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1 Introduction

Linear Skorohod stochastic differential equations have been studied on
the Wiener space, cf. [3], using the anticipative stochastic calculus de-
veloped in [6]. It has been shown in particular that the solutions of such
equations are associated to the density induced by absolutely continu-
ous transformations defined by flows on the Wiener space. Such absolute
continuity results have been extended in [10]. Our goal here is to in-
vestigate the Poisson space case. The anticipative stochastic calculus on
Poisson space, cf. [5], [8], permits to introduce anticipative stochastic dif-
ferential equations by means of an extension of the compensated Poisson
stochastic integral, also called the Skorohod integral. We study the abso-
lute continuity of some anticipative flows on Poisson space and show that
their associated densities allow to solve Skorohod stochastic differential
equations. Let us describe the Poisson space interpretation that we are
working with, cf. [8]. Let B be a space of sequences with a probability
measure P such that the coordinate functionals

τk : B −→ IR k ∈ IN,
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are independent identically distributed exponential random variables. The
space B is endowed with the norm ‖ x ‖B= supn∈IN | xn | /(n + 1) such

that P is defined on the Borel σ-algebra of B. Let Tk =
∑i=k−1

i=0 τi,
k ≥ 0, denote the k-th jump time of the Poisson process (Nt) defined as
Nt =

∑
k≥0 1[Tk,∞[(t), t ∈ IR+. Denote by (ek)k∈IN the canonical basis of

the space of square-summable sequences H = l2(IN). We define an oper-
ator i that turns any discrete time stochastic process u = (uk)k∈IN into a
continuous time process i(u) by it(u) = uNt−

, or

it(u) =
∑
k≥0

uk1]Tk,Tk+1](t), t ∈ IR+. (1)

The flow that we will consider is the family (Tt)t∈[0,1] of transformations
Tt : B → B, defined by

Tt(ω) = ω +

(∫ t

0

is(ek)(Ts(ω))σs(Ts(ω))ds

)
k≥0

,

where σ is a process satisfying some boundedness conditions. If the trans-
formation Tt, t ∈ [0, 1], is absolutely continuous, then the process of densi-

ties
(
d(T −1

t )∗P
dP

)
t∈[0,1]

solves the anticipative stochastic differential equation

Xt = 1 +

∫ t

0

σs(ω)XsδÑs,

where
∫ t

0
usδÑs = δ̃

(
u1[0,t]

)
is the Skorohod integral of u1[0,t] on the

Poisson space, as defined in [1], [5], [8]. This integral is an extension
to anticipative integrands of the stochastic integral with respect to the
compensated Poisson process. It is the adjoint of a derivation operator
defined by shifting the Poisson process jump times, and has in particular
the property of being an integral with zero expectation. As a consequence,
we will be able to solve the anticipative stochastic differential equation

Xt = X0 +

∫ t

0

σsXsδÑs +

∫ t

0

bsXsds t ∈ [0, 1], (2)

where X0 and b are bounded random variables. In case the processes
b and σ are predictable, the equation defining the inverse (At)t∈[0,1] of
(Tt)t∈[0,1] becomes

At(ω) = ω +

(∫ t

0

is(ek)σs(ω)ds

)
k≥0

,
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and we retrieve a classical result, cf. for instance [2].
We proceed as follows. In Sect. 2 the definitions and main results

of the anticipative stochastic calculus on the Poisson space as introduced
in [5], [8] are recalled. Sect. 3 is devoted to the definition of the flow
(Tt)t∈[0,1] of anticipative transformations of the Poisson process trajecto-
ries and to the study of its absolute continuity. Those results are applied
in Sect. 4, where the solution of the linear Skorohod stochastic differential
equation (2) is given.

2 Anticipative stochastic calculus on the

Poisson space

Let S denote the set of functionals of the form

F = f(τ0, . . . , τn),

with n ∈ IN and f ∈ C∞c (IRn+1
+ ). We define a gradient operator D :

L2(B)→ L2(B)⊗H by

DF = (∂kf(τ0, . . . , τn))k∈IN, F ∈ S. (3)

We also define D̃ : L2(B)→ L2(B)⊗ L2(IR+) as

D̃F = −i ◦DF, F ∈ S.

The operators D̃ and D are closable, cf. [8]. Denote by D1,2 the domain
of the closed extension of D. Let δ̃ be the adjoint of D̃, which is also
closable and can be extended to a closed operator

δ̃ : L1(B × [0, 1]) −→ L1(B),

of domain Dom(δ̃). Let V denote the class of processes of the form

v =
i=n∑
i=1

1∆i
fi(τ0, . . . , τn),

where fi ∈ C∞c (IRn+1
+ ), 1 ≤ i ≤ n, and ∆1, . . . ,∆n ⊂ [0, 1]. We have the

following formula, cf. [5], [8]:

δ̃(v) =

∫ ∞
0

v(s)d(Ns − s)−
∫ ∞

0

D̃sv(s)ds, v ∈ V . (4)

The interpretation of δ̃ as an extension of the stochastic integral with
respect to the compensated Poisson process comes from the following
proposition, cf. [5], [8].
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Proposition 1 Let v ∈ L2(B) ⊗ L2(IR+) be predictable with respect to
the filtration generated by the Poisson process (Nt). We have

δ̃(v) =

∫ ∞
0

v(s)d(Ns − s).

Denote by D1,∞ the subset of D1,2 made of the random variables F for
which

‖ F ‖L∞(B) + ‖| DF |H‖L∞(B)

is bounded and let L1,∞ = L2([0, 1],D1,∞), L1,2 = L2([0, 1], D1,2). If T :
B −→ B is a measurable mapping, we denote by T∗P the image measure
of P by T , and say that T is absolutely continuous if T∗P is absolutely
continuous with respect to P . A flow (φs,t)0≤s<t≤1 of transformations
of B is said to be absolutely continuous if φs,t is absolutely continuous,
0 ≤ s < t ≤ 1. We end this section with four propositions which will be
useful in the sequel. Their statements and proofs are adapted from [4].
Proofs are given in the appendix.

Proposition 2 Let F ∈ D1,2. For any ε > 0, there is a sequence
(Fn)n∈IN ⊂ S that converges to F in D1,2 and such that

1. ess inf F < Fn < ess sup F , n ∈ IN.

2. ‖| DFn |H‖∞≤‖| DF |H‖∞ +ε , n ∈ IN.

We obtain in the same way the following result.

Proposition 3 Let σ ∈ L1,∞ with σ > −1 a.s. and
∫ 1

0
‖ 1

1+σr
‖2
∞ dr <

∞. For any ε > 0, there is a sequence (σn)n∈IN ⊂ V that converges to σ
in L1,2 and such that for n ∈ IN,

1. σn > −1.

2.
∫ 1

0
| σns |2∞ ds ≤

∫ 1

0
| σs |2∞ ds.

3.
(∫ 1

0
‖| Dσns |H‖2

∞ ds
)1/2

≤ ε+
(∫ 1

0
‖| Dσs |H‖2

∞ ds
)1/2

.

4.
∫ 1

0
‖ 1

1+σn
r
‖2
∞≤

∫ 1

0
‖ 1

1+σr
‖2
∞ dr.

5. ‖ σn ‖L∞(B×[0,1])≤‖ σ ‖L∞(B×[0,1]).

6. ‖ Dσn ‖L∞(B×[0,1]×IN)≤ ε+ ‖ Dσ ‖L∞(B×[0,1]×IN).

If σ has continuous trajectories a.s., then (σnTk
)n∈IN converges in L2(B) to

σTk
, k ≥ 1.
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Proposition 4 Let T 1, T 2 be two absolutely continuous transformations,
respectively defined by

T 1(ω) = ω +

(∫ 1

0

is(ek)σ
1
s(ω)ds

)
k∈IN

and

T 2(ω) = ω +

(∫ 1

0

is(ek)σ
2
s(ω)ds

)
k∈IN

,

ω ∈ B, with σ1, σ2 ∈ L2(B × [0, 1]). Let F ∈ D1,∞. We have

| F ◦ T 1(ω)− F ◦ T 2(ω) |≤‖| DF |H‖∞| σ1(ω)− σ2(ω) |L2([0,1]) .

If F ∈ S, then

| F (ω)− F (ω + h) |≤‖| DF |H‖∞‖ h ‖H h ∈ H, ω ∈ B.

Proposition 5 Let (T n)n∈IN be a sequence of absolutely continuous trans-
formations with

T nω = ω +

(∫ ∞
0

is(ek)σ
n
s (ω)ds

)
k∈IN

,

defined by a sequence (σn)n∈IN of processes that converges in L2(B) ⊗
L2([0, 1]) to a process σ, such that the sequence of densities (Ln)n∈IN =(
dT n
∗ P
dP

)
n∈IN

is uniformly integrable. If (Fn)n∈IN converges to F in L2(B),

then (Fn ◦ T n)n∈IN converges to F ◦ T in probability, where T is defined
by

T ω = ω +

(∫ ∞
0

is(ek)σs(ω)ds

)
k∈IN

.

Moreover, T is absolutely continuous.

3 Absolute continuity of anticipative flows

Proposition 6 Let σ ∈ V. The equation

Ttω = ω −
(∫ t

0

is(ek)(Tsω)σs(Tsω)ds

)
k≥0

, t ∈ [0, 1], (5)

has a unique solution which is invertible. For s, t ∈ [0, 1], s < t, let
At = T −1

t and φs,t = Ts ◦ At, s ≤ t. Then φs,t satisfies to

φs,tω = ω +

(∫ t

s

ir(ek)(ω)σr(φr,tω)dr

)
k∈IN

ω ∈ B, 0 ≤ s < t ≤ 1. (6)
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Let ψs,t = Tt ◦ As, s ≤ t. We have

ψs,tω = ω −
(∫ t

s

ir(ek)(ψs,rω)σr(ψs,rω)dr

)
k∈IN

ω ∈ B, 0 ≤ s < t ≤ 1.

Proof. The equations (5) and (6) can be solved as differential equations
in finite dimension since σr is Lipschitz, r ∈ [0, 1], cf. Prop. 4. Denote by
At and Tt the solutions of (5) and (6) for s = 0. It remains to show that
φs,t ◦Tt = Ts, s ≤ t. Let us show that for r ≤ t, ir(ek)(Ttω) = ir(ek)(Trω),
k ∈ IN. For s ≤ t, we notice from (1) that Tk(Tsω) ≤ s ⇒ Tk(Tsω) =
Tk(Ttω), and Tk(Ts) ≥ s⇒ Tk(Tt) ≥ s. Hence

Tk(Tsω) ≤ s ≤ Tk+1(Tsω) ⇐⇒ Tk(Ttω) ≤ s ≤ Tk+1(Tsω)

⇐⇒ Tk(Ttω) ≤ s ≤ Tk+1(Ttω).

This gives

φs,t(Ttω) = Ttω +

(∫ t

s

ir(ek)(Ttω)σ(r, Trω)dr

)
k∈IN

= Tsω,

which implies (5). Finally, ir(ek)(ψs,t) = ir(ek)(ψs,r), 0 ≤ s < r < t ≤ 1,
and

ω = φs,t ◦ ψs,tω = ψs,tω +

(∫ t

s

ir(ek)(ψs,tω)σr(φr,t ◦ ψs,tω)dr

)
k∈IN

= ψs,t +

(∫ t

s

ir(ek)(ψs,rω)σr(ψs,rω)dr

)
k∈IN

.

2

Theorem 1 For σ ∈ L1,∞ with σ > −1 a.s., and
∫ 1

0
‖ 1

1+σr
‖∞ dr <∞,

Eq. (5) has a unique absolutely continuous solution which is invertible
and whose inverse flow {ψs,t : 0 ≤ s ≤ t ≤ 1} satisfies to (6). Assume
that σ has continuous trajectories, a.s. Then

Ls,t =
d(φs,t)∗P

dP
(7)

= exp

(
−
∫ t

s

D̃rσr(φr,t)dr −
∫ t

s

σr(φr,t)dr

) ∏
s≤Tk≤t

(1 + σTk
(φTk,t)),

0 ≤ s ≤ t ≤ 1.

Remark. D̃rσr(φr,t) is here interpreted as ir(Dσr(φr,t)).
Proof. We start by assuming that σ ∈ V and depends only on τ0, . . . , τn
for some n ∈ IN.
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Lemma 1 If σ ∈ V, we have with φ given by Prop. 6:

det (Dφs,t) = exp

(
−
∫ t

s

D̃rσr(φr,t)dr

) ∏
s≤Tk≤t

(1+σTk
(φTk,t)) 0 ≤ s ≤ t ≤ 1.

Proof. We have that φs,t(l) is differentiable since it is expressed with the
solution of a differential equation with C∞ coefficients, and

Dkφs,t(l)

= 1{k=l} + σTl+1
(φTl+1,t)1{k≤l}1{s<Tl+1<t} − σTl

(φTl,t)1{k<l}1{s<Tl<t}

+

∫ t

s

i=n∑
i=0

ir(el)Dkφr,t(i)Diσr(φr,t)dr k, l ∈ IN.

Letting Us,t = (Dkφs,t(l))0≤k,l≤n, this gives the following differential equa-
tion in the space of (n+ 1)× (n+ 1) matrices:

Us,t = As,t +

∫ t

s

Ur,tBr,tdr, (8)

where

As,t(k, l) = 1{k=l}+σTl+1
(φTl+1,t)1{k≤l}1{s<Tl+1<t}−σTl

(φTl,t)1{k<l}1{s<Tl<t}

0 ≤ k, l ≤ n, and Bs,t = (is(el)Dkσs(φs,t))0≤k,l≤n. Solving this differential
equation in s ∈ [0, t] for fixed ω on the intervals ]Tl, Tl+1[

⋂
[0, t], k ∈ IN,

we get

(Dkφs,t(l))0≤k,l≤n (9)

= exp

(∫ t∧TNs+1

s

Br,tdr

) ∏
s<Tl<t

(
exp

(∫ t∧Tl+1

s∧Tl

Br,tdr

)
+ Cl

)
,

0 ≤ s ≤ t ≤ 1, where Cl, l ≥ 1, is a matrix such that Cl(l, l) = σTl
(φTl,t)

and Cl(i, j) = 0 if i 6= l or j > i. Since Br,t(i, j) = 0 if r < Ti, j = 0, . . . , n,
we have

det

(
exp

(∫ t∧Tl+1

s∧Tl

Br,tdr

)
+ Cl

)
= (1 + σTl

(φTl,t)) det

(
exp

(∫ t∧Tl+1

s∧Tl

Br,tdr

))
. (10)

Hence

det(Us,t) = exp

(∫ t

s

trace(Br,t)dr

) ∏
s<Tk<t, k≤n

(1 + σTk
(φTk,t)) .
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Noticing that for k > n,

Dkφs,t(l)

= 1{k=l} + σTl+1
(φTl+1,t)1{k≤l}1{s<Tl+1<t} − σTl

(φTl,t)1{k<l}1{s<Tl<t}

and trace(Br,t) =
∑k=n

k=0 Dkσr(φr,t)ir(ek) = D̃rσr(φr,t), we obtain

det (Dφs,t) = exp

(
−
∫ t

s

D̃rσr(φr,t)dr

) ∏
s≤Tk≤t

(1 + σTk
(φTk,t)) .

2

Define for k ∈ IN πk : B −→ H by πk(w) = (1{k≤n}τk)k∈IN. Let Φs,t =
φs,t−IB, 0 ≤ s ≤ t ≤ 1, and Fk = πkΦs,t for k ≥ n. The mapping IB−Fk
is a diffeomorphism of B+ = {ω ∈ B : ωk ≥ 0, k ∈ IN}, and we have for
f ∈ C+

b (B), from the finite dimensional Jacobi theorem:

E[f ] = E

[
f(IB + Fk) | det(IH +DFk) | exp

(
−

i=k∑
i=0

Fk(i)

)]
= E[f(IB + Fk) | Λk |], k ≥ n,

with from (9):

Λk = exp

(
−
∫ t

s

D̃rσr(φr,t)dr −
∫ t

s

σr(φr,t)dr

) ∏
s≤Ti≤t, i≤k

(1 + σTi
(φTi,t)).

Now,

E [Λk | log Λk |]
= E

[
| log Λk ◦ (IB + Fk)

−1 |
]

≤ E

[
i=k∑
i=1

‖ σv ‖∞|v=Ti
+ ‖ 1

1 + σr
‖∞|r=Ti

]
+

∫ 1

0

‖| Dσr |H‖∞ dr

≤
∫ 1

0

‖ σr ‖2
∞ dr +

∫ 1

0

‖ 1

1 + σr
‖2
∞ dr +

∫ 1

0

‖| Dσr |H‖2
∞ dr, k ≥ n.

Hence by uniform integrability of (Λk)k∈IN, we obtain

E [f ] = E [f ◦ φs,tLs,t]

for f ∈ C+
b (B). We now return to the case of a general σ. From Prop. 3,

we can choose a sequence (σn)n∈IN ⊂ V that converges to σ in L1,2, with
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σn > −1, n ∈ IN. The sequence (σn)n∈IN defines a sequence of transforma-
tions

(
φns,t
)
n∈IN

,
(
ψns,t
)
n∈IN

and density functions (Lns,t)n∈IN. The uniform

integrability of the sequence (Lns,t)n∈IN is shown as above:

E
[
Lns,t | logLns,t |

]
= E

[
| logLns,t(ψ

n
s,t) |

]
≤ E

[∑
k≥1

| σnTk
(ψnTk,t

) | + | 1

1 + σnTk
(ψnTk,t

)
|

+

∫ t

s

| D̃rσ
n
r (ψns,r) | dr +

∫ t

s

| σnr (ψns,r) | dr
]

≤ E

[∑
k≥1

‖ σnv ‖∞|v=Tk
+ ‖ 1

1 + σnv
‖2
∞|v=Tk

+

∫ t

0

| D̃rσ
n
r (ψns,r) | dr

]
+

∫ t

0

‖ σnr ‖2
∞ dr

≤ 2

∫ 1

0

‖ σr ‖2
∞ dr +

∫ 1

0

‖ 1

1 + σr
‖2
∞ dr +

∫ 1

0

‖| Dσr |H‖2
∞ dr + ε.

where ε does not depend on n. Let Φn
s,t = φns,t− IB, and let us show that

(Φn
r,t)n∈IN converges in L2(B)⊗H. We have

E
[
| φns,t − φms,t |2H

]
≤ E

[∫ t

s

| σnr (r, φnr,t)− σmr (r, φmr,t) |2 dr
]

≤ 2E

[∫ t

s

| σnr − σmr |2 Lnr,tdr +

∫ t

s

| σmr (φnr,t)− σmr (φmr,t) |2 dr
]

≤ 2E

[∫ t

s

| σnr − σmr |2 Lnr,tdr

+

∫ t

s

(‖| Dσr |H‖∞ +1)2

∫ r

s

| σnu(φnu,r)− σmu (φmu,r) |2 dudr
]

≤ 2E

[∫ t

s

| σnr − σmr |2 Lnr,tdr
]

exp

(∫ t

s

(‖| Dσr |H‖∞ +1)2 dr

)
n,m ∈ IN, 0 ≤ s ≤ t ≤ 1, by the Gronwall lemma and Prop. 4. This con-
verges to 0 by uniform integrability. Denote by φs,t the limit of (φns,t)n∈IN.
From Prop. 5, the sequence (σnr (φnr,t))n∈IN converges to σr(φr,t) in L2(B),
for r ∈ [0, 1], hence by boundedness of σ the limit φs,t solves Eq. (5).
Moreover, φs,t is absolutely continuous from Prop. 5 and is the only
absolutely continuous solution from Prop. 4. We can now show that
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(
D̃·σ

n
· (φ

n
·,t)
)
n∈IN

converges to D̃·σ·(φ·,t) in L2(B)⊗ L2([0, t]):

E

[∫ t

0

| D̃rσ
n
r (φnr,t)− D̃rσ(φr,t) |2 dr

]
≤ 2E

[∫ t

0

(
| Drσ

n
r (φnr,t)−Drσr(φ

n
r,t) |2H + | Drσr(φ

n
r,t)−Drσ(φr,t) |2H

)
dr

]
≤ 2E

[∫ t

0

| D(σnr − σr) |2H Lnr,tdr +

∫ t

0

| Dσr(φnr,t)−Dσr(φr,t) |2H dr

]
,

which converges to 0 as n goes to infinity since | Dσr(φnr,t) |H≤‖| Dσr |H‖∞,
r ∈ [0, 1]. We also have that (σnTk

(φnTk,t
))n∈IN converges to σTk

(φTk,t) in
L2(B), k ∈ IN, from Prop. 3. Hence by unifom integrability and conver-
gence in probability of

{
Lns,t : n ∈ IN

}
to Ls,t, we have for f ∈ C+

b (B):

E [f ] = lim
n→∞

E
[
f(φns,t)L

n
s,t

]
= E [f(φs,t)Ls,t] .

Since 1 + σ > 0 a.s., it is not difficult to see that φs,t is bijective and that
its inverse ψs,t satisfies (6).

2

Remark. The expression of the density can be written in a form which is
closer to its expression on Wiener space, cf. [4], [10], i.e.

Ls,t =
d(φs,t)∗P

dP

= exp

(∫ t

s

D̃r(σr(φr,tω))dr −
∫ t

s

D̃rσr(φr,tω)dr + δ̃(1[0,t]σ·(φ·,t))

)
×
∏

s≤Tk≤t

(1 + σTk
(φTk,t)) exp(−σTk

(φTk,t)),

using (4). From [9] and (4), we obtain the following formal expression for
the Carleman-Fredholm determinant of Dφs,t:

det2 (Dφs,t) = exp

(∫ t

s

D̃r(σr(φr,tω))dr −
∫ t

s

D̃rσr(φr,tω)dr

)
×
∏

s≤Tk≤t

(1 + σTk
(φTk,t)) exp(−σTk

(φTk,t))

Lemma 2 If F ∈ S depends only on τ0, . . . , τm and σ ∈ V, then

| D(F (At)) |H
≤ 2(m+ 1) ‖ σ ‖L∞(B×[0,1])

×
(

1 +

∫ 1

0

‖| Dσr |H‖∞ dr exp

(∫ 1

0

‖| Dσr |H‖∞ dr

))
| DF |H ,

t ∈ [0, 1].
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Proof. We have from (8) and the Gronwall lemma, since A0,t(k, l) = 0 if
k > l:

| D(F (At)) |H

≤
(∫ t

0

‖| Dσr |H‖∞| DA0,r |IRm+1⊗IRm+1 dr

× exp

(∫ t

0

‖| Dσr |H‖∞ dr

)
+ | DA0,t |IRm+1⊗IRm+1

)
| DF |H

≤ 2(m+ 1) ‖ σ ‖L∞(B×[0,1])

×
(

1 +

∫ 1

0

‖| Dσr |H‖∞ dr exp

(∫ 1

0

‖| Dσr |H‖∞ dr

))
| DF |H ,

2

4 Solution of a linear Skorohod equation

We need the following lemma.

Lemma 3 Let F ∈ S and let (Tt)t∈[0,1] be the flow defined by σ ∈ L1,2,
σ > −1 a.s. We have

d

dt
F ◦ Tt = σt(Tt)

(
D̃tF

)
◦ Tt. (11)

If moreover σ ∈ V, then

d

dt
F ◦ At = −σtD̃t(F ◦ At).

Proof. Eq. (11) comes from (3) and (5). We also have if σ ∈ V

0 =
d

dt
F ◦ At ◦ Tt =

d

dt
(F ◦ At) ◦ Tt +

d

ds
F ◦ At ◦ Ts |s=t

=
d

dt
(F ◦ At) ◦ Tt + σt(Tt)D̃t(F ◦ At) ◦ Tt.

2

Theorem 2 Let σ ∈ L1,∞ with continuous trajectories a.s., such that

σ > −1 and
∫ 1

0
‖ 1

1+σr
‖∞< ∞, b ∈ L2([0, 1], L∞(B)) and η ∈ L∞(B).

The anticipative stochastic differential equation

Xt = η +

∫ t

0

σrXrδÑr +

∫ t

0

bsXsds t ∈ [0, 1] (12)

11



has for solution

Xt = η(T −1
t ) exp

(
−
∫ t

0

D̃sσs(φs,tω)ds−
∫ t

0

σs(φs,t)ds+

∫ t

0

bs(φs,t)ds

)
∏

0≤Tk≤t

(1 + σTk
(φTk,t)), t ∈ [0, 1].

If moreover ‖ b ‖L∞(B×[0,1]), ‖ σ ‖L∞(B×[0,1]), ‖ Dσ ‖L∞(B×[0,1]×IN) are
finite, then X is the unique solution of (12) in L1(B × [0, 1]).

Proof. The proof is close to [3], [7]. We have X ∈ L1(B × [0, 1]) by
integrability of the density L0,t. Let G ∈ S.

E

[∫ t

0

σsXsD̃sGds

]
= E

[∫ t

0

σs(Ts)η exp

(∫ s

0

br(Tr)dr
)
D̃sG(Ts)ds

]
= E

[∫ t

0

η exp

(∫ s

0

br(Tr)dr
)
d

ds
G(Ts)ds

]
= E

[
exp

(∫ t

0

bs(Ts)ds
)
G(Tt)η − ηG

−
∫ t

0

ηbs(Ts) exp

(∫ s

0

br(Tr)dr
)
G(Ts)ds

]
= E

[
η(At) exp

(∫ t

0

bs(φs,t)ds

)
L0,tG− ηG

−
∫ t

0

η(As)bs exp

(∫ s

0

br(φr,s)ds

)
L0,sGds

]
= E

[(
Xt − η −

∫ t

0

bsXsds

)
G

]
,

and Xt − η −
∫ 1

0
bsXsds ∈ L1(B). Hence σX1[0,t] ∈ Dom(δ̃), t ∈ [0, 1],

and (Xt)t∈[0,1] is solution to Eq. (12). We now show the uniqueness of the
solution in L1(B × [0, 1]). Let (σn)n∈IN be a sequence given by Prop. 3,
and let (Yt)t∈[0,1] be the difference of two solutions, which satisfies

Yt =

∫ t

0

bsYsds+

∫ t

0

σsYsδÑs.

Let F ∈ S.

E [YtF (Ant )] = E

[∫ t

0

σsYsD̃s (F (Ant )) ds+

∫ t

0

bsYsF (Ant )ds

]
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= E

[∫ t

0

σsYsD̃s

(
F (Ans )−

∫ t

s

σnr D̃r (F (Anr )) dr

)
ds

+

∫ t

0

bsYs

(
F (Ans )−

∫ t

s

σnr D̃r (F (Anr )) dr

)
ds

]
.

We have for u ∈ V

E

[∫ t

0

σsYsD̃s

∫ t

s

urdrds

]
= E

[∫ t

0

∫ r

0

σsYsD̃surdsdr

]
= E

[∫ t

0

∫ r

0

σsYsδÑsurdr

]
.

This relation can be extended by density to the process u = σnD̃(F (An))
since

∫ t
s
σnr D̃r(F (Anr ))dr = F (Ans )− F (Ant ) ∈ D2,1 and gives

E

[∫ t

0

σsYsD̃s

∫ t

s

σnr D̃r(F (Anr ))drds

]
= E

[∫ t

0

∫ r

0

σsYsδÑsσ
n
r D̃r(F (Anr ))dr

]
= E

[∫ t

0

(
Yr −

∫ r

0

bsYsds

)
σnr D̃r(F (Anr ))dr

]
= E

[∫ t

0

Yrσ
n
r D̃r(F (Anr ))dr −

∫ t

0

bsYs

∫ t

s

σnr D̃r(F (Anr ))drds

]
.

Hence

E [YtF (Ant )] = E

[∫ t

0

(σs − σns )YsD̃s(F (Ans ))ds+

∫ t

0

bsYsF (Ans )ds

]
.

From Lemma 2, | D(F (Ans )) |H is uniformy bounded in n and ω, hence
letting n go to infinity we get

E [YtF (At)] = E

[∫ t

0

bsYsF (As)ds
]
.

Then

E [Yt(Tt)FLt] = E

[∫ t

0

Lsbs(Ts)Ys(Ts)Fds
]
,

with Ls = (L0,s(Tt))−1, which is satisfied by density for

F = sign(LtYt(Tt)).

This gives

E [| Yt |] ≤
∫ t

0

E [| Ys |] ds

and Y = 0 by the Gronwall lemma. Consequently the solution is unique.
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Remark. If moreover the processes σ and b are (Ft)-adapted and η = 1,
then the solution coincides with the usual result, i.e.

Xt = exp

(∫ t

0

bsds−
∫ t

0

σsds

) ∏
0≤Tk≤t

(1 + σTk
) 0 ≤ t ≤ 1,

since φs,t(k) = τk if Tk+1 < s and σs, bs depend on τk only if Tk+1 < s,
s ∈ [0, 1].
Appendix.
Let Fn denote the σ-algebra generated by τ0, . . . , τn, n ∈ IN.
Proof of Prop. 2. Let Fn = (1− 1

n
)E[F | Fn], n ∈ IN. We have ess inf F <

Fn < ess sup F , n ∈ IN. If (Gk)k∈IN ⊂ S converges to F in D2,1, then

‖| E[DGk | Fn] |H‖∞ ≤ ‖

(
i=n∑
i=0

(DiE[Gk | Fn])2

)1/2

‖∞

≤ ‖

(
∞∑
i=0

(E[DiGk | Fn])2

)1/2

‖∞

≤ ‖

(
∞∑
i=0

E[(DiGk)
2 | Fn]

)1/2

‖∞≤‖| DGk |H‖∞ .

This gives ‖| DFn |H‖∞≤‖| DF |H‖∞. We also have the convergence of
(Fk)k∈IN to F in D1,2. Hence it suffices to prove the result for F ∈ D1,2 of
the form F = f(τ0, . . . , τn). Assume first that f has a compact support in
IRn+1

+ . Let Ψ ∈ C∞c (IRn+1
+ ) with

∫
IRn+1

+
Ψ(x)dx = 1, Ψ ≥ 0, and let fk(y) =

1
kn+1

∫
IRn+1

+
Ψ(kx)f(y + x)dx, k > 0, y ∈ IRn+1

+ . With Fk = fk(τ0, . . . , τn),

we still have ess inf F ≤ Fk ≤ ess sup F , k ∈ IN, and

‖| DFk |H‖∞≤‖| DF |H‖∞ .

If f does not have a compact support, let Φ ∈ C∞c (IRn) such that Φ(x) = 1
for | x |< 1 and 0 ≤ Φ ≤ 1 on IRn. Let Fk = E[F | Fn]Φ(τ0/k, . . . , τm/k).
Then (Fk)k∈IN converges to F in D1,2 and

‖| DFk |H‖∞ = ‖| 1

k
E[F | Fn]DΦ + φE[DF | Fn] |H‖∞

≤ ‖ Φ | DF |H‖∞ +
1

k
‖ Fk ‖∞‖| DΦ |H‖∞

≤ ‖| DF |H‖∞ +
1

k
‖ F ‖∞ sup

i=n∑
i=0

(∂iΦ)2

≤ ‖| DF |H‖∞ +ε
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for k great enough. 2

Proof of Prop. 3. For π = {∆1, . . . ,∆n} a partition of [0, 1], let

σπ =
i=n∑
i=1

1∆i

∫
∆i

σrdr/ | ∆i | .

Let (πn)n∈IN be a sequence of partitions of [0, 1], mutually increasing with
max1≤i≤n | ∆n

i | converging to 0 as n goes to infinity. We have that
(σπn)n∈IN converges to σ in L1,2 with∫ 1

0

‖ σπn
s ‖2

∞ ds ≤
∫ 1

0

‖ σs ‖2
∞ ds,

∫ 1

0

‖ 1

1 + σπn
s

‖2
∞ ds ≤

∫ 1

0

‖ 1

1 + σs
‖2
∞ ds,

and ∫ 1

0

‖| Dσπn
s |H‖2

∞ ds ≤
∫ 1

0

‖| Dσs |H‖2
∞ ds.

We can apply Prop. 2 to 1
|∆i|

∫
∆i
σsds, 1 ≤ i ≤ n. 2

Proof of Prop. 4. Assume F = f(τ0, . . . , τn).

| F ◦ T 1(ω)− F ◦ T 2(ω) |

= | f
(∫ T1

0

σ1
s(ω)ds, . . . ,

∫ Tn+1

Tn

σ1
s(ω)ds

)
−f
(∫ T1

0

σ2
s(ω)ds, . . . ,

∫ Tn+1

Tn

σ2
s(ω)ds

)
|

≤ ‖| DF |H‖∞

(
i=n∑
i=0

(∫ Ti+1

Ti

σ1
s(ω)ds−

∫ Ti+1

Ti

σ2
s(ω)ds

)2
)1/2

≤ ‖| DF |H‖∞| σ1(ω)− σ2(ω) |L2([0,1]), ω ∈ B.

The same argument holds for the second part. If F ∈ D1,∞, then there
is a sequence (Fn)n∈IN ⊂ S that converges to F in D1,2 and

‖| DF |H‖∞≤‖| DF |H‖∞ +ε.

Since T 1 and T 2 are absolutely continuous, P (| Fn ◦ T 1 − F ◦ T 1 |≥ δ)
goes to 0 as n goes to ∞, for any δ > 0. The same is true for T 2. This
gives

| F ◦ T 2 − F ◦ T 2 |≤ (‖| DF |H‖∞ +ε) | σ1 − σ2 |L2([0,1]),

where ε is arbitrary.
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Proof of Prop. 5. For any ε > 0, there is Mε > 0 such that

sup
n∈IN

E
[
Ln1{Ln>Mε}

]
≤ ε/2.

For any δ > 0, there is n0 ∈ IN such that for n ≥ n0,

P (| F (T n)− Fn(T n) |≥ δ) = E
[
1{|F−Fn|≥δ}L

n
]

≤ E
[
1{L2>Mε}L

n
]

+MεP (| F − Fn |≥ δ)

≤ ε/2 +MεP (| F − Fn |≥ δ) ≤ ε.

Let (Gn)n∈IN ⊂ S be a sequence that converges to F in L2(B). The
density L of T is the weak limit of (Ln)n∈IN. For any ε, δ > 0, there is
k0 ∈ IN such that

P (| F ◦ T n −Gk0 ◦ T n |≥ δ) + P (| F ◦ T −Gk0 ◦ T |≥ δ)

≤ E
[
1{|F−Gk0 |≥δ}(L

n + L)
]

≤ ε+ 2Mε ≤ 2ε

for any n ∈ IN. We also have

P (| Gk0 ◦ T −Gk0 ◦ T n |≥ δ)

≤ 1

δ
‖| DGk0 |H‖∞| σ − σn |L2([0,1])≤ ε

for n great enough, from Prop. 4. Hence there is n0 ∈ IN such that for
n ≥ n0,

P (| F ◦ T − F ◦ T n | 3 ≥ δ) ≤ 3ε.
2
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