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Abstract

We extend stochastic newsvendor games with information lag by including
dynamic retail prices, and we characterize their equilibria. We show that the
equilibrium wholesale price is a nonincreasing function of the demand, while the
retailer’s output increases with demand until we recover the usual equilibrium.
In particular, it is then optimal for retailer and wholesaler to have demand at
least equal to some threshold level, beyond which the retailer’s output tends to
an upper bound which is absent in fixed retail price models. When demand is
given by a delayed Ornstein-Uhlenbeck process and price is an affine function
of output, we numerically compute the equilibrium output and we show that
the lagged case can be seen as a smoothing of the no lag case.
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1 Introduction

The newsvendor problem is a two-staged game in which a wholesaler sells products

to a retailer, and the retailer sells to consumers in a market according to a demand

constraint. The retailer’s optimal quantity is a function of the wholesaler’s quoted

per-unit price. Such problems have yielded a rich literature, see [6] for an overview

of known results and possible extensions, such as demand that is a function of retail
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prices or quantities and variable wholesale prices. In [4] an extended model in which

both retail price and quantity are under the control of the retailer and demand depends

on the retail price, is presented.

Stochastic differential Stackelberg games have been studied via the maximum prin-

ciple, and applied to continuous time newsvendor problems with exogenously fixed

retail prices in [2], where demand is modeled by an Itô-Lévy process, and information

about the demand is lagged. In this framework, the retailer can only sell a quantity

limited to a level Dt > 0 of products at time t ∈ [δ, T ], with δ > 0. In this setup,

information about demand is lagged, that is to say, δ > 0 represents the magnitude

of the information lag in the following way: at time t− δ firms have to decide on their

strategies for time t, unknowing of Dt i.e. demand at time t. This approach relies on

the vanishing of derivatives of Hamiltonians at any time t in order to determine the

equilibrium values of the controls.

This paper extends the framework of [2], in which retail prices were exogenously fixed,

to newsvendor games in which the maximum price that can be charged in the market

when selling quantity qt at time t, 0 6 qt 6 Dt, is given as a function P (qt). In our

framework, purchasing from the retailer more than demanded by the market is costly

to the retailer, not only because he pays for buying an excess supply, but also because

it forces down the price that he can charge to sell off d units. The excess, unsold

supply will be disposed of at zero cost. Although we present our model in its most

general form, we will explicitly treat the case where the market price P (qt) is of the

familiar affine form P (qt) = a− bqt for a, b > 0, with numerical illustrations. We also

treat the limiting case δ = 0 in which everything about the games is deterministic as

there is no uncertainty about the demand dt. We rely on optimal stochastic control

of diffusions, cf. [1] and [3], where necessary and sufficient maximum principles are

derived for both the zero sum as well as the nonzero sum cases using forward-backward

stochastic differential equations, with applications to newsvendor models.

In Theorem 3.1 we present necessary and sufficient conditions for optimality of con-

trols based on the stochastic maximum principle in the delayed case with δ > 0, by

allowing retail prices to depend on the quantity of products sold between wholesaler
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and retailer. When demand Dt is modeled by an Ornstein-Uhlenbeck process we char-

acterise the optimal control of Player 2 (the retailer) at time t in Proposition 3.2, and

we also find a characterisation of the optimal control for Player 1 (the wholesaler) at

time t.

When the market price is an affine function of the output we derive an equation for

the equilibrium output based on the conditional distribution function of the demand

Dt given the delayed information, which parallels the equation (3) in [6], see (3.23)

below. In this setting we compute numerically the equilibrium output as a function

of wholesale prices, cf. Figures 1-3. We note that the retail output remains capped

at the level a/(4b) as a function of demand, whereas it remains strictly increasing in

the case of fixed prices, cf. Figure 1 below and Figure 3 in [2].

In the no lag case with δ = 0, we are able to obtain closed form solutions based on the

parameters of the economic environment in the affine case. We show in Proposition 4.1

that equilibrium output is always below demand, and both the wholesaler and retailer

would prefer demand at least equal to a given threshold, after which profits remain

constant. In general, if the demand is affected by only a short delay, decisions based

on the delayed rule will be very close to the optimal decisions taken in the absence of

delay. This is illustrated by the convergence of (3.24) to (4.9) below.

We also note from Figures 1-3 that the lagged case can be seen as a smoothing of

the deterministic case, and that the solution of the deterministic no lag problem can

be obtained as the limit of the lagged setup as δ tends to 0. However, unlike in the

Cournot setup [5], we do not observe a collapse from multiple equilibria to a single

equilibrium.

2 Notation and setup

We consider a sequential game in which Player 1 is selling a quantity qt > 0 of products

priced wt to Player 2 who in turn sells to customers according to the demand rate Dt.

Let t ∈ [δ, T ], where δ > 0 is the information delay. In the first stage, Player 1 chooses

a price wt per unit to charge to Player 2, who in the second period orders the quantity

qt ∈ R+ and sells to customers according to a demand Dt. Precisely, Player 1 tries to
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maximise the wholesaler profit function

f (1)(dt, wt, qt) = wtqt (2.1)

and Player 2 tries to maximise the retailer profit function

f (2)(dt, wt, qt) = P (qt) min(d+t , qt)− wtqt, (2.2)

where P (qt) > 0 denotes the price function, depending on output, thereby finding

the optimal value q∗t based on the knowledge of dt and wt. This optimum is known

to Player 1, who attempts in turn to maximize the quantity wtq
∗
t using his control

variable wt in the second stage. We assume wt > 0, this is without loss of generality

since wt < 0 implies qt > 0 and therefore wtqt < 0, which cannot be an equilibrium.

We assert there exists a map ψ∗ : w = (wt)t∈[δ,T ] 7→ q = (qt)t∈[δ,T ] such that the

function

qt 7→ f (2)(dt, wt, qt) (2.3)

is maximal for qt = q∗t = ψ∗t (wt). This is the case if the profit function (2.2) is strictly

concave in qt for given dt, wt.

Since Player 1 knows that Player 2 will act in this rational way, he will choose wt such

that the profit function

wt 7→ f (1)(dt, wt, qt) = wtψ
∗
t (w) (2.4)

is maximal for wt = w∗t . Given two performance functionals

J (1)(w,ψ∗(w)) = IE

[∫ T

δ

f (1)(dt, wt, ψ
∗
t (w)dt

]
and

J (2)(w, q) = IE

[∫ T

δ

f (2)(Dt, wt, qt)dt

]
that measure the (expected) profit over the time period δ 6 t 6 T , an equilibrium of

the game is defined as a pair (w∗, ψ∗), where w∗ = (w∗t )t∈[δ,T ], such that

J (2)(w∗, ψ(w∗)) 6 J (2)(w∗, ψ∗(w∗)) for all ψ : w 7→ q (2.5)

and

J (1)(w,ψ∗(w)) 6 J (1)(w∗, ψ∗(w∗)) for all (wt)t∈[δ,T ] > 0. (2.6)
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3 Delayed stochastic demand
We consider a demand rate Dt at time t ∈ [0, T ], which is described by a controlled

stochastic differential equation (SDE) of the form
dDt = µt(Dt, wt, qt)dt+ σt(Dt, wt, qt)dBt,

D0 = d0 ∈ R,
(3.1)

where µ·(d, q, w), σ·(d, q, w) are given predictable processes for each d, q, w ∈ R and

(Bt)t∈[0,T ] is a standard Brownian motion that generates the P-augmented filtration

F = (Ft)t∈[0,T ] on a filtered probability space
(
Ω, (Ft)t∈[0,T ],P

)
. We assume that (3.1)

has a unique solution.

The information flow available to the players is represented by the filtration (Et)t∈[0,T ]
defined by

Et := Ft−δ, t ∈ [δ, T ], (3.2)

where δ > 0 denotes the information delay or lag. In this lagged scenario, Player 2

maximizes the functional

J (2)(w, q) = IE

[∫ T

δ

(
P (qt) min(D+

t , qt)− wtqt
)

dt

]
,

where P (qt) is the market price at time t ∈ [δ, T ] when output equals qt, in order

to find the optimal value ψ∗t (w) based on the knowledge of the demand dt and the

wholesale price wt. This optimum is known to Player 1, who attempts in turn to

maximize the functional

J (1)(w,ψ∗(w)) = IE

[∫ T

δ

wtψ
∗
t (w)dt

]
,

using Player 1’s control variable wt, namely the per unit price he charges to Player 2.

Maximum principle

We base our analysis on the stochastic control framework developed in [1], [3]. The

control processes q = (qt)t∈[δ,T ] = ψ(w) and w = (wt)t∈[δ,T ] belong to the family

A = A(1) × A(2), where the set A(i) of admissible control processes for Player i is

made of real-valued (Et)t∈[0,T ]-predictable processes, i = 1, 2. We endow A(i) with

the supremum norm, i = 1, 2. We note that A(i) contains functions that may take
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negative values, however in the sequel we will only focus on nonnegative equilibrium

outputs, which are economically relevant.

In the sequel we work under the following conditions on the set A of control processes.

(A1) For all u(i) ∈ A(i) and all bounded β(i) ∈ A(i) there exists ε > 0 such that

u(i) + sβ(i) ∈ A(i) for all s ∈ (−ε, ε); i = 1, 2.

(A2) For all t0 ∈ [δ, T ] and all bounded Et0-measurable random variables α(i), the

control process β
(i)
t defined by

β
(i)
t = 1[t0,T ](t)α

(i)(ω), t ∈ [δ, T ],

belongs to A(i); i = 1, 2.

The profit functions J (1), J (2) : A → R, of Players 1 and 2 are defined by

J (1)(w, q) := IE

[∫ T

δ

f (1) (Dt, wt, qt) dt

]
and J (2)(w, q) := IE

[∫ T

δ

f (2) (Dt, wt, qt) dt

]
.

The Hamiltonians

H
(1)
t : R×A(1) × R2 −→ R

and

H
(2)
t : R×A× R2 −→ R

for Players 1 and 2 are defined by

H
(1)
t (d, w, y, z) = f (1)(d, wt, ψt(w)) + yµt(d, wt, ψt(w)) + zσt(d, wt, ψt(w)), (3.3)

and

H
(2)
t (d, w, q, y, z) := f (2)(d, wt, q) + yµt(d, wt, q) + zσt(d, wt, q), (3.4)

t ∈ [δ, T ]. To these Hamiltonians we associate the backward SDEs
dY

(i)
t = −∂H

(i)
t

∂d
(Dt, wt, qt, Y

(i)
t , Z

(i)
t )dt+ Z

(i)
t dBt, t ∈ [δ, T ],

Y
(i)
T = 0,

(3.5)
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in the adjoint processes Y
(i)
t and Z

(i)
t , i = 1, 2, which can be solved under the as-

sumptions (A1)-(A2) above. We will rely on the following maximum principle, cf.

Theorem 3.1 in [1] and Theorem 2.2 in [3].

We now have the following necessary maximum principle for equilibria, cf. Theorem 1

in [2], where (Y
(1)
t )t∈[δ,T ] and (Y

(2)
t )t∈[δ,T ] are the solutions of (3.5).

Theorem 3.1 The following are equivalent.

(i) For all bounded β(1) ∈ A(1), β(2) ∈ A(2) we have

d

ds
(J (1)(w∗ + sβ(1), ψ∗(w∗ + sβ(1)))) |s=0 =

d

ds

(
J (2)(w∗, ψ∗(w∗) + sβ(2))

)
|s=0 = 0.

(3.6)

(ii) We have

IE

[
∂H

(1)
t

∂u(1)
(Dt, u

(1), Y
(1)
t , Z

(1)
t )

∣∣∣∣Et
]
|u(1)=w∗

t

= 0 (3.7)

and

IE

[
∂H

(2)
t

∂u(2)
(Dt, w

∗
t , u

(2), Y
(2)
t , Z

(2)
t )

∣∣∣∣Et
]
|u(2)=q∗t=ψ∗

t (w
∗)

= 0, (3.8)

for t ∈ [δ, T ].

Wholesaler / retailer equilibrium

In the sequel the profit functions f (1) : R3 → R and f (2) : R3 → R will be given by

(2.1) and (2.2), i.e.,

f (1)(dt, wt, qt) = wtqt and f (2)(dt, wt, qt) = P (qt) min(d+t , qt)− wtqt.

In this case, during the time period δ 6 t 6 T , Player 1 will get the expected profit

J (1)(w, q) = IE

[∫ T

δ

wtqtdt

]
,

and Player 2 will get the expected profit

J (2)(w, q) = IE

[∫ T

δ

(P (qt) min(D+
t , qt)− wtqt)dt

]
.
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To find an equilibrium, we use the maximum principle of Theorem 3.1. The Hamil-

tonians are given by

H
(1)
t (d, w, a(1), b(1)) = wtψt(w) + a(1)µt(d, wt, ψt(w)) + b(1)σt(d, wt, ψt(w)), (3.9)

cf. (3.3), and

H
(2)
t (d, w, q, a(2), b(2)) = P (q) min(d+, q)−wtq+a(2)µt(d, wt, q)+b(2)σt(d, wt, q), (3.10)

cf. (3.4).

Optimal retailer quantity

By (3.10), the first order condition (3.8) becomes

IE
[
P ′(u(2)) min(D+

t , u
(2)) + P (u(2))1(−∞,Dt](u

(2))− wt (3.11)

+a(1)
∂µt
∂u(2)

(d, w, u(2)) + b(1)
∂σt
∂u(2)

(d, w, u(2)) | Et
]
u(2)=qt

= 0

for the optimal values q∗t . In fact, when demand is controlled, as in this case, we actu-

ally need a more advanced maximum principle, requiring more technical assumptions.

The interested reader is referred to [2]. We will relax this assumption in the sequel,

and we focus on the case where the equation (3.1) for the demand Dt reduces to an

exogenous SDE of the form
dDt = µt(Dt)dt+ σt(Dt)dBt,

D0 = d0 ∈ R,

where the coefficients µ·(d) and σ·(d) do not depend on the controls q and w. In this

case, since µt(d) and σt(d) do not depend on q, (3.11) simplifies to

IE
[
P ′(qt) min(D+

t , qt) + P (qt)1(−∞,Dt](qt)− wt | Et
]

= 0, (3.12)

Since wt is Et-measurable, (3.12) is equivalent to

IE[P ′(qt) min(D+
t , qt) + P (qt)1(−∞,Dt](qt) | Et] = wt, (3.13)

which has at most one solution by monotonicity of the conditional expectation. We

will set q∗t := 0 when (3.13) does not admit a solution. In the sequel we denote by
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qt(wt) = ψ∗t (w) the solution of (3.13). Assuming that for every t ∈ [0, T ], the function

w 7−→ wqt(w) (3.14)

has a unique maximum at w = w∗t , then the equilibrium is (w∗, ψ∗) and we have

q∗t (w
∗
t ) = ψ∗t (w

∗), t ∈ [δ, T ].

The maximization problem (3.14) can be solved for the optimal value w∗t from the

first order condition

w∗t q
′
t(w
∗
t ) + qt(w

∗
t ) = 0 (3.15)

that follows from (3.7).

Ornstein-Uhlenbeck setting

Henceforth we assume that

µt(Dt) = α(β −Dt) and σt(Dt) = σ,

with α, β, σ > 0, therefore the dynamics (3.1) of (Dt)t∈R+ becomes
dDt = α(β −Dt)dt+ σdBt

D0 = d0 ∈ R,

with the Ornstein-Uhlenbeck solution

Dt = Dt−δe
−αδ + β(1− e−αδ) +

∫ t

t−δ
σeα(s−t)dBs.

We note that given Ft−δ, the (unknown) demand Dt is Gaussian

N
(
ϕ(Dt−δ), σ

21− e−2αδ

2α

)
distributed, where

ϕ(d) := de−αδ + β(1− e−αδ), d > 0, (3.16)

and we let Φ : R→ [0, 1] and φ : R→ R+ respectively denote the standard Gaussian

cumulative distribution and probability density functions.
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Proposition 3.2 The equilibrium action qt := ψ(wt) for Player 2 at any t ∈ [δ, T ] is

the solution of the equation

(P (qt) + P ′(qt)qt)Φ

(
ϕ(Dt−δ)− qt

ε

)
(3.17)

+ P ′(qt)

(
ϕ(Dt−δ)Φ

(
qt − ϕ(Dt−δ)

ε

)
− εφ

(
qt − ϕ(Dt−δ)

ε

))
= wt,

with ε2 = σ2(1− e−2αδ)/(2α).

Proof. The equation (3.13) can be written as

P ′(qt) IE[min((de−αδ + β(1− e−αδ) +X)+, q)]|d=Dt−δ,q=qt
+P (qt) IE[1(−∞,de−αδ+β(1−e−αδ)+X](q)]d=Dt−δ,q=qt = wt, (3.18)

where

X := N
(
0, ε2

)
, with ε2 = σ2

∫ t

t−δ
e2α(s−t)ds = σ21− e−2αδ

2α
,

is a Gaussian random variable independent of Ft−δ. Focusing on the first expectation

in (3.18) we have

P ′(qt) IE[min((de−αδ + β(1− e−αδ) +X)+, q)]d=Dt−δ,q=qt

= P ′(qt)

(
qt

∫ ∞
qt−ϕ(Dt−δ)

e−x
2/(2ε2) dx√

2πε2
+

∫ qt−ϕ(Dt−δ)

−∞
(ϕ(Dt−δ) + x)e−x

2/(2ε2) dx√
2πε2

)

= P ′(qt)

(
qt

(
1− Φ

(
qt − ϕ(Dt−δ)

ε

))
+ ϕ(Dt−δ)Φ

(
qt − ϕ(Dt−δ)

ε

)
− εφ

(
qt − ϕ(Dt−δ)

ε

))
= P ′(qt)

(
qtΦ

(
ϕ(Dt−δ)− qt

ε

)
+ ϕ(Dt−δ)Φ

(
qt − ϕ(Dt−δ)

ε

)
− εφ

(
qt − ϕ(Dt−δ)

ε

))
.

Considering the second expectation in (3.18), due to the relation (3.16) we have

IE[1(−∞,de−αδ+β(1−e−αδ)+X](q)]d=Dt−δ,q=qt

= P(de−αδ + β(1− e−αδ) +X > q)d=Dt−δ,q=qt

=

∫ ∞
qt−ϕ(Dt−δ)

e−x
2/(2ε2) dx√

2πε2

= Φ

(
ϕ(Dt−δ)− qt

ε

)
,

hence (3.13) boils down to (3.17). �
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By abuse of notation we will write the solution to (3.17) as

qt = ψDt−δ(wt), (3.19)

where ψDt−δ : R→ R is the function used in Figures 2 and 3. Next, we can solve

max
wt∈R+

wtψDt−δ(wt) (3.20)

for the optimal w∗t using the first order condition (3.15), which will yield

q∗t = ψDt−δ(w
∗
t ). (3.21)

Affine prices

In case P (qt) = a − bqt with a, b > 0, i.e. retail prices are affine functions of output,

which is a common assumption, (3.17) becomes

(a−2bqt)Φ

(
ϕ(Dt−δ)− qt

ε

)
−bϕ(Dt−δ)Φ

(
qt − ϕ(Dt−δ)

ε

)
+εbφ

(
qt − ϕ(Dt−δ)

ε

)
= wt.

(3.22)

In particular, when b = 0 and retail price are fixed at a, independent of qt, we have

Φ

(
qt − ϕ(Dt−δ)

ε

)
=
a− wt
a

, (3.23)

where

x 7→ Φ

(
x− ϕ(Dt−δ)

ε

)
is the conditional distribution function of the demand Dt given Ft−δ, which can be

seen as an analog of the equation

F (qt) =
a− wt
a

in the framework of fixed retail prices, where F (·) is the cumulative distribution

function of a random demand, see e.g. the equation (3) in [6].

When δ tends to zero, the equation (3.22) converges to

(a− 2bqt)1{qt6Dt} − bDt1{qt>Dt} = wt, (3.24)

which recovers (4.9) below, since limε→0 Φ(x/ε) = 1[0,∞)(x), x ∈ R.
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4 Deterministic demand with no lag

In this section the respective performance functionals of Players 1 and 2 are given

from (2.1) and (2.2) by

J (1)(w, q(w)) =

∫ T

0

f (1)(dt, wt, qt)dt =

∫ T

0

wtqt(wt)dt, (4.1)

and

J (2)(w, q) =

∫ T

0

f (2)(dt, wt, qt)dt =

∫ T

0

(P (qt) min(D+
t , qt)− wtqt)dt. (4.2)

From (2.2) it is clear that q∗t (dt, wt) 6 dt and so q∗t exists since the functional (2.2) is

continuous on a compact set. A sufficient but not necessary condition for q∗t (dt, wt) is

given by the first order condition

P ′(qt) min(dt, qt) + P (qt)1[0,dt](qt)− wt = 0 (4.3)

We can rewrite (4.3) as

P ′(qt)dt1{qt>dt} + (P ′(qt)qt + P (qt))1{qt6dt} − wt = 0. (4.4)

Therefore, when qt 6 dt we have that qt solves

P ′(qt)qt + P (qt)− wt = 0.

If on the other hand qt > dt then we need qt to satisfy

P ′(qt) =
wt
dt
. (4.5)

Assuming that the function

wt 7−→ wtq
∗
t (dt, wt) (4.6)

has a unique maximum at wt = w∗t > 0, we get the first order condition

wt
∂q∗t
∂wt

(dt, wt) + q∗t (dt, wt) = 0 (4.7)

for the optimal value w∗t , which yields q∗t (dt, w
∗
t ).
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Affine prices

We now work out the case when P (qt) = a− bqt, i.e. retail prices are affine functions

of ouput, which is a common assumption.

Proposition 4.1 Assume that P (qt) = a − bqt, a, b > 0. Then the equilibrium is

given by

w∗t = max (a− 2bdt, a/2)

and

q∗t (dt, wt) = min(dt, (a− wt)+/(2b)) =



dt for 0 6 wt 6 a− 2bdt

a− wt
2b

for a− 2bdt < wt 6 a

0 for wt > a.

(4.8)

Therefore, the actions played in equilibrium are given by

w∗t = max (a− 2bdt, a/2) and q∗t (dt, w
∗
t ) = min (dt, a/(4b)) .

Proof. From (4.4) we have

−bdt1{qt>dt} + (−bqt + a− bqt)1{qt6dt} − wt = 0. (4.9)

or

(a− bqt)1{qt6dt} = wt + bmin(dt, qt). (4.10)

For dt > qt we have

a− 2bqt − wt = 0, (4.11)

so that

q∗t (dt, wt) =
a− wt

2b
< dt, (4.12)

provided that wt 6 a. If however

a− wt
2b

> dt > 0,

then we take

q∗t (dt, wt) = dt, (4.13)
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to see this, note that the derivative of the profit function, (4.11), is positive on [0, dt].

Finally if wt > a, then q∗t (dt, wt) = 0. This is optimal since profit is given by

(a− bqt) min(dt, qt)− wqt

so clearly it is optimal to choose q∗t (dt, wt) = 0 in this case. Hence we find

q∗t (dt, wt) = min(dt, (a− wt)+/(2b)) =



dt for 0 6 wt 6 a− 2bdt

a− wt
2b

for a− 2bdt < wt 6 a

0 for wt > a,

(4.14)

and

wtq
∗
t (dt, wt) = wt min(dt, (a− wt)+/(2b)) =



wtdt for 0 6 wt 6 a− 2bdt,

awt − w2
t

2b
for a− 2bdt < wt 6 a,

0 for wt > a.
(4.15)

The function wt 7−→ (awt − w2
t )/(2b) reaches its maximum a2/(8b) at w̄ = a/2. In

order to maximize (4.15) as a function of wt we need to consider two cases:

i) In case we have d > a/(4b), i.e. a − 2bd 6 a/2, the maximum is reached at

w∗t = w̄ = a/2 and it equals (aw̄ − w̄2)/(2b) = a2/(8b).

ii) In case we have dt < a/(4b), i.e. a − 2bdt > a/2, the maximum is reached

at w∗t = a − 2bdt which solves w∗t dt = (aw∗t − (w∗t )
2)/(2b), and it is equal to

w∗t dt = dt(a− 2bdt).

Therefore we have

w∗t = max
(
a− 2bdt,

a

2

)
,

and consequently

q∗t (dt, w
∗
t ) =

a−max (a− 2bdt, a/2)

2b

=
a+ min (2bdt − a,−a/2)

2b

=
min (2bdt, a/2)

2b
= min

(
dt,

a

4b

)
.

�
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δ= 0

Figure 1: Retailer output d 7−→ q∗t (d, w) = ψd(w) in (4.8) with w = 0.5.

The plots in Figures 1-4 have been made for P (qt) = a− bqt with a, b > 0.

From Figure 1 we note that, due to dynamic retail prices, the retail output remains

capped at the level a/(4b) as a function of demand, whereas it remains strictly in-

creasing in the case of fixed prices, cf. also Figure 3 in [2].

0.2 0.4 0.6 0.8 1
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0.08

0.1

0.12

q ∗ (w)

a=1;b=1;d=0.2

a-2bd

δ= 1e-04
δ= 0

Figure 2: Wholesaler profit w 7−→ wq∗t (d, w) = wψd(w) with d = 0.2 < a/(4b).
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a=1;b=1;d=0.35
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δ= 0

Figure 3: Wholesaler profit w 7−→ wq∗t (d, w) = wψd(w) with d = 0.35 > a/(4b).
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Figure 4: Wholesaler vs retailer profits (4.16) and (4.17) as functions of dt with δ = 0.

Figure 4 illustrates the equilibrium wholesaler and retailer profits respectively given

by (4.8),

w∗t q
∗
t (dt, w

∗
t ) = max

(
a− 2bdt,

a

2

)
min

(
dt,

a

4b

)
(4.16)

and

P (q∗t (dt, w
∗
t ))q

∗
t (dt, w

∗
t )− w∗t q∗t (dt, w∗t )

=

((
a− bmin

(
dt,

a

4b

))+
−max

(
a− 2bdt,

a

2

))
min

(
dt,

a

4b

)
. (4.17)

5 Conclusion

We have studied stochastic newsvendor games in which dynamic retail prices have

been added to delayed demand. We have shown that the presence of dynamic retail

prices forces the retail output to remain capped at the level a/(4b) as a function of

demand, cf. Figure 1 above, whereas it remained strictly increasing in the case of

fixed prices, cf. Figure 3 in [2]. Indeed, here the wholesaler and retailer have aligned

interests as they would both want demand to equal at least a/(4b), in which case

the equilibrium output tends to a/(4b). Below this point, the equilibrium output

increases with d, less output is produced (namely q∗t = dt, cf. (4.8)), and profits are

lower for both wholesaler and retailer. The lagged case is a smoothing of the no-lag

case, and unlike in the Cournot setup [5], there is no transition from single to multiple

equilibria.
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