X|ρ|

n∏
l=1

r∏
i=0

H1/nρl,i(zζρ(l,i), zζρ(l,i+1))σ
⊗|ρ|(dz|ρ|)

]
,

where z0 = x, zr+1 = y, ζρ(l, 0) = 0, ζρ(l, r + 1) = r + 1, and

nρl,i := #
{

(p, j) ∈ {1, . . . , n}×{0, . . . , r} : {ζρ(l, i), ζρ(l, i+1)} = {ζρ(p, j), ζρ(p, j+1)}
}
.

In particular, the first order moment of the (r + 1)-hop count between x ∈ X and

y ∈ Y is given as

H(r+1)(z0, zr+1) := IE

[ ∑
z1,...,zr∈ξ

u(z1, . . . , zr, ξ)

]

=

∫
IRd
· · ·
∫

IRd

r∏
i=0

H(zi, zi+1)σ(dz1) · · ·σ(dzr), z0, zr+1 ∈ IRd.

The 2-hop count between x ∈ X and y ∈ Y is given by the first order integral∑
z∈ξ

u(z, ξ) =
∑
z∈ξ

1{x↔z}1{z↔y}(ξ) =
∑
z∈ξ

1{x↔z}1{z↔y},

and its moment of order n is

IE

[(∑
z∈ξ

u(z, ξ)

)n]
=

∑
ρ∈Π[n×1]

∫
X|ρ|

|ρ|∏
l=1

(H(x, zl)H(zl, y))σ⊗|ρ|(dz1, . . . , dz|ρ|)

=
n∑
k=1

S(n, k)

(∫
IRd
H(x, z)H(z, y)σ(dz)

)k
=

n∑
k=1

S(n, k)
(
H(2)(x, y)

)k
,

which shows that the 2-hop count between x ∈ X and y ∈ Y is a Poisson random

variable with mean H(2)(x, y).

Variance of 3-hop counts

When n = 2 and r = 3 Proposition 4.3 allows us to compute the variance of the 3-hop

count between x ∈ X and y ∈ Y , as follows:

Var [Nx,y
3 ] = H(3)(x, y) + 2

∫
X
H(x, z1)H(2)(z1, y)H(2)(z1, y)σ(dz1) (4.3)
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+ 2

∫
X
H(x, z1)H(2)(x, z1)H(2)(z1, y)H(z1, y)σ(dz1)

+

∫
X2

H(x, z1)H(z1, z2)H(z2, y)H(x, z2)H(z1, y)σ⊗2(dz1, dz2),

In the case of a Poisson point process with flat intensity σ(dx) = λdx on X, λ > 0

with a Rayleigh fading function H(x, y) of the form

Hβ(x, y) := e−β‖x−y‖
2

, x, y ∈ IRd, β > 0,

we have

H
(2)
β (x, y) = λ

∫
IRd
Hβ(x, z)Hβ(z, y)dz = λ

(
π

2β

)d/2
e−‖x−y‖

2/2,

and (4.3) recovers the variance

Var [Nx,y
3 ] = 2λ3

(
π3

8β3

)d/2
e−β‖x−y‖

2/2 + λ2

(
π2

3β2

)d/2
e−β‖x−y‖

2/3

+2λ3

(
π3

12β3

)d/2
e−3β‖x−y‖2/4 + λ2

(
π2

8β2

)d/2
e−β‖x−y‖

2

of 3-hop counts between x ∈ X and y ∈ Y , see Theorem II.2 of [KGK18]. The

knowledge of moments can provide accurate numerical estimates of the probability

P (Nx,y
k > 0) of at least one k-hop path by expressing it as a series of factorial moments,

see [KGK18].

5 Moments of Poisson shot noise processes

We consider a Poisson point process ξ(dx) with intensity measure σ(dt, dθ) on X =

IR× S, where S = [0, N ], and the N shot noise processes given by

Qk(t, ξ) =
∑

(sj ,θj)∈ξ

gk(t− sj, θj), k = 1, . . . , N,

where the shot noise kernels gk(u, θ) are such that gk(u, θ) = 0 for all u < 0 and θ ∈ S.
In this framework, the moment generating function of Qk(t, ξ) is given from (2.1) as

IE [exp (Qk(t, ξ))] = exp

(∫
(−∞,t]×S

(egk(t−u,θ) − 1)σ(du, dθ)

)
.
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Consider the Poisson shot noise stochastic differential equation

τ
dYN
dt

(t, ξ) = −YN(t, ξ) +
N∑
k=1

(wk − YN(t, ξ))Qk(t, ξ), (5.1)

where τ > 0 and w1, . . . , wn ∈ IR, whose solution is the filtered shot noise process

YN(t, ξ) =
1

τ

N∑
k=1

wk

∫ t

−∞
Qk(z, ξ)e

−
∫ t
z Q0(u,ξ)dudz (5.2)

=
1

τ

∫ t

−∞
e−

∫ t
z Q0(s,ξ)ds

∑
(sj ,θj)∈ξ

f (w)(z − sj, θj)dz, t ∈ IR,

where

Q0(u, ξ) :=
1

τ
+

1

τ

N∑
k=1

Qk(u, ξ) =
1

τ
+

1

τ

∑
(sj ,θj)∈ξ

f(u− sj, θj),

with

f(z, θ) :=
N∑
k=1

gk(z, θ) and f (w)(z, θ) :=
N∑
k=1

wkgk(z, θ), z ∈ IR, θ ∈ S,

see e.g. § 2.1 of [BD15a] and [BD15b]. The following numerical examples use the

parameters of the double source model of [BD15a] for the modeling of neuron mem-

brane potentials, where N = 2, λ2(t) = 500Hz and λ1(t) is a periodic function of time,

t ∈ [0, 100], see Figure 7.
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(a) Shot noise process with intensity λ1(t).
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Figure 7: Shot noise processes Q1(t, ξ) and Q2(t, ξ).

Figure 8 presents the graphs of the intensities λ1(t), λ2(t) and a numerical simulation

of V2(t, ξ) in the double source model.
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Figure 8: Sample of V2(t, ξ) with mean, standard deviation and intensities λ1(t), λ2(t).

Computation of joint moments

The next proposition gives a general formula for the computation of the joint moments

of YN(t1, ξ), . . . , YN(tn, ξ) in the multiple source model as a direct consequence of (5.2).

Proposition 5.1 We have the joint moment identity

IE[YN(t1, ξ) · · ·YN(tn, ξ)] =
1

τn

∫ t1

−∞
· · ·
∫ tn

−∞
mn,N(z1, . . . , zn; t1, . . . , tn)dz1 · · · dzn,

where

mn,N(z1, . . . , zn; t1, . . . , tn) := IE

 n∏
k=1

e
−

∫ tl
zl
Q0(u,ξ)du

∑
(uj ,θj)∈ξ

f (w)(zk − uj, θj)

 .
The functions mn,N(z1, . . . , zn; t1, . . . , tn) can be evaluated from Proposition 2.2 as a

sum over the set Π[n] of partitions π = {π1, . . . , πk} of {1, . . . , n} with cardinality

k = |π| = 1, . . . , n, as

mn,N(z1, . . . , zn; t1, . . . , tn)

= IE
[
e
−

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

] ∑
π∈Π[n]

|π|∏
j=1

∫
(−∞,ẑπj ]×S

n∏
l=1

e
− 1
τ

∫ tl
zl
f(u−y,η)du

∏
i∈πj

f (w)(zi − y, η)σ(dy, dη),

(z1, . . . , zn) ∈ (−∞, t1] × · · · × (−∞, tn], with ẑπj = mini∈πj zi, where, by (2.1), we

have

IE
[
e
−

∑n
l=1

∫ tl
zl
Q0(u,ξ)du

]
16



= e−
1
τ

∑n
l=1(tl−zl) exp

(∫
(−∞,max(t1,...,tn)]×S

(
e
− 1
τ

∑n
l=1

∫ tl
zl
f(u−s,θ)du − 1

)
σ(ds, dθ)

)
.

Figures 9, 10 and 11 present the evolutions of the mean κ1, variance κ2, third and

fourth cumulants κ3, κ4, and skewness and excess kurtosis

κ3

(κ2)3/2
=

IE[(V2 − IE[V2])3]

(IE[(V2 − IE[V2])2])3/2
and

κ4

(κ2)2
=

IE[(V2 − IE[V2])4]

(IE[(V2 − IE[V2])2])2
− 3 (5.3)

of the potential V2(t, ξ), computed from Proposition 5.1 as functions of the arrival

intensity parameter λ at t = 0.2.
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Figure 9: First and second cumulants of V2(t, ξ) at t = 0.2.
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Figure 10: Third cumulant and skewness of V2(t, ξ) at t = 0.2.
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Figure 11: Fourth cumulant and excess kurtosis of V2(t, ξ) at t = 0.2.

Gram-Charlier expansions

The Gram-Charlier expansion of the continuous probability density function φX(x) of

a random variable X, see § 17.6 of [Cra46], is given by

φX(x) =
1
√
κ2

ϕ

(
x− κ1√

κ2

)
+

1
√
κ2

∞∑
n=3

cnHn

(
x− κ1√

κ2

)
ϕ

(
x− κ1√

κ2

)
, (5.4)

where ϕ(x) is the standard normal density function, Hn(x) denotes the Hermite poly-

nomial of degree n, and the sequence (cn)n≥3 is given from the cumulants (κn)n≥1

of X. In particular, the coefficients c3 and c4 can be expressed from the skewness

κ3/κ
3/2
2 and the excess kurtosis κ4/κ

2
2 as c3 = κ3/(3!κ

3/2
2 ) and c4 = κ4/(4!κ2

2), which

are computed from (5.3) Figures 12 and 13 present the Gram-Charlier density ex-

pansions (5.4) at different times for the estimation of the probability density function

of the membrane potential V2(t, ξ) in the double source model (5.1) of Figure 8, see

[Pri20] for details.
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Figure 12: Gram-Charlier density expansions vs simulated densities.
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In comparison with the Gaussian diffusion approximation with matching mean and

variance, the fourth-order Gram-Charlier approximations provide a better fit of the

actual probability densities obtained by Monte Carlo simulation of (5.2) (purple ar-

eas), which show time-varying skewness.
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Figure 13: Gram-Charlier density expansions vs simulated densities.
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